Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Subcell Biochem ; 101: 159-187, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520307

RESUMO

Hsp90 is a conserved molecular chaperone regulating the folding and activation of a diverse array of several hundreds of client proteins. The function of Hsp90 in client processing is fine-tuned by a cohort of co-chaperones that modulate client activation in a client-specific manner. They affect the Hsp90 ATPase activity and the recruitment of client proteins and can in addition affect chaperoning in an Hsp90-independent way. p23 and Aha1 are central Hsp90 co-chaperones that regulate Hsp90 in opposing ways. While p23 inhibits the Hsp90 ATPase and stabilizes a client-bound Hsp90 state, Aha1 accelerates ATP hydrolysis and competes with client binding to Hsp90. Even though both proteins have been intensively studied for decades, research of the last few years has revealed intriguing new aspects of these co-chaperones that expanded our perception of how they regulate client activation. Here, we review the progress in understanding p23 and Aha1 as promoters of client processing. We highlight the structures of Aha1 and p23, their interaction with Hsp90, and how their association with Hsp90 affects the conformational cycle of Hsp90 in the context of client maturation.


Assuntos
Proteínas de Choque Térmico HSP90 , Chaperonas Moleculares , Humanos , Adenosina Trifosfatases/química , Proteínas de Choque Térmico HSP90/química , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Chaperonas Moleculares/genética , Chaperonas Moleculares/metabolismo , Ligação Proteica , Dobramento de Proteína
2.
Biotechnol Biofuels ; 12: 34, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820244

RESUMO

BACKGROUND: Enzymatic hydrolysis is a major step for cellulosic ethanol production. A thorough understanding of enzymatic hydrolysis is necessary to help design optimal conditions and economical systems. The original HCH-1 (Holtzapple-Caram-Humphrey-1) model is a generalized mechanistic model for enzymatic cellulose hydrolysis, but was previously applied only to the initial rates. In this study, the original HCH-1 model was modified to describe integrated enzymatic cellulose hydrolysis. The relationships between parameters in the HCH-1 model and substrate conversion were investigated. Literature models for long-term (> 48 h) enzymatic hydrolysis were summarized and compared to the modified HCH-1 model. RESULTS: A modified HCH-1 model was developed for long-term (> 48 h) enzymatic cellulose hydrolysis. This modified HCH-1 model includes the following additional considerations: (1) relationships between coefficients and substrate conversion, and (2) enzyme stability. Parameter estimation was performed with 10-day experimental data using α-cellulose as substrate. The developed model satisfactorily describes integrated cellulose hydrolysis data taken with various reaction conditions (initial substrate concentration, initial product concentration, enzyme loading, time). Mechanistic (and semi-mechanistic) literature models for long-term enzymatic hydrolysis were compared with the modified HCH-1 model and evaluated by the corrected version of the Akaike information criterion. Comparison results show that the modified HCH-1 model provides the best fit for enzymatic cellulose hydrolysis. CONCLUSIONS: The HCH-1 model was modified to extend its application to integrated enzymatic hydrolysis; it performed well when predicting 10-day cellulose hydrolysis at various experimental conditions. Comparison with the literature models showed that the modified HCH-1 model provided the best fit.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa