RESUMO
Transcription factors are key determinants of lineage commitment during mammalian development. However, the function and molecular mechanism for the transcription factors in the formation of three primary germ layers during human embryonic development are not fully elucidated. Here, we report that homeobox-containing transcription factor HESX1 plays a critical role in mesendodermal (ME) commitment of human embryonic stem cells (hESCs). Our results show that expression of HESX1 in hESCs is regulated by OCT4 and NANOG, and that its expression level changes with hESC differentiation. We find that knockdown of HESX1 does not disrupt the undifferentiated state of hESCs, in terms of cell morphology and expression levels of pluripotency-associated genes. However, HESX1 deficiency in hESCs impairs their ME commitment, whereas forced expression of HESX1 significantly enhances ME marker expression during ME commitment. Interestingly, HESX1 knockdown in hESCs represses ERK1/2 signaling activated by ME induction, while overexpression of HESX1 markedly enhances ERK1/2 activity during ME commitment of hESCs. Of note, MEK inhibitor PD0325901 weakens or even eliminates HESX1 overexpression-mediated promotive effects on ME induction in a dosage-dependent manner. Together, this study identifies a novel role of HESX1 in hESC commitment to ME cells and establishes the functional link between a transcription factor and lineage-associated signaling. These findings would help to better understand early human development and develop more efficient protocols to induce hESC differentiation to desired lineages.
Assuntos
Células-Tronco Embrionárias Humanas , Animais , Diferenciação Celular/genética , Células-Tronco Embrionárias , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Células-Tronco Embrionárias Humanas/metabolismo , Humanos , Sistema de Sinalização das MAP Quinases , Mamíferos/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Fatores de Transcrição/metabolismoRESUMO
CONTEXT: The international GENHYPOPIT network collects phenotypical data and screens genetic causes of non-acquired hypopituitarism. AIMS: To describe main phenotype patterns and their evolution through life. DESIGN: Patients were screened according to their phenotype for coding sequence variations in 8 genes: HESX1, LHX3, LHX4, PROP1, POU1F1, TBX19, OTX2 and PROKR2. RESULTS: Among 1213 patients (1143 index cases), the age of diagnosis of hypopituitarism was congenital (24%), in childhood (28%), at puberty (32%), in adulthood (7.2%) or not available (8.8%). Noteworthy, pituitary hormonal deficiencies kept on evolving during adulthood in 49 of patients. Growth Hormone deficiency (GHD) affected 85.8% of patients and was often the first diagnosed deficiency. AdrenoCorticoTropic Hormone deficiency rarely preceded GHD, but usually followed it by over 10 years. Pituitary Magnetic Resonance Imaging (MRI) abnormalities were common (79.7%), with 39.4% pituitary stalk interruption syndrome (PSIS). The most frequently associated extrapituitary malformations were ophthalmological abnormalities (16.1%). Prevalence of identified mutations was 7.3% of index cases (84/1143) and 29.5% in familial cases (n = 146). Genetic analysis in 449 patients without extrapituitary phenotype revealed 36 PROP1, 2 POU1F1 and 17 TBX19 mutations. CONCLUSION: This large international cohort highlights atypical phenotypic presentation of constitutional hypopituitarism, such as post pubertal presentation or adult progression of hormonal deficiencies. These results justify long-term follow-up, and the need for systematic evaluation of associated abnormalities. Genetic defects were rarely identified, mainly PROP1 mutations in pure endocrine phenotypes.
Assuntos
Hipopituitarismo , Adulto , Estudos de Coortes , Proteínas de Homeodomínio/genética , Humanos , Hipopituitarismo/genética , Imageamento por Ressonância Magnética , Mutação , Fatores de Transcrição/genéticaRESUMO
The pituitary is an organ of dual provenance: the anterior lobe is epithelial in origin, whereas the posterior lobe derives from the neural ectoderm. The pituitary gland is a pivotal element of the axis regulating reproductive function in mammals. It collects signals from the hypothalamus, and by secreting gonadotropins (FSH and LH) it stimulates the ovary into cyclic activity resulting in a menstrual cycle and in ovulation. Pituitary organogenesis is comprised of three main stages controlled by different signaling molecules: first, the initiation of pituitary organogenesis and subsequent formation of Rathke's pouch; second, the migration of Rathke's pouch cells and their proliferation; and third, lineage determination and cellular differentiation. Any disruption of this sequence, e.g., gene mutation, can lead to numerous developmental disorders. Gene mutations contributing to disordered pituitary development can themselves be classified: mutations affecting transcriptional determinants of pituitary development, mutations related to gonadotropin deficiency, mutations concerning the beta subunit of FSH and LH, and mutations in the DAX-1 gene as a cause of adrenal hypoplasia and disturbed responsiveness of the pituitary to GnRH. All these mutations lead to disruption in the hypothalamic-pituitary-ovarian axis and contribute to the development of primary amenorrhea.
Assuntos
Predisposição Genética para Doença/genética , Hipogonadismo/genética , Mutação , Receptor Nuclear Órfão DAX-1/genética , Subunidade beta do Hormônio Folículoestimulante/genética , Humanos , Hormônio Luteinizante Subunidade beta/genéticaRESUMO
We report on a patient born to consanguineous parents, presenting with Growth Hormone Deficiency (GHD) and osteoporosis. SNP-array analysis and exome sequencing disclosed long contiguous stretches of homozygosity and two distinct homozygous variants in HESX1 (Q6H) and COL1A1 (E1361K) genes. The HESX1 variant was described as causative in a few subjects with an incompletely penetrant dominant form of combined pituitary hormone deficiency (CPHD). The COL1A1 variant is rare, and so far it has never been found in a homozygous form. Segregation analysis showed that both variants were inherited from heterozygous unaffected parents. Present results further elucidate the inheritance pattern of HESX1 variants and recommend assessing the clinical impact of variants located in C-terminal propeptide of COL1A1 gene for their potential association with rare recessive and early onset forms of osteoporosis.
Assuntos
Colágeno Tipo I/genética , Proteínas de Homeodomínio/genética , Homozigoto , Hormônio do Crescimento Humano/deficiência , Mutação , Osteoporose/diagnóstico , Osteoporose/etiologia , Adolescente , Idade de Início , Substituição de Aminoácidos , Colágeno Tipo I/química , Cadeia alfa 1 do Colágeno Tipo I , Análise Mutacional de DNA , Fácies , Estudos de Associação Genética , Predisposição Genética para Doença , Proteínas de Homeodomínio/química , Humanos , Hipopituitarismo/complicações , Hipopituitarismo/genética , Imageamento por Ressonância Magnética , Masculino , Modelos Moleculares , Fenótipo , Polimorfismo de Nucleotídeo Único , Radiografia , Relação Estrutura-AtividadeRESUMO
BACKGROUND: Mutations in PROP1, HESX1 and LHX3 are associated with combined pituitary hormone deficiency (CPHD) and orthotopic posterior pituitary lobe (OPP). OBJECTIVE: To identify mutations in PROP1, HESX1 and LHX3 in a large cohort of patients with CPHD and OPP (35 Brazilian, two Argentinian). DESIGN AND METHODS: We studied 23 index patients with CPHD and OPP (six familial and 17 sporadic) as well as 14 relatives. PROP1 was sequenced by the Sanger method in all except one sporadic case studied using a candidate gene panel. Multiplex ligation-dependent probe amplification (MLPA) was applied to one familial case in whom PROP1 failed to amplify by PCR. In the 13 patients without PROP1 mutations, HESX1 and LHX3 were sequenced by the Sanger method. RESULTS: We identified PROP1 mutations in 10 index cases. Three mutations were novel: one affecting the initiation codon (c.1A>G) and two affecting splicing sites, c.109+1G>A and c.342+1G>C. The known mutations, c.150delA (p.Arg53Aspfs*112), c.218G>A (p.Arg73His), c.263T>C (p.Phe88Ser) and c.301_302delAG (p.Leu102Cysfs*8), were also detected. MLPA confirmed complete PROP1 deletion in one family. We did not identify HESX1 and LHX3 mutations by Sanger. CONCLUSION: PROP1 mutations are a prevalent cause of congenital CPHD with OPP, and therefore, PROP1 sequencing must be the first step of molecular investigation in patients with CPHD and OPP, especially in populations with a high frequency of PROP1 mutations. In the absence of mutations, massively parallel sequencing is a promising approach. The high prevalence and diversity of PROP1 mutations is associated with the ethnic background of this cohort.
Assuntos
Proteínas de Homeodomínio/genética , Hipopituitarismo/genética , Proteínas com Homeodomínio LIM/genética , Mutação/genética , Neuro-Hipófise/metabolismo , Fatores de Transcrição/genética , Adolescente , Adulto , Brasil , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Adulto JovemRESUMO
Hesx1, a homeobox gene expressed in embryonic stem cells (ESCs), has been implicated in the core transcription factors governing the pluripotent state. However, data about the underlying mechanism of how Hesx1 is involved in maintaining pluripotency is still scarce. In this study, we find Hesx1 responds to multiple pluripotency-related pathway inhibitors as well as LIF stimulation. Particularly, the expression of Hesx1 can be readily induced by dual inhibition (2i) of glycogen synthase kinase 3 and mitogen-activated protein kinase. Forced expression of Hesx1 can partially compensate for the withdrawal of either LIF or each component of 2i. We also demonstrate that LIF and each inhibitor of 2i can induce Hesx1 independent of one another. We tentatively put forward that Hesx1 is a common downstream target of LIF- and 2i-mediated self-renewal signaling pathways and plays an important role in maintaining ESC identity. Our study extends the methods of identifying the missing crucial factors in establishing ESC pluripotency.
Assuntos
Células-Tronco Embrionárias/metabolismo , Proteínas de Homeodomínio/metabolismo , Células-Tronco Pluripotentes/fisiologia , Proteínas Repressoras/metabolismo , Animais , Diferenciação Celular/genética , Células Cultivadas , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/efeitos dos fármacos , Regulação da Expressão Gênica , Técnicas de Silenciamento de Genes , Quinase 3 da Glicogênio Sintase/antagonistas & inibidores , Quinase 3 da Glicogênio Sintase/metabolismo , Proteínas de Homeodomínio/genética , Fator Inibidor de Leucemia/farmacologia , Camundongos Transgênicos , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/genética , Análise de Sequência com Séries de Oligonucleotídeos , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição SOXB1/genética , Transdução de Sinais , Tretinoína/farmacologiaRESUMO
Context: Ectopic posterior pituitary (EPP), a condition in which the posterior pituitary gland is displaced due to defective neuronal migration, is frequently associated with hypopituitarism. Genetic variants play a role, but many cases remain unexplained. Objective: A large EPP cohort was studied to explore the importance of genetic variants and how they correlate with clinical findings. Methods: Whole exome sequencing was performed on a discovery sample of 27 cases to identify rare variants. The variants that met the criteria for rarity and biological relevance, or that were previously associated with EPP (ROBO1 and HESX1), were then resequenced in the 27 cases plus a replication sample of 51 cases. Results: We identified 16 different variants in 12 genes in 15 of the 78 cases (19.2%). Complete anterior pituitary deficiency was twice as common in cases with variants of interest compared to cases without variants (9/15 [60%] vs 19/63 [30.1%], respectively; Z test, Pâ =â 0.06). Breech presentation was more frequent in the variant positive group (5/15 vs 1/63; Z test, Pâ =â 0.003). Four cases had variants in ROBO1 and 1 in HESX1, genes previously associated with EPP. The ROBO1 p.S18* variant has not been reported previously; ROBO1 p.Q1227H has not been associated with EPP previously. Conclusion: EPP cases with variants of interest identified in this study were more likely to present with severe clinical disease. Several variants were identified in genes not previously associated with EPP. Our findings confirm that EPP is a multigenic disorder. Future studies are needed to identify additional genes.
RESUMO
The role of the homeobox transcriptional repressor HESX1 in embryonic stem cells (ESCs) remains mostly unknown. Here, we show that Hesx1 is expressed in the preimplantation mouse embryo, where it is required during developmental diapause. Absence of Hesx1 leads to reduced expression of epiblast and primitive endoderm determinants and failure of diapaused embryos to resume embryonic development after implantation. Genetic deletion of Hesx1 impairs self-renewal and promotes differentiation toward epiblast by reducing the expression of pluripotency factors and decreasing the activity of LIF/STAT3 signaling. We reveal that Hesx1-deficient ESCs show elevated ERK pathway activation, resulting in accelerated differentiation toward primitive endoderm, which can be prevented by overexpression of Hesx1. Together, our data provide evidence for a novel role of Hesx1 in the control of self-renewal and maintenance of the undifferentiated state in ESCs and mouse embryos.
Assuntos
Diferenciação Celular/genética , Autorrenovação Celular/genética , Diapausa/genética , Células-Tronco Embrionárias/citologia , Células-Tronco Embrionárias/metabolismo , Deleção de Genes , Proteínas Repressoras/deficiência , Animais , Biomarcadores , Desenvolvimento Embrionário , Imunofluorescência , Regulação da Expressão Gênica , Proteínas de Homeodomínio , Fator Inibidor de Leucemia/metabolismo , Sistema de Sinalização das MAP Quinases , Camundongos , Modelos Biológicos , Fenótipo , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , Transdução de SinaisRESUMO
The homeodomain-containing transcription factor Anf (also known as Rpx/Hesx1 in mammals) plays an important role during the forebrain development in vertebrates. Here we demonstrate the ability of the Xenopus laevis Anf, Xanf1/Hesx1, to directly bind SRY-related HMG-box-containing transcription factor SoxD/Sox15 and to cooperate with the latter during regulating of the expression of Xanf1/Hesx1 own gene. As we have shown by GST pull-down, EMSA and the luciferase reporter assays, Xanf1/Hesx1 and SoxD/Sox15 bind the Xanf1/Hesx1 promoter region counteracting the inhibitory effect of Xanf1/Hesx1 alone. This finding explains how Xanf1/Hesx1 could escape the repressive activity of its own protein during early patterning of the forebrain rudiment.
Assuntos
Proteínas de Homeodomínio/metabolismo , Prosencéfalo/embriologia , Fatores de Transcrição SOXD/metabolismo , Proteínas de Xenopus/metabolismo , Xenopus laevis/crescimento & desenvolvimento , Animais , Embrião não Mamífero/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Domínios HMG-Box , Proteínas de Homeodomínio/genética , Prosencéfalo/metabolismo , Fatores de Transcrição SOXD/química , Técnicas do Sistema de Duplo-Híbrido , Proteínas de Xenopus/genética , Xenopus laevis/metabolismoRESUMO
Septo-optic dysplasia (SOD) is a rare condition for which the precise etiology is still unclear. Elucidating the genetic component of SOD is a difficult but necessary task for the future. We describe herein a novel HESX1 c.475C>T (p.R159W) mutation and demonstrate its potential pathogenicity in the development of this rare disease.
RESUMO
PURPOSE: Congenital hypopituitarism is caused by mutations in pituitary transcription factors involved in the development of the hypothalamic-pituitary axis. Mutation frequencies of genes involved in congenital hypopituitarism are extremely low and vary substantially between ethnicities. This study was undertaken to compare the clinical, endocrinological, and radiological features of patients with an isolated growth hormone deficiency (IGHD) or combined pituitary hormone deficiency (CPHD). MATERIALS AND METHODS: This study included 27 patients with sporadic IGHD and CPHD. A mutation analysis of the POU1F1, PROP1, LHX3, LHX4, and HESX1 genes was performed using genomic DNA from peripheral blood leukocytes. RESULTS: IGHD and CPHD were observed in 4 and 23 patients, respectively. Mean age at diagnosis was 8.28±7.25 years for IGHD and 13.48±10.46 years for CPHD (p=0.37). Serum insulin-like growth factor-1 and peak growth hormone (GH) levels following GH stimulation tests were significantly lower in patients with CPHD than in those with IGHD (p<0.05). Sellar MRI findings revealed structural abnormalities in 3 patients with IGHD (75%) and 21 patients with CPHD (91.3%) (p=0.62). A mutation analysis identified homozygous p.R109Q mutations in HESX1 in a patient with CPHD. Patients with CPHD had more severe GHD than those with IGHD. CONCLUSION: The frequency of defects in the genes encoding pituitary transcription factors was extremely low in Korean patients with congenital hypopituitarism. Environmental factors and the impact of other causative genes may contribute to this clinical phenotype.
Assuntos
Nanismo Hipofisário/genética , Hipopituitarismo/congênito , Fatores de Transcrição/genética , Adolescente , Criança , Pré-Escolar , Análise Mutacional de DNA , Nanismo Hipofisário/sangue , Nanismo Hipofisário/congênito , Nanismo Hipofisário/etnologia , Feminino , Hormônio do Crescimento , Homozigoto , Humanos , Hipopituitarismo/sangue , Hipopituitarismo/etnologia , Hipopituitarismo/genética , Lactente , Imageamento por Ressonância Magnética , Masculino , Taxa de Mutação , Fenótipo , República da Coreia/epidemiologia , Adulto JovemRESUMO
Cat eye syndrome is a rare congenital disease characterized by the existence of a supernumerary chromosome derived from chromosome 22, with a variable phenotype comprising anal atresia, coloboma of the iris and preauricular tags or pits. We report a girl with cat eye syndrome, presenting short stature, with growth hormone deficiency due to posterior pituitary ectopia. Short stature is a common feature of this syndrome, and the association with a structural pituitary anomaly has been described, however growth hormone deficiency and the underlying mechanisms are rarely reported. A review on short stature and growth hormone deficiency in cat eye syndrome is conducted.
Assuntos
Transtornos Cromossômicos/diagnóstico , Transtornos Cromossômicos/genética , Hormônio do Crescimento Humano/deficiência , Displasia Septo-Óptica/genética , Anormalidades Múltiplas/genética , Aneuploidia , Cromossomos Humanos Par 22/genética , Fenda Labial/genética , Fissura Palatina/genética , Coloboma/genética , Cistos/genética , Anormalidades do Olho , Feminino , Testes Genéticos , Hormônio do Crescimento Humano/uso terapêutico , Humanos , Lactente , Lábio/anormalidades , Fenótipo , Hipófise/patologiaRESUMO
The PROP1 protein, encoded by the prophet of Pit-1 (PROP1) gene, exhibits both DNA-binding and transcriptional activation abilities. Its expression leads to the ontogenesis of growth hormone (GH), prolactin (PRL), thyroid-stimulating hormone (TSH), and pituitary hormone. The missense mutation H173R in PROP1 may result in deficiencies of GH, PRL, TSH, and Pit-1, thereby affecting growth traits. The objective of this study was to characterize the H173R mutation within the PROP1 gene and examine its associations with growth traits in cattle. Accordingly, the H173R mutation was genotyped in 1207 cows belonging to five Chinese native breeds. Three genotypes were identified among the specimens, with genotype AA being the major one. Consequently, the "G" allele was the minor allele. Association testing revealed that the H173R mutation was significantly associated with body weight, average daily weight gain and physical parameters in the analyzed breeds. Interestingly, the cows with genotype AG and/or AA had superior growth traits compared with those expressing the GG genotype, in all tested breeds. These findings revealed that the "A" allele had positive effects on growth traits, which was consistent with the increasing binding ability and enhanced activation capacity associated with the bovine isoform PROP1-173H, representing the "A" allele. Therefore, the H173R mutation can be considered as a DNA marker for selecting individuals with superior growth traits, thereby contributing to research on breeding and genetics in the beef industry.
Assuntos
Bovinos/genética , Crescimento e Desenvolvimento/genética , Proteínas de Homeodomínio/genética , Mutação de Sentido Incorreto , Característica Quantitativa Herdável , Substituição de Aminoácidos/fisiologia , Animais , Arginina/genética , Cruzamento/métodos , Bovinos/crescimento & desenvolvimento , Feminino , Frequência do Gene , Estudos de Associação Genética , Marcadores Genéticos/fisiologia , Genótipo , Histidina/genética , Proteínas de Homeodomínio/fisiologia , Masculino , Mutação de Sentido Incorreto/fisiologiaRESUMO
PURPOSE: Congenital hypopituitarism is caused by mutations in pituitary transcription factors involved in the development of the hypothalamic-pituitary axis. Mutation frequencies of genes involved in congenital hypopituitarism are extremely low and vary substantially between ethnicities. This study was undertaken to compare the clinical, endocrinological, and radiological features of patients with an isolated growth hormone deficiency (IGHD) or combined pituitary hormone deficiency (CPHD). MATERIALS AND METHODS: This study included 27 patients with sporadic IGHD and CPHD. A mutation analysis of the POU1F1, PROP1, LHX3, LHX4, and HESX1 genes was performed using genomic DNA from peripheral blood leukocytes. RESULTS: IGHD and CPHD were observed in 4 and 23 patients, respectively. Mean age at diagnosis was 8.28±7.25 years for IGHD and 13.48±10.46 years for CPHD (p=0.37). Serum insulin-like growth factor-1 and peak growth hormone (GH) levels following GH stimulation tests were significantly lower in patients with CPHD than in those with IGHD (p<0.05). Sellar MRI findings revealed structural abnormalities in 3 patients with IGHD (75%) and 21 patients with CPHD (91.3%) (p=0.62). A mutation analysis identified homozygous p.R109Q mutations in HESX1 in a patient with CPHD. Patients with CPHD had more severe GHD than those with IGHD. CONCLUSION: The frequency of defects in the genes encoding pituitary transcription factors was extremely low in Korean patients with congenital hypopituitarism. Environmental factors and the impact of other causative genes may contribute to this clinical phenotype.
Assuntos
Humanos , Diagnóstico , DNA , Nanismo Hipofisário , Hormônio do Crescimento , Hipopituitarismo , Coreia (Geográfico) , Leucócitos , Imageamento por Ressonância Magnética , Taxa de Mutação , Fenótipo , Fatores de TranscriçãoRESUMO
The accurate analysis of the hypothalamic-pituitary area is essential in the diagnosis of endocrine-related diseases. High-quality magnetic resonance imaging represents the examination modality of choice in the evaluation of hypothalamic-pituitary morphology. Indeed, the advent of molecular biology and neuroimaging techniques has led to significant progress in the understanding of the pathogenesis of disorders affecting the pituitary gland, specifically by demonstrating a clear phenotype-genotype relationship. Animal studies, along with the correlation of a particular genetic profile to certain endocrine and magnetic resonance imaging phenotypes in humans, have yielded great insights into pituitary development. Today, there is convincing evidence to support the hypothesis that marked magnetic resonance imaging differences in pituitary morphology indicate a variety of disorders that affect anterior pituitary gland organogenesis and function with a variety of diverse prognoses.