Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 19(6): e2205407, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36461729

RESUMO

Structural engineering via the template method is efficient for micro-nano assembling. However, only structural design and lack of composition control restrict their advanced application. To overcome this issue, applying a template to simultaneously realize the structural design and fine component control is highly desired, which has been ignored. In this study, a spinel-shaped MoS2 heterostructure with controlled phase ratios of 1H and 2H phase is developed using the AlOOH template method. This work demonstrates that the MoS2 phase transition mechanism from 2H to 1T is substantially attributed to the close exposed crystal's surface and approximately accordant surface energy. The superiority and additional proof are provided based on density-functional theory simulation, transmission electron microscope holography, etc. With an effective absorptance region of 6.3 GHz under a thickness of 1.4 mm, the reported samples present outstanding microwave absorption capacity. This is attributed to the beneficial coupled effect between the well-designed structure and phase regulation. This work offers valuable insights into structural engineering and component regulation template methods.

2.
Bioact Mater ; 37: 14-29, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38515610

RESUMO

Multi-drug resistant bacterial infections pose a significant threat to human health. Thus, the development of effective bactericidal strategies is a pressing concern. In this study, a ternary heterostructure (Zn-CN/P-GO/BiS) comprised of Zn-doped graphite phase carbon nitride (g-C3N4), phosphorous-doped graphene oxide (GO) and bismuth sulphide (Bi2S3) is constructed for efficiently treating methicillin-resistant Staphylococcus aureus (MRSA)-infected wound. Zn doping-induced defect sites in g-C3N4 results in a reduced band gap (ΔE) and a smaller energy gap (ΔEST) between the singlet state S1 and triplet state T1, which favours two-photon excitation and accelerates electron transfer. Furthermore, the formation of an internal electric field at the ternary heterogeneous interface optimizes the charge transfer pathway, inhibits the recombination of electron-hole pairs, improves the photodynamic effect of g-C3N4, and enhances its catalytic performance. Therefore, the Zn-CN/P-GO/BiS significantly augments the production of reactive oxygen species and heat under 808 nm NIR (0.67 W cm-2) irradiation, leading to the elimination of 99.60% ± 0.07% MRSA within 20 min. Additionally, the release of essential trace elements (Zn and P) promotes wound healing by activating hypoxia-inducible factor-1 (HIF-1) and peroxisome proliferator-activated receptors (PPAR) signaling pathways. This work provides unique insight into the rapid antibacterial applications of trace element doping and two-photon excitation.

3.
J Colloid Interface Sci ; 639: 214-222, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36805746

RESUMO

Developing highly efficient electrocatalysts based on appropriate heterojunction engineering and electronic structure modification for the oxygen evolution reaction (OER) has been extensively recognized as an effective approach to increase the efficiency of water splitting. Herein, ultralow Pt-loaded (1 %) NiCoFeP@NiCoFe-PBA hollow nanocages with well-defined heterointerfaces and modified electronic environment are successfully fabricated. As expected, the obtained Pt-NiCoFeP@NiCoFe-PBA exhibits outstanding performance with a low overpotential of 255 mV at 10 mA cm-2 and a small Tafel slope of 57.2 mV dec-1. More specifically, the highly open three-dimensional structure, exquisite interior voids and abundant surface defects endow Pt-NiCoFeP@NiCoFe-PBA nanocages with more electrochemical active sites. Meanwhile, experimental results and mechanism studies also reveal that the construction of heterogeneous interfaces as well as incorporation of noble metals could readily induce strong synergistic effects and significantly tailor electronic configurations to optimize the binding energy of the intermediates, thereby achieving prominent OER performance.

4.
ACS Appl Mater Interfaces ; 14(5): 6625-6637, 2022 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-35099917

RESUMO

The functional group is the main body in modifying the perovskite film, and different functional groups lead to different modification effects. Here, several conjugated triazine-based small molecules such as melamine (Cy-NH2), cyanuric acid (Cy-OH), cyanuric fluoride (Cy-F), cyanuric chloride (Cy-Cl), and thiocyanuric acid (Cy-SH) are used to modify perovskite films by mixing in antisolvent. The crystallizations of perovskites are optimized by these molecules, and the perovskite films with low trap density are obtained by forming Lewis adducts with these molecules (Pb2+ and electron-donating groups including -NH2, C═N-, and C═O; I- and electron-withdrawing groups including F, Cl, N-H, and O-H). Especially for the Cy-F and Cy-Cl, the heterojunction structure is formed in the perovskite layer by p-type modification, which is conducive to charge transfer and collection in PSCs. Compared with that of control devices, the performance of devices with trap passivation and heterojunction engineering is obviously improved from 18.49 to 20.71% for MAPbI3 and 19.27 to 21.11% for FA0.85Cs0.15PbI3. Notably, the excellent moisture (retaining 67%, RH: 50% for 20 days) and thermal (retaining 64%, 85 °C for 72 h) stability of PSCs are obtained by a kind of second modification (Cy-F/Cy-SH)─spin-coating a few Cy-SH on the Cy-F-modified perovskite film surface. It also reduces Pb pollution because Cy-SH is a highly potent chelating agent. Therefore, this work also provides an effective method to obtain high-performance, stable, and low-lead pollution PSCs, combining trap passivation, heterojunction engineering, and surface treatment.

5.
Front Chem ; 10: 959414, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35903188

RESUMO

Photocatalysis is a potential strategy to solve energy and environmental problems. The development of new sustainable photocatalysts is a current topic in the field of photocatalysis. ZnIn2S4, a visible light-responsive photocatalyst, has attracted extensive research interest in recent years. Due to its suitable band gap, strong chemical stability, durability, and easy synthesis, it is expected to become a new hot spot in the field of photocatalysis in the near future. This mini-review presents a comprehensive summary of the modulation strategies to effectively improve the photocatalytic activity of ZnIn2S4 such as morphology and structural engineering, defects engineering, doping engineering, and heterojunction engineering. This review aims to provide reference to the proof-of-concept design of highly active ZnIn2S4-based photocatalysts for the enhanced hydrogen evolution reaction.

6.
ACS Appl Mater Interfaces ; 14(18): 21079-21088, 2022 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-35486118

RESUMO

Minimizing bulk and interfacial nonradiative recombination losses is key to further improving the photovoltaic performance of perovskite solar cells (PSC) but very challenging. Herein, we report a gradient dimensionality engineering to simultaneously passivate the bulk and interface defects of perovskite films. The 2D/3D heterojunction is skillfully constructed by the diffusion of an amphiphilic spacer cation from the interface to the bulk. The 2D/3D heterojunction engineering strategy has achieved multiple functions, including defect passivation, hole extraction improvement, and moisture stability enhancement. The introduction of tertiary butyl at the spacer cation should be responsible for increased film and device moisture stability. The device with 2D/3D heterojunction engineering delivers a promising efficiency of 22.54% with a high voltage of 1.186 V and high fill factor of 0.841, which benefits from significantly suppressed bulk and interfacial nonradiative recombination losses. Moreover, the modified devices demonstrate excellent light, thermal, and moisture stability over 1000 h. This work paves the way for the commercial application of perovskite photovoltaics.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa