Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.156
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
J Biol Chem ; 300(9): 107669, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39128717

RESUMO

Hexavalent chromium (Cr(VI)) exposure has been linked with gastrointestinal toxicity, whereas the molecular pathways and key targets remain elusive. Computational toxicology analysis predicted the correlation between protein phosphatase 2A (PP2A) and genes regarding Cr(VI)-induced intestinal injury. Here, we generated a mouse model with intestinal epithelium-specific knock out of Ppp2r1a (encoding PP2A Aα subunit) to investigate the mechanisms underlying Cr(VI)-induced small intestinal toxicity. Heterozygous (HE) mice and matched WT littermates were administrated with Cr(VI) at 0, 5, 20, and 80 mg/l for 28 successive days. Cr(VI) treatment led to crypt hyperplasia, epithelial cell apoptosis, and intestinal barrier dysfunction, accompanied by the decline of goblet cell counts and Occludin expression in WT mice. Notably, these effects were aggravated in HE mice, indicating that PP2A Aα deficiency conferred mice with susceptibility to Cr(VI)-induced intestinal injury. The combination of data analysis and biological experiments revealed Cr(VI) exposure could decrease YAP1 phosphorylation at Ser127 but increase protein expression and activity, together with elevated transcriptional coactivator with PDZ-binding motif protein driving epithelial crypt cells proliferation following damage, suggesting the involvement of Hippo/YAP1 signaling pathway in Cr(VI)-induced intestinal toxicity. Nevertheless, the enhanced phosphorylation of YAP1 in HE mice resulted in proliferation/repair defects in intestinal epithelium, thereby exacerbating Cr(VI)-induced gut barrier dysfunction. Notably, by molecular docking and further studies, we identified urolithin A, a microbial metabolite, attenuated Cr(VI)-induced disruption of intestinal barrier function, partly by modulating YAP1 expression and activity. Our findings reveal the novel molecular pathways participated in Cr(VI)-caused small intestinal injury and urolithin A could potentially protect against environmental hazards-induced intestinal diseases.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Cromo , Intestino Delgado , Proteína Fosfatase 2 , Transdução de Sinais , Proteínas de Sinalização YAP , Animais , Proteínas de Sinalização YAP/metabolismo , Cromo/toxicidade , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteína Fosfatase 2/metabolismo , Proteína Fosfatase 2/genética , Intestino Delgado/metabolismo , Intestino Delgado/efeitos dos fármacos , Intestino Delgado/patologia , Transdução de Sinais/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Serina-Treonina Quinases/genética , Via de Sinalização Hippo , Camundongos Knockout , Mucosa Intestinal/metabolismo , Mucosa Intestinal/efeitos dos fármacos , Mucosa Intestinal/patologia
2.
Toxicol Appl Pharmacol ; 485: 116889, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38479592

RESUMO

Hexavalent chromium [Cr(VI)] is considered a major environmental health concern and lung carcinogen. However, the exact mechanism by which Cr(VI) causes lung cancer in humans remains unclear. Since several reports have demonstrated a role for inflammation in Cr(VI) toxicity, the present study aimed to apply transcriptomics to examine the global mRNA expression in human lung fibroblasts after acute (24 h) or prolonged (72 and 120 h) exposure to 0.1, 0.2 and 0.3 µg/cm2 zinc chromate, with a particular emphasis on inflammatory pathways. The results showed Cr(VI) affected the expression of multiple genes and these effects varied according to Cr(VI) concentration and exposure time. Bioinformatic analysis of RNA-Seq data based on the Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) and MetaCore databases revealed multiple inflammatory pathways were affected by Cr(VI) treatment. qRT-PCR data corroborated RNA-Seq findings. This study showed for the first time that Cr(VI) regulates key inflammatory pathways in human lung fibroblasts, providing novel insights into the mechanisms by which Cr(VI) causes lung cancer.


Assuntos
Cromo , Fibroblastos , Pulmão , Transcriptoma , Humanos , Cromo/toxicidade , Fibroblastos/efeitos dos fármacos , Fibroblastos/metabolismo , Fibroblastos/patologia , Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Pulmão/patologia , Transcriptoma/efeitos dos fármacos , Perfilação da Expressão Gênica/métodos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/induzido quimicamente , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/metabolismo , Inflamação/induzido quimicamente , Inflamação/genética , Inflamação/metabolismo , Cromatos/toxicidade , Compostos de Zinco/farmacologia , Compostos de Zinco/toxicidade , Linhagem Celular , Carcinogênese/efeitos dos fármacos , Carcinogênese/induzido quimicamente , Carcinogênese/genética , Transdução de Sinais/efeitos dos fármacos
3.
Toxicol Appl Pharmacol ; 489: 117007, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38901695

RESUMO

We are facing a rapidly growing geriatric population (65+) that will live for multiple decades and are challenged with environmental pollution far exceeding that of previous generations. Consequently, we currently have a poor understanding of how environmental pollution will impact geriatric health distinctly from younger populations. Few toxicology studies have considered age differences with geriatric individuals. Critically, all top ten most prevalent age-related diseases are linked to metal exposures. Hexavalent chromium [Cr(VI)] is a metal of major environmental health concern that can induce aging phenotypes and neurotoxicity. However, there are many knowledge gaps for Cr(VI) neurotoxicity, including how Cr(VI) impacts behavior. To address this, we exposed male rats across three ages (3-, 7-, and 18-months old) to Cr(VI) in drinking water (0, 0.05, 0.1 mg/L) for 90 days. These levels reflect the maximum contaminant levels determined by the World Health Organization (WHO) and the U.S. Environmental Protection Agency (US EPA). Here, we report how these Cr(VI) drinking water levels impacted rat behaviors using a battery of behavior tests, including grip strength, open field assay, elevated plus maze, Y-maze, and 3-chamber assay. We observed adult rats were the most affected age group and memory assays (spatial and social) exhibited the most significant effects. Critically, the significant effects were surprising as rats should be particularly resistant to these Cr(VI) drinking water levels due to the adjustments applied in risk assessment from rodent studies to human safety, and because rats endogenously synthesize vitamin C in their livers (vitamin C is a primary reducer of Cr[VI] to Cr[III]). Our results emphasize the need to broaden the scope of toxicology research to consider multiple life stages and suggest the current regulations for Cr(VI) in drinking water need to be revisited.


Assuntos
Envelhecimento , Comportamento Animal , Cromo , Animais , Cromo/toxicidade , Masculino , Comportamento Animal/efeitos dos fármacos , Ratos , Síndromes Neurotóxicas/etiologia , Aprendizagem em Labirinto/efeitos dos fármacos , Fatores Etários , Água Potável , Poluentes Químicos da Água/toxicidade
4.
Chemistry ; 30(45): e202401891, 2024 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-39023399

RESUMO

The International Union of Pure and Applied Chemistry (IUPAC) name given in the title is incorrect. The correct IUPAC name for this molecule is tetraspiro[2.1.25.1.29.1.213.13]hexadecane-4,8,12,16-tetraone. The incorrect name given in the title, unfortunately, makes the carbon atom hexavalent at two different (3 and 5) positions. In addition, the two other keto groups (at positions 1 and 7) would appear on two of the cyclopropane rings if one adopts to the incorrect name. Nevertheless, this wrong name is a good example to discuss the importance of IUPAC nomenclature in the classroom with students.

5.
Neurochem Res ; 49(3): 660-669, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38010603

RESUMO

Hexavalent chromium (Cr (VI)), one of the most detrimental pollutants, has been ubiquitously present in the environment and causes serious toxicity to humans, such as hepatotoxicity, nephrotoxicity, pulmonary toxicity, and cardiotoxicity. However, Cr (VI)-induced neurotoxicity in primary neuron level has not been well explored yet. Herein, potassium dichromate (K2Cr2O7) was employed to examine the neurotoxicity of Cr (VI) in rat primary hippocampal neurons. MTT test was used to examine the neural viability. Mitochondrial dysfunction was assessed by the JC-1 probe and Mito-Tracker probe. DCFH-DA and Mito-SOX Red were utilized to evaluate the oxidative status. Bcl-2 family and MAPKs expression were investigated using Western blotting. The results demonstrated that Cr (VI) treatment dose- and time-dependently inhibited neural viability. Mechanism investigation found that Cr (VI) treatment causes mitochondrial dysfunction by affecting Bcl-2 family expression. Moreover, Cr (VI) treatment also induces intracellular reactive oxygen species (ROS) generation, DNA damage, and MAPKs activation in neurons. However, inhibition of ROS by glutathione (GSH) effectually balanced Bcl-2 family expression, attenuated DNA damage and the MAPKs activation, and eventually improved neural viability neurons. Collectively, these above results above suggest that Cr (VI) causes significant neurotoxicity by triggering mitochondrial dysfunction, ROS-mediated oxidative damage and MAKPs activation.


Assuntos
Doenças Mitocondriais , Estresse Oxidativo , Humanos , Ratos , Animais , Espécies Reativas de Oxigênio/metabolismo , Cromo/toxicidade , Glutationa/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
6.
Environ Sci Technol ; 58(39): 17485-17496, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39290141

RESUMO

Recovering chemical energy embedded in pollutants is significant in achieving carbon-neutral industrial wastewater treatment. Considering that industrial wastewater is usually treated in a decentralized manner, in situ utilization of chemical energy to achieve waste-to-treasure should be given priority. Herein, the chemical energy released by the electroreduction of Cr(VI) was used to enhance on-site H2O2 generation in a stacked flow-through electrochemical system. The driving force of water flow efficiently coupled O2 evolution with 2-e O2 reduction to facilitate H2O2 generation by transporting anode-produced O2 to the cathode. Meanwhile, the chemical energy released by Cr(VI) promoted O2 evolution and impeded H2 evolution by regulating the electrode potentials, accounting for the enhanced H2O2 generation. The system could completely reduce 10-100 ppm of Cr(VI), reaching the maximum H2O2 concentration of 2.41 mM. In particular, the H2O2 concentrations in the Cr(VI)-containing electrolyte were 10.6-88.1% higher than those in the Cr(VI) free electrolyte at 1.8-2.5 V. A 24-day continuous experiment demonstrated the high efficiency and stability of the system, achieving a 100% reduction efficiency for 100 ppm of Cr(VI) and producing ∼1.5 mM H2O2 at 1.8 V. This study presents a feasible strategy for Cr(VI) detoxification and synchronous on-site H2O2 generation, providing a new perspective for innovative Cr(VI) wastewater treatment toward resource utilization.


Assuntos
Cromo , Peróxido de Hidrogênio , Peróxido de Hidrogênio/química , Cromo/química , Águas Residuárias/química , Catálise , Oxirredução , Poluentes Químicos da Água , Eletrodos
7.
Environ Sci Technol ; 58(27): 12225-12236, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38885124

RESUMO

Nanoscale zerovalent iron synthesized using borohydride (B-NZVI) has been widely applied in environmental remediation in recent decades. However, the contribution of boron in enhancing the inherent reactivity of B-NZVI and its effectiveness in removing hexavalent chromium [Cr(VI)] have not been well recognized and quantified. To the best of our knowledge, herein, a core-shell structure of B-NZVI featuring an Fe-B alloy shell beneath the iron oxide shell is demonstrated for the first time. Alloyed boron can reduce H+, contributing to more than 35.6% of H2 generation during acid digestion of B-NZVIs. In addition, alloyed B provides electrons for Fe3+ reduction during Cr(VI) removal, preventing in situ passivation of the reactive particle surface. Meanwhile, the amorphous oxide shell of B-NZVI exhibits an increased defect density, promoting the release of Fe2+ outside the shell to reduce Cr(VI), forming layer-structured precipitates and intense Fe-O bonds. Consequently, the surface-area-normalized capacity and surface reaction rate of B-NZVI are 6.5 and 6.9 times higher than those of crystalline NZVI, respectively. This study reveals the importance of alloyed B in Cr(VI) removal using B-NZVI and presents a comprehensive approach for investigating electron pathways and mechanisms involved in B-NZVIs for contaminant removal.


Assuntos
Boroidretos , Boro , Ferro , Ferro/química , Boroidretos/química , Boro/química , Cromo/química , Elétrons , Ligas/química
8.
Environ Sci Technol ; 2024 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-39363618

RESUMO

Surface runoff horizontally distributed chromium (Cr) pollution into various surface environments. Sunlight is a vital factor for the Cr cycle in the surface environment, which may be affected by photoactive substances such as ferrihydrite (Fh) and dissolved black carbon (DBC). Herein, sunlight-driven transformation dynamics of Cr species on DBC-Fh coprecipitates were studied. Under sunlight, the removal of aqueous Cr(VI) by DBC-Fh coprecipitates occurred through sunlight-driven reductive sequestration including adsorption, followed by surface reduction (pathway 1) and aqueous reduction, followed by precipitation (pathway 2). Additionally, coprecipitates with a higher DBC content exhibited a more effective reduction of both adsorbed (kapp,S_red) and aqueous Cr(VI) (kapp,A_red). Photoelectrons facilitated Cr(VI) reduction through direct electron transfer; notably, electron donating DBC promoted the production of photoelectrons by consuming photogenerated holes. Photogenerated Fe(II) species (mineral-phase and aqueous Fe(II)) mediated electron transfer for Cr(VI) reduction, which was reinforced via a ligand-to-metal charge transfer (LMCT) process between DBC-organic ligands and mineral Fe(III). Furthermore, ·O2- also mediated Cr(VI) reduction, although this impact was limited. Overall, this study demonstrates that photoelectrons and photogenerated electron mediators play a crucial role in Cr(VI) reductive sequestration on DBC-Fh coprecipitates, providing new insights into the geochemical cycle of Cr pollution in sunlight-influenced surface environments.

9.
Environ Res ; 259: 119584, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-38992758

RESUMO

The growing concern of water pollution is a critical issue stemming from industrialization and urbanization. One of the specific concerns within this broader problem is the toxicity associated with chromium (Cr), especially in its Cr (VI) form. Transition metal carbides/nitrides (MXenes) are attractive materials for the treatment of water due to their unique properties such as layered structure, high surface area, conductivity, flexibility, scalable manufacture, and surface functions. Adsorption and photocatalysis reactions are the two promising methods for the removal of Cr (VI) by using MXenes. Still, most of the previous reviews were limited to the single application area. Hence, this review covers recent developments in MXene-based composites, highlighting their dual role as both adsorbents and photocatalysts in the removal of Cr (VI). MXene-based composites are found to be effective in both adsorption and photodegradation of Cr (VI). Most MXene-based composites have demonstrated exceptional removal efficiency for Cr (VI), achieving impressive adsorption capacities ranging from 100 to 1500 mg g-1 and degradation percentages between 80% and 100% in a relatively short period. The active functional groups present on the surface of MXene have a viable impact on the adsorption and photodegradation performance. The mechanism of Cr (VI) removal is explained, with MXenes playing a key role in electrostatic attraction for adsorption and as co-catalysts in photocatalysis. However, MXene-based composites have limitations such as instability, competition with co-existing ions, and regeneration challenges. Further research is needed to address these limitations. Additionally, MXene-based composites hold promise for addressing water contamination, heavy metal removal, hydrogen production, energy storage, gas sensing, and biomedical applications.


Assuntos
Cromo , Águas Residuárias , Poluentes Químicos da Água , Cromo/química , Águas Residuárias/química , Adsorção , Poluentes Químicos da Água/química , Eliminação de Resíduos Líquidos/métodos , Catálise , Fotólise , Purificação da Água/métodos , Resíduos Industriais/análise , Elementos de Transição/química
10.
Environ Res ; 262(Pt 2): 119946, 2024 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-39276837

RESUMO

Chromium (Cr) contamination can adversely affect soil ecology, yet our knowledge of how fungi respond to Cr contamination at heavily contaminated field sites remains relatively limited. This study employed high-throughput sequencing technology to analyze fungal community characteristics in soils with varying Cr concentrations. The results showed that Cr contamination significantly influenced soil fungi's relative abundance and structure. Mantel test analysis identified hexavalent chromium (Cr(VI)) as the primary factor affecting the structure of the soil fungal community. In addition, FUNGuild functional prediction analysis exhibited that Cr contamination reduced the relative abundance of Pathotroph and Symbiotroph trophic types. High concentrations of Cr may lead to a drop in the relative abundance of Animal Pathogens. Molecular ecological network analysis showed that Cr contamination increased interactions among soil fungi, thereby enhancing the stability and complexity of the network. Within these networks, specific keystone taxa, such as the genus Phanerochaete, exhibited properties capable of removing or reducing the toxicity of heavy metals. Our studies suggest that Cr contamination can alter indigenous fungal communities in soil systems, potentially impacting soil ecosystem function.

11.
J Appl Toxicol ; 44(7): 1014-1027, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38523572

RESUMO

The present investigation dealt with harmful effects of hexavalent chromium (Cr [VI]) on liver of Swiss albino mice. This variant exhibited cytotoxicity, mutagenicity, and carcinogenicity. Our study focused on elucidating the hepatotoxic effects of chronic low-dose exposure to Cr (VI) (2, 5, and 10 ppm) administered via drinking water for 4 and 8 months. The observed elevation in SGPT, ALP, and SGOT and increased oxidative stress markers unequivocally confirmed the severe disruption of liver homeostasis at these low treatment doses. Noteworthy alterations in histoarchitecture, body weight, and water intake provided further evidences of the harmful effects of Cr (VI). Production of reactive oxygen species (ROS) during metabolism led to DNA damages. Immunohistochemistry and qRT-PCR analyses revealed that chronic low-dose exposure of Cr (VI) induced apoptosis in liver tissue. Our study exhibited alterations in the expression pattern of DNA repair genes (Rad51, Mutyh, Mlh1, and Ogg1), coupled with promoter hypermethylation of Mutyh and Rad51, leading to transcriptional inhibition. Our findings underscored the potential of low-dose Cr (VI) exposure on hepatotoxicity by the intricate interplay between apoptosis induction and epigenetic alterations of DNA repair genes.


Assuntos
Apoptose , Cromo , Metilação de DNA , Reparo do DNA , Fígado , Estresse Oxidativo , Regiões Promotoras Genéticas , Animais , Cromo/toxicidade , Estresse Oxidativo/efeitos dos fármacos , Fígado/efeitos dos fármacos , Fígado/patologia , Fígado/metabolismo , Camundongos , Apoptose/efeitos dos fármacos , Reparo do DNA/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Regiões Promotoras Genéticas/efeitos dos fármacos , Masculino , Espécies Reativas de Oxigênio/metabolismo , DNA Glicosilases/genética , Relação Dose-Resposta a Droga , Dano ao DNA/efeitos dos fármacos , Rad51 Recombinase/genética
12.
Proc Natl Acad Sci U S A ; 118(8)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33602803

RESUMO

Changes in chromium (Cr) isotope ratios due to fractionation between trivalent [Cr(III)] and hexavalent [Cr(VI)] are being utilized by geologists to infer oxygen conditions in past environments. However, there is little information available on Cr in the modern ocean to ground-truth these inferences. Transformations between the two chromium species are important processes in oceanic Cr cycling. Here we present profiles of hexavalent and trivalent Cr concentrations and stable isotope ratios from the eastern tropical North Pacific (ETNP) oxygen-deficient zone (ODZ) which support theoretical and experimental studies that predict that lighter Cr is preferentially reduced in low-oxygen environments and that residual dissolved Cr becomes heavier due to removal of particle-reactive Cr(III) on sinking particles. The Cr(III) maximum dominantly occurs in the upper portion of the ODZ, implying that microbial activity (dependent on the sinking flux of organic matter) may be the dominant mechanism for this transformation, rather than a simple inorganic chemical conversion between the species depending on the redox potential.

13.
Ecotoxicol Environ Saf ; 274: 116132, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38471342

RESUMO

The recycling of industrial solid by-products such as red mud (RM) has become an urgent priority, due to their large quantities and lack of reutilization methods can lead to resource wastage. In this work, RM was employed to fabricate green hydrochar (HC) to prepare zero-valent iron (ZVI) modified carbonous materials, and conventional iron salts (IS, FeCl3) was applied as comparison, fabricated HC labeled as RM/HC and IS/HC, respectively. The physicochemical properties of these HC were comprehensively characterized. Further, hexavalent chromium (Cr(VI)) removal performance was assessed (375.66 and 337.19 mg/g for RM/HC and IS/HC, respectively). The influence of dosage and initial pH were evaluated, while isotherms, kinetics, and thermodynamics analysis were also conducted, to mimic the surface interactions. The stability and recyclability of adsorbents also verified, while the practical feasibility was assessed by bok choy-planting experiment. This work revealed that RM can be used as a high value and green fabricant for HC the effective removal of chromium contaminants from the wastewater.


Assuntos
Águas Residuárias , Poluentes Químicos da Água , Ferro/química , Poluentes Químicos da Água/análise , Cromo/análise , Carbono , Adsorção
14.
Ecotoxicol Environ Saf ; 282: 116700, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38981392

RESUMO

OBJECTIVES: This study aimed to analyze the possible role of rDNA copy number variation in the association between hexavalent chromium [Cr (VI)] exposure and semen quality in semen donors and further confirm this association in mice. METHODS: In this cross-sectional study, whole blood and semen samples were collected from 155 semen donors in the Zhejiang Human Sperm Bank from January 1st to April 31st, 2021. Adult C57BL/6 J male mice were treated with different doses of Cr (VI) (0, 10, or 15 mg/kg b.w./day). Semen quality, including semen volume, total spermatozoa count, sperm concentration, progressive motility, and total motility, were analyzed according to the WHO laboratory manual. Cr concentration was detected using inductively coupled plasma mass spectrometry. The rDNA copy number was measured using qPCR. RESULTS: In semen donors, whole blood Cr concentration was negatively associated with semen concentration and total sperm counts. Semen 5 S and 45 S rDNA copy numbers were negatively associated with whole blood Cr concentration and whole blood 5.8 S rDNA copy number was negatively associated with semen Cr concentration. In mice, Cr (VI) damaged testicular tissue, decreased semen quality, and caused rDNA copy number variation. Semen quality was related to the rDNA copy number in whole blood, testicular tissue, and semen samples in mice. CONCLUSION: Cr (VI) was associated with decreased semen quality in semen donors and mice. Our findings suggest an in-depth analysis of the role of the rDNA copy number variation in the Cr (VI)-induced impairment of semen quality.


Assuntos
Cromo , Variações do Número de Cópias de DNA , Análise do Sêmen , Masculino , Animais , Humanos , Variações do Número de Cópias de DNA/efeitos dos fármacos , Camundongos , Análise do Sêmen/veterinária , Adulto , Cromo/toxicidade , Estudos Transversais , Camundongos Endogâmicos C57BL , DNA Ribossômico/genética , Sêmen/efeitos dos fármacos , Contagem de Espermatozoides , Espermatozoides/efeitos dos fármacos
15.
Ecotoxicol Environ Saf ; 284: 117018, 2024 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-39260214

RESUMO

Hexavalent chromium [Cr(VI)] is a widely distributed carcinogen in industrial contexts and general environmental contexts. Emerging research highlights the central role of ribosomal DNA (rDNA) in DNA Damage Responses (DDRs). However, there remains a lack of investigation into the potential dose-dependent relationship between exposure to Cr(VI) and alterations in rDNA copy number (CN), as well as the related mechanisms underlying these effects. A molecular epidemiological investigation involving 67 workers exposed to Cr(VI) and 75 unexposed controls was conducted. There was a notable increase in ZNF385A expression, variations in rDNA CN, and elevated γH2AX levels in the peripheral blood of Cr(VI)-exposed workers. Restricted cubic spline (RCS) models showed that blood Cr levels in the exposed population exhibited non-linear dose-dependent relationships with γH2AX, rDNA CN, and ZNF385A. Of considerable interest, there were robust and positive associations between ZNF385A and both γH2AX and rDNA CN. Further in vitro experiments provided concrete evidence that Cr(VI) simultaneously caused an increase in ZNF385A expression and variations in rDNA CN. ZNF385A-depleted cells showed increased sensitivity to Cr(VI)-mediated DDRs and alterations in rDNA CN. This study indicated that ZNF385A played a highly significant role in the rDNA CN variation in response to Cr(VI)-induced DNA damage.


Assuntos
Cromo , Variações do Número de Cópias de DNA , Dano ao DNA , DNA Ribossômico , Cromo/toxicidade , Humanos , Variações do Número de Cópias de DNA/efeitos dos fármacos , DNA Ribossômico/genética , Adulto , Exposição Ocupacional/efeitos adversos , Masculino , Histonas/metabolismo , Pessoa de Meia-Idade , Feminino
16.
Mikrochim Acta ; 191(4): 219, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38530477

RESUMO

Hydroxypropyl chitosan-Cs3Bi2Cl9 perovskite quantum dots (HPCS-PQDs) were synthesized by a simple ligand-assisted reprecipitation method via green hydroxypropyl chitosan as the ligand and used as the specific signal of a fluorescence probe to achieve the highly sensitive detection of hexavalent chromium (Cr(VI)) and compared with chitosan-Cs3Bi2Cl9 QDs (CS-PQDs). HPCS-PQDs with multiple active hydroxyl passivations were found to enhance the photoluminescence quantum yield (PLQY) by 90%. After being placed in aqueous solution and irradiated with ultraviolet light for 96 h the fluorescence intensity of HPCS-PQDs remained above 60%. The blue emission of HPCS-PQDs has a good selectivity and short response time (30 s) for Cr(VI). A good linear relationship is established between the fluorescence quenching rate of the HPCS-PQDs and concentration of Cr(VI) from 0.8 to 400 µM, with a limit of detection (LOD) of 0.27 µM. The fluorescence quenching mechanism is the static quenching and internal filtration effect caused by HPCS-PQDs forming a non-fluorescent ground-state complex with Cr(VI). The sensor can not only be used to detect Cr(VI) in water samples with high accuracy but can also be prepared as a test paper for the detection for Cr(VI).

17.
Int J Phytoremediation ; 26(2): 193-207, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37417937

RESUMO

The hyper-accumulation of chromium in its hexavalent form is treated as a hazardous soil pollutant at industrial and mining sites. Excessive accumulation of Cr6+ in soil threatens the environmental health and safety of living organisms. Out of two stable forms of chromium, Cr6+ is highly responsible for ecotoxicity. The expression of the high toxicity of Cr6+ at low concentrations in the soil environment indicates its lethality. It is usually released into the soil during various socio-economic activities. Sustainable remediation of Cr6+ contaminated soil is of utmost need and can be carried out by employing suitable plant hyperaccumulators. Alongside the plant's ability to sequester toxic metals like Cr6+, the rhizospheric soil parameters play a significant role in this technique and are mostly overlooked. Here we review the application of a cost-effective and eco-friendly remediation technology at hyperaccumulators rhizosphere to minimize the Cr6+ led soil toxicity. The use of selected plant species along with effective rhizospheric activities has been suggested as a technique to reduce Cr6+ toxicity on soil and its associated biota. This soil rectification approach may prove to be sustainable and advantageous over other possible techniques. Further, it may open up new solutions for soil Cr6+ management at polluted sites.


Phytoremediation is an eco-friendly technology that has been widely used for the treatment of Cr6+ contaminated soils. Most of the phytoremedial studies either focus on the ability of plant hyperaccumulators alone or in association with rhizospheric microbes for the successful remediation of Cr6+. The current study lays emphasis on different soil parameters and interactions (both biotic and abiotic) at the plant rhizosphere that is much essential for providing a sustainable remedial solution for Cr6+ contaminated soils.


Assuntos
Cromo , Poluentes do Solo , Cromo/toxicidade , Cromo/metabolismo , Solo , Biodegradação Ambiental , Plantas/metabolismo , Poluentes do Solo/metabolismo
18.
Int J Phytoremediation ; : 1-14, 2024 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-39329376

RESUMO

The release of hazardous hexavalent chromium from chromite mining seriously threatens habitats and human health by contaminating water, air, and soil. Vulnerability to hexavalent chromium can result in significant health risks, viz, respiratory issues, gastrointestinal illnesses, skin problems in humans, and a plethora of toxic effects in animals. Moreover, Cr(VI) toxicity can adversely affect plant physiology by inhibiting seed germination, nutrient uptake, cell division, and root development, ultimately impairing growth and vitality. Fortunately, innovative techniques such as phytoremediation and nanotechnology have been developed to address heavy metal contamination, offering a promising solution, mainly through the use of hyperaccumulating plants. Biochar derived from plant waste is widely used and is emerging as a sustainable strategy for remediating Cr(VI) contamination. Biochar is rich in carbon and highly influential in removing Cr(VI) from contaminated soils. This approach addresses immediate challenges while providing a sustainable pathway for environmental rehabilitation in chromium mining. Integrating innovative technologies with nature-based solutions offers a holistic approach to reducing the harmful effects of chromium mining, thus protecting both human well-being and ecosystems. This review highlights the impact of Cr(VI) on different living biotas and further emphasizes the use of plants and plant-based materials for the sustainable remediation of chromite mining regions.


Cr(VI) pollution is a primary environmental crisis, and remediation using natural entities such as plants has been widely practiced. Most of these studies have documented the efficiency of plants in the remediation process. The current review emphasizes the different criteria for the selection of Cr(VI) hyperaccumulators. It also outlines the drawbacks of the technique and emphasizes the use of biochar derived from plant biomass as a better alternative. This review provides the latest updates in the field of remediation of Cr(VI) by employing both plants and plant-based biochar. Moreover, it highlights the possible biases and ethical deliberations that need to be taken into due consideration.

19.
J Environ Manage ; 360: 121074, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38754188

RESUMO

Hazardous Cr(VI) continues to pose critical concerns for environmental and public health, demanding the development of effective remediation methods. In this study, thiol-functionalized black carbon (S-BC) was proposed for Cr(VI) removal by mixing thioglycolic acid (TGA) with black carbon (BC) derived from rice straw residue at 80 °C for 8 h. Using a 1:40 (g mL-1) BC-to-TGA ratio, the resulting S-BC40 sample demonstrated significantly enhanced Cr(VI) sorption capacities of 201.23, 145.78, and 106.60 mg g-1 at pH 3.5, 5.5, and 7.5, surpassing its BC counterpart by 2.0, 2.3, and 2.2 times. Additionally, S-BC40 converted all sorbed Cr into Cr(III) species at pH ≥ 5.5, resulting in an equal distribution of Cr(OH)3 and organic Cr(III) complexes. However, approximately 13% of Cr sorbed on BC remained as Cr(VI) at pH 3.5 and 7.5. Both C-centered and S-centered thiyl radicals might contribute to Cr(VI) reduction; however, sufficient C-S groups replenished via thiol-functionalization was the key for the complete Cr(VI) reduction on S-BC samples as pH ≥ 5.5. Thanks to the exceptional Cr(VI) sorption capacity, affordability, and accessibility, thiol-functionalization stands out as a promising modification method for BC. It presents a distinct opportunity to concurrently achieve the objectives of efficient Cr(VI) remediation and waste recycling.


Assuntos
Carbono , Cromo , Compostos de Sulfidrila , Adsorção , Cromo/química , Compostos de Sulfidrila/química , Carbono/química , Poluentes Químicos da Água/química
20.
J Environ Manage ; 353: 120190, 2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38306859

RESUMO

Chromium, extensively used in various industries, poses significant challenges due to its environmental impact. The threat of Cr(VI) causes critical concerns in aquatic ecosystems as a consequence of the fluidity of water. The conventional approach for the treatment of effluents containing Cr(VI) is reducing Cr(VI) to low-noxious Cr(III). This research is related to a Gram positive bacterium newly isolated from tannery effluent under aerobic conditions. To characterize functional groups on the isolate, Fourier transform infrared spectroscopy was utilized. The effect of different factors on Cr(VI) bioreduction was investigated, including temperature, initial Cr(VI) concentration, acetate concentration, and Tween 80 surfactant. Under optimal conditions (37 °C and 0.90 g/L sodium acetate), the bioreduction rate of the isolate, identified as Lactococcus lactis AM99, achieved 88.0 % at 300 mg/L Cr(VI) during 72 h (p < 0.05). It was observed that Cr(VI) bioreduction was enhanced by the acetate in both the quantity and intensity, while Tween 80 had no impact on the reaction. The strain AM99 exhibited remarkable characteristics, notably a marginal decrease in growth at elevated concentrations of hexavalent chromium and an exceptional potential to reduce Cr(VI) even at very low biomass levels, surpassing any prior findings in the associated research. Furthermore, The isolate could tolerate 1400 mg/L Cr(VI) in a solid medium. These distinctive features make the isolate a promising and well-suited candidate for remediating Cr(VI)-polluted environments. Additionally, the impact of biogenic extracellular polymer produced by the strain AM99 on reduction was examined at different temperatures.


Assuntos
Lactococcus lactis , Ecossistema , Polissorbatos , Rios , Biodegradação Ambiental , Oxirredução , Cromo , Bactérias , Acetatos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa