Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Osteoporos Int ; 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38625381

RESUMO

Osteoporosis-pseudoglioma syndrome (OPPG) and LRP5 high bone mass (LRP5-HBM) are two rare bone diseases with opposite clinical symptoms caused by loss-of-function and gain-of-function mutations in LRP5. Bisphosphonates are an effective treatment for OPPG patients. LRP5-HBM has a benign course, and age-related bone loss is found in one LRP5-HBM patient. PURPOSE: Low-density lipoprotein receptor-related protein 5 (LRP5) is involved in the canonical Wnt signaling pathway. The gain-of-function mutation leads to high bone mass (LRP5-HBM), while the loss-of-function mutation leads to osteoporosis-pseudoglioma syndrome (OPPG). In this study, the clinical manifestations, disease-causing mutations, treatment, and follow-up were summarized to improve the understanding of these two diseases. METHODS: Two OPPG patients and four LRP5-HBM patients were included in this study. The clinical characteristics, biochemical and radiological examinations, pathogenic mutations, and structural analysis were summarized. Furthermore, several patients were followed up to observe the treatment effect and disease progress. RESULTS: Congenital blindness, persistent bone pain, low bone mineral density (BMD), and multiple brittle fractures were the main clinical manifestations of OPPG. Complex heterozygous mutations were detected in two OPPG patients. The c.1455G > T mutation in exon 7 was first reported. During the follow-up, BMD of two patients was significantly improved after bisphosphonate treatment. On the contrary, typical clinical features of LRP5-HBM included extremely high BMD without fractures, torus palatinus and normal vision. X-ray showed diffuse osteosclerosis. Two heterozygous missense mutations were detected in four patients. In addition, age-related bone loss was found in one LRP5-HBM patient after 12-year of follow-up. CONCLUSION: This study deepened the understanding of the clinical characteristics, treatment, and follow-up of OPPG and LRP5-HBM; expanded the pathogenic gene spectrum of OPPG; and confirmed that bisphosphonates were effective for OPPG. Additionally, it was found that Ala242Thr mutation could not protect LRP5-HBM patients from age-related bone loss. This phenomenon deserves further study.

2.
Calcif Tissue Int ; 114(2): 171-181, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38051321

RESUMO

Pathogenic variants disrupting the binding between sclerostin (encoded by SOST) and its receptor LRP4 have previously been described to cause sclerosteosis, a rare high bone mass disorder. The sclerostin-LRP4 complex inhibits canonical WNT signaling, a key pathway regulating osteoblastic bone formation and a promising therapeutic target for common bone disorders, such as osteoporosis. In the current study, we crossed mice deficient for Sost (Sost-/-) with our p.Arg1170Gln Lrp4 knock-in (Lrp4KI/KI) mouse model to create double mutant Sost-/-;Lrp4KI/KI mice. We compared the phenotype of Sost-/- mice with that of Sost-/-;Lrp4KI/KI mice, to investigate a possible synergistic effect of the disease-causing p.Arg1170Trp variant in Lrp4 on Sost deficiency. Interestingly, presence of Lrp4KI alleles partially mitigated the Sost-/- phenotype. Cellular and dynamic histomorphometry did not reveal mechanistic insights into the observed phenotypic differences. We therefore determined the molecular effect of the Lrp4KI allele by performing bulk RNA sequencing on Lrp4KI/KI primary osteoblasts. Unexpectedly, mostly genes related to bone resorption or remodeling (Acp5, Rankl, Mmp9) were upregulated in Lrp4KI/KI primary osteoblasts. Verification of these markers in Lrp4KI/KI, Sost-/- and Sost-/-;Lrp4KI/KI mice revealed that sclerostin deficiency counteracts this Lrp4KI/KI effect in Sost-/-;Lrp4KI/KI mice. We therefore hypothesize that models with two inactivating Lrp4KI alleles rather activate bone remodeling, with a net gain in bone mass, whereas sclerostin deficiency has more robust anabolic effects on bone formation. Moreover, these effects of sclerostin and Lrp4 are stronger in female mice, contributing to a more severe phenotype than in males and more detectable phenotypic differences among different genotypes.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Remodelação Óssea , Hiperostose , Sindactilia , Masculino , Feminino , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Camundongos Knockout , Fenótipo , Mutação , Remodelação Óssea/genética , Proteínas Relacionadas a Receptor de LDL/genética , Proteínas Relacionadas a Receptor de LDL/metabolismo
3.
J Periodontal Res ; 58(4): 723-732, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37128744

RESUMO

BACKGROUND AND OBJECTIVE: Mutations in low-density lipoprotein receptor-related protein 5 (LRP5) cause various bone diseases. Several mouse models were generated to study the role of LRP5 in bone development. But most of the studies were confined to the appendicular skeleton. The role of LRP5 in the axial skeleton, especially in the craniofacial skeleton, is largely unknown. The aim of this study was to investigate the craniofacial phenotype with the LRP5G171V mutation. METHODS: To understand how LRP5 affects craniofacial bone properties, we analyzed LRP5 high-bone-mass mutant mice carrying the G171V missense mutation (LRP5HBM ). Quantitative microcomputed tomographic imaging and histomorphometric analyses were used to study craniofacial phenotypes and bone density. Histology, immunohistochemistry, and in vivo fluorochrome labeling were used to study molecular mechanisms. RESULTS: LRP5HBM mice showed overall minor changes in the craniofacial bone development but with increased bone mass in the interradicular alveolar bone, edentulous ridge, palatine bone, and premaxillary suture. Elevated osteocyte density was observed in LRP5HBM mice, along with increased Runx2 expression and unmineralized bone surrounding osteocytes. Meanwhile, LRP5HBM mice exhibited increased osteoprogenitors, but no significant changes were observed in osteoclasts. This led to a high-bone-mass phenotype, and an increased osteocyte density in the alveolar bone and edentulous ridge. CONCLUSION: LRP5HBM mice display increased bone mass in the alveolar bone with minor changes in the craniofacial morphology. Collectively, these data elucidated the important role of LRP5 in axial bone development and homeostasis and provided clues into the therapeutical potential of LRP5 signaling in treating alveolar bone loss.


Assuntos
Osso e Ossos , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade , Camundongos , Animais , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Osso e Ossos/metabolismo , Mutação/genética , Densidade Óssea/genética , Osteoclastos/metabolismo
4.
BMC Musculoskelet Disord ; 23(1): 757, 2022 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-35933372

RESUMO

BACKGROUND: High bone mass (HBM, BMD Z-score ≥ + 3.2) and cam morphology (bulging of lateral femoral head) are associated with greater odds of prevalent radiographic hip osteoarthritis (rHOA). As cam morphology is itself a manifestation of increased bone deposition around the femoral head, it is conceivable that cam morphology may mediate the relationship between HBM and rHOA. We therefore aimed to determine if individuals with HBM have increased odds of prevalent cam morphology. In addition, we investigated whether the relationship between cam and prevalent and incident osteoarthritis was preserved in a HBM population. METHODS: In the HBM study, a UK based cohort of adults with unexplained HBM and their relatives and spouses (controls), we determined the presence of cam morphology using semi-automatic methods of alpha angle derivation from pelvic radiographs. Associations between HBM status and presence of cam morphology, and between cam morphology and presence of rHOA (or its subphenotypes: osteophytes, joint space narrowing, cysts, and subchondral sclerosis) were determined using multivariable logistic regression, adjusting for age, sex, height, weight, and adolescent physical activity levels. The association between cam at baseline and incidence of rHOA after an average of 8 years was determined. Generalised estimating equations accounted for individual-level clustering. RESULTS: The study included 352 individuals, of whom 235 (66.7%) were female and 234 (66.5%) had HBM. Included individuals contributed 694 hips, of which 143 had a cam deformity (20.6%). There was no evidence of an association between HBM and cam morphology (OR = 0.97 [95% CI: 0.63-1.51], p = 0.90) but a strong relationship was observed between cam morphology and rHOA (OR = 3.96 [2.63-5.98], p = 5.46 × 10-11) and rHOA subphenotypes joint space narrowing (OR = 3.70 [2.48-5.54], p = 1.76 × 10-10), subchondral sclerosis (OR = 3.28 [1.60-6.60], p = 9.57 × 10-4) and osteophytes (OR = 3.01 [1.87-4.87], p = 6.37 × 10-6). Cam morphology was not associated with incident osteoarthritis (OR = 0.76 [0.16-3.49], p = 0.72). CONCLUSIONS: The relationship between cam morphology and rHOA seen in other studies is preserved in a HBM population. This study suggests that the risk of OA conferred by high BMD and by cam morphology are mediated via distinct pathways.


Assuntos
Osteoartrite do Quadril , Osteófito , Adolescente , Adulto , Estudos de Coortes , Feminino , Articulação do Quadril/diagnóstico por imagem , Articulação do Quadril/patologia , Humanos , Masculino , Osteoartrite do Quadril/diagnóstico por imagem , Osteoartrite do Quadril/epidemiologia , Osteoartrite do Quadril/patologia , Osteófito/diagnóstico por imagem , Osteófito/epidemiologia , Osteófito/patologia , Radiografia , Esclerose/patologia
5.
Curr Osteoporos Rep ; 19(2): 115-122, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33538965

RESUMO

PURPOSE OF REVIEW: This paper reviews how bone genetics has contributed to our understanding of the pathogenesis of osteoarthritis. As well as identifying specific genetic mechanisms involved in osteoporosis which also contribute to osteoarthritis, we review whether bone mineral density (BMD) plays a causal role in OA development. RECENT FINDINGS: We examined whether those genetically predisposed to elevated BMD are at increased risk of developing OA, using our high bone mass (HBM) cohort. HBM individuals were found to have a greater prevalence of OA compared with family controls and greater development of radiographic features of OA over 8 years, with predominantly osteophytic OA. Initial Mendelian randomisation analysis provided additional support for a causal effect of increased BMD on increased OA risk. In contrast, more recent investigation estimates this relationship to be bi-directional. However, both these findings could be explained instead by shared biological pathways. Pathways which contribute to BMD appear to play an important role in OA development, likely reflecting shared common mechanisms as opposed to a causal effect of raised BMD on OA. Studies in HBM individuals suggest this reflects an important role of mechanisms involved in bone formation in OA development; however further work is required to establish whether the same applies to more common forms of OA within the general population.


Assuntos
Densidade Óssea/genética , Osteoartrite/genética , Predisposição Genética para Doença , Humanos
6.
Osteoarthritis Cartilage ; 28(9): 1180-1190, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32417557

RESUMO

OBJECTIVE: High bone mass (HBM) is associated with an increased prevalence of radiographic knee OA (kOA), characterized by osteophytosis. We aimed to determine if progression of radiographic kOA, and its sub-phenotypes, is increased in HBM and whether observed changes are clinically relevant. DESIGN: A cohort with and without HBM (L1 and/or total hip bone mineral density Z-score≥+3.2) had knee radiographs collected at baseline and 8-year follow-up. Sub-phenotypes were graded using the OARSI atlas. Medial/lateral tibial/femoral osteophyte and medial/lateral joint space narrowing (JSN) grades were summed and Δosteophytes, ΔJSN derived. Pain, function and stiffness were quantified using the WOMAC questionnaire. Associations between HBM status and sub-phenotype progression were determined using multivariable linear/poisson regression, adjusting for age, sex, height, baseline sub-phenotype grade, menopause, education and total body fat mass (TBFM). Generalized estimating equations accounted for individual-level clustering. RESULTS: 169 individuals had repeated radiographs, providing 330 knee images; 63% had HBM, 73% were female, mean (SD) age was 58 (12) years. Whilst HBM was not clearly associated with overall Kellgren-Lawrence measured progression (RR = 1.55 [0.56.4.32]), HBM was positively associated with both Δosteophytes and ΔJSN individually (adjusted mean differences between individuals with and without HBM 0.45 [0.01.0.89] and 0.15 [0.01.0.29], respectively). HBM individuals had higher WOMAC knee pain scores (ß = 7.42 [1.17.13.66]), largely explained by adjustment for osteophyte score (58% attenuated) rather than JSN (30% attenuated) or TBFM (16% attenuated). The same pattern was observed for symptomatic stiffness and functional limitation. CONCLUSIONS: HBM is associated with osteophyte progression, which appears to contribute to increased reported pain, stiffness and functional loss.


Assuntos
Densidade Óssea , Osteoartrite do Joelho/diagnóstico por imagem , Osteófito/diagnóstico por imagem , Absorciometria de Fóton , Atividades Cotidianas , Tecido Adiposo , Idoso , Artralgia/fisiopatologia , Peso Corporal , Estudos de Coortes , Progressão da Doença , Feminino , Seguimentos , Humanos , Modelos Lineares , Masculino , Pessoa de Meia-Idade , Osteoartrite do Joelho/fisiopatologia , Osteófito/fisiopatologia , Radiografia
7.
Clin Endocrinol (Oxf) ; 92(1): 29-37, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31667854

RESUMO

OBJECTIVE: Bone turnover, which regulates bone mass, may exert metabolic consequences, particularly on markers of glucose metabolism and adiposity. To better understand these relationships, we examined cross-sectional associations between bone turnover markers (BTMs) and metabolic traits in a population with high bone mass (HBM, BMD Z-score ≥+3.2). DESIGN: ß-C-terminal telopeptide of type-I collagen (ß-CTX), procollagen type-1 amino-terminal propeptide (P1NP) and osteocalcin were assessed by electrochemiluminescence immunoassays. Metabolic traits, including lipids and glycolysis-related metabolites, were measured using nuclear magnetic resonance spectroscopy. Associations of BTMs with metabolic traits were assessed using generalized estimating equation linear regression, accounting for within-family correlation, adjusting for potential confounders (age, sex, height, weight, menopause, bisphosphonate and oral glucocorticoid use). RESULTS: A total of 198 adults with HBM had complete data, mean [SD] age 61.6 [13.7] years; 77% were female. Of 23 summary metabolic traits, citrate was positively related to all BTMs: adjusted ßß-CTX  = 0.050 (95% CI 0.024, 0.076), P = 1.71 × 10-4 , ßosteocalcin  = 6.54 × 10-4 (1.87 × 10-4 , 0.001), P = .006 and ßP1NP  = 2.40 × 10-4 (6.49 × 10-5 , 4.14 × 10-4 ), P = .007 (ß = increase in citrate (mmol/L) per 1 µg/L BTM increase). Inverse relationships of ß-CTX (ß = -0.276 [-0.434, -0.118], P = 6.03 × 10-4 ) and osteocalcin (-0.004 [-0.007, -0.001], P = .020) with triglycerides were also identified. We explored the generalizability of these associations in 3664 perimenopausal women (age 47.9 [4.4] years) from a UK family cohort. We confirmed a positive, albeit lower magnitude, association between ß-CTX and citrate (adjusted ßwomen  = 0.020 [0.013, 0.026], P = 1.95 × 10-9 ) and an inverse association of similar magnitude between ß-CTX and triglycerides (ß = -0.354 [-0.471, -0.237], P = 3.03 × 10-9 ). CONCLUSIONS: Bone resorption is positively related to circulating citrate and inversely related to triglycerides. Further studies are justified to determine whether plasma citrate or triglyceride concentrations are altered by factors known to modulate bone resorption, such as bisphosphonates.


Assuntos
Densidade Óssea/fisiologia , Reabsorção Óssea/metabolismo , Ácido Cítrico/sangue , Colágeno Tipo I/metabolismo , Osteocalcina/metabolismo , Fragmentos de Peptídeos/metabolismo , Peptídeos/metabolismo , Perimenopausa/metabolismo , Pró-Colágeno/metabolismo , Triglicerídeos/sangue , Adolescente , Adulto , Idoso , Biomarcadores/metabolismo , Estudos de Coortes , Estudos Transversais , Feminino , Humanos , Medições Luminescentes , Espectroscopia de Ressonância Magnética , Masculino , Metabolômica , Pessoa de Meia-Idade , Adulto Jovem
8.
Osteoporos Int ; 30(3): 685-689, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30151622

RESUMO

Raine syndrome is characterized by FGF23-mediated hypophosphatemic osteomalacia with osteosclerosis caused by mutations in the FAM20C gene. We report a case of a 72-year-old man who presented with rapid progressive spontaneous osteonecrosis of the knee (SONK). A full osteologic assessment including dual energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HR-pQCT), and serum analyses revealed a high bone mass in the lumbar spine and hip (DXA T-score + 7.5 and + 4.7/+4.2) with increased bone microstructural parameters in the distal radius and tibia (BV/TV 127%, 140% of the age-matched mean, respectively), as well as a low bone turnover state. Phosphate levels were low due to renal phosphate wasting and high FGF23 levels (126.5 pg/ml, reference range 23.2-95.4 pg/ml). Using gene panel sequencing, we identified a novel FAM20C heterozygous missense mutation in combination with a homozygous duplication that potentially alters splicing. Taken together, this is the first case of mild Raine syndrome with spontaneous osteonecrosis of the knee, phosphate wasting, and a pronounced trabecular high bone mass phenotype.


Assuntos
Anormalidades Múltiplas/genética , Caseína Quinase I/genética , Fissura Palatina/genética , Exoftalmia/genética , Proteínas da Matriz Extracelular/genética , Articulação do Joelho/patologia , Microcefalia/genética , Mutação de Sentido Incorreto , Osteonecrose/genética , Osteosclerose/genética , Anormalidades Múltiplas/diagnóstico por imagem , Anormalidades Múltiplas/fisiopatologia , Idoso , Densidade Óssea , Fissura Palatina/diagnóstico por imagem , Fissura Palatina/fisiopatologia , Exoftalmia/diagnóstico por imagem , Exoftalmia/fisiopatologia , Fator de Crescimento de Fibroblastos 23 , Humanos , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética , Masculino , Microcefalia/diagnóstico por imagem , Microcefalia/fisiopatologia , Osteonecrose/diagnóstico por imagem , Osteonecrose/fisiopatologia , Osteosclerose/diagnóstico por imagem , Osteosclerose/fisiopatologia , Radiografia
9.
Biochem Biophys Res Commun ; 497(2): 659-666, 2018 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-29454962

RESUMO

Bone remodeling is a continuously ongoing process mediated by bone-resorbing osteoclasts and bone-forming osteoblasts. One key regulator of bone formation is the putative Wnt co-receptor Lrp5, where activating mutations in the extracellular domain cause increased bone formation in mice and humans. We have previously reported that megakaryocyte numbers are increased the bone marrow of mice carrying a high bone mass mutation (HBM) of Lrp5 (Lrp5G170V). Since megakaryocytes can promote bone formation, we addressed the question, if the bone remodeling phenotype of Lrp5G170V mice is affected by megakaryocyte depletion. For that purpose we took advantage of a mouse model carrying a mutation of the Mpl gene, encoding the thrombopoietin receptor. These mice (Mplhlb219) were crossed with Lrp5G170V mice to generate animals carrying both mutations in a homozygous state. Using µCT, undecalcified histology and bone-specific histomorphometry of 12 weeks old littermates we observed that megakaryocyte number was remarkably decreased in Mplhlb219/Lrp5G170V mice, yet the high bone mass phenotype of Lrp5G170V mice was not significantly affected by the homozygous Mpl mutation. Finally, when we analyzed 24 weeks old wildtype and Mplhlb219 mice we did not observe a statistically significant alteration of bone remodeling in the latter ones. Taken together, our results demonstrate that an increased number of bone marrow megakaryocytes does not contribute to the increased bone formation caused by Lrp5 activation.


Assuntos
Remodelação Óssea , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Megacariócitos/citologia , Mutação Puntual , Animais , Densidade Óssea , Contagem de Células , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Trombopoetina/genética
10.
Calcif Tissue Int ; 102(1): 105-116, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29105022

RESUMO

Wnt antagonist Dkk1 is a negative regulator of bone formation and Dkk1 +/- heterozygous mice display a high bone mass phenotype. Complete loss of Dkk1 function disrupts embryonic head development. Homozygous Dkk1 -/- mice that were heterozygous for Wnt3 loss of function mutation (termed Dkk1 KO) are viable and allowed studying the effects of homozygous inactivation of Dkk1 on bone formation. Dkk1 KO mice showed a high bone mass phenotype exceeding that of heterozygous mice as well as a high incidence of polydactyly and kinky tails. Whole body bone density was increased in the Dkk1 KO mice as shown by longitudinal dual-energy X-ray absorptiometry. MicroCT analysis of the distal femur revealed up to 3-fold increases in trabecular bone volume and up to 2-fold increases in the vertebrae, compared to wild type controls. Cortical bone was increased in both the tibiae and vertebrae, which correlated with increased strength in tibial 4-point bending and vertebral compression tests. Dynamic histomorphometry identified increased bone formation as the mechanism underlying the high bone mass phenotype in Dkk1 KO mice, with no changes in bone resorption. Mice featuring only Wnt3 heterozygosity showed no evident bone phenotype. Our findings highlight a critical role for Dkk1 in the regulation of bone formation and a gene dose-dependent response to loss of DKK1 function. Targeting Dkk1 to enhance bone formation offers therapeutic potential for osteoporosis.


Assuntos
Densidade Óssea/fisiologia , Osso e Ossos/fisiopatologia , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Osteogênese/genética , Animais , Doenças Ósseas Metabólicas/metabolismo , Reabsorção Óssea/metabolismo , Osso e Ossos/patologia , Peptídeos e Proteínas de Sinalização Intercelular/deficiência , Peptídeos e Proteínas de Sinalização Intercelular/genética , Camundongos Knockout , Fenótipo
11.
Calcif Tissue Int ; 102(1): 41-52, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29018903

RESUMO

The main hallmark of high bone mass (HBM) disorders is increased bone mineral density, potentially visible in conventional radiographs and quantifiable by other radiographic methods. While one of the most common forms of HBM is CLCN7-related autosomal dominant osteopetrosis type II (ADO II), there is no consensus on diagnostic thresholds. We therefore wanted to assess whether CLCN7-osteopetrosis patients differ from benign HBM cases in terms of (1) bone mineral density, (2) bone structure, and (3) microarchitectural abnormalities. 16 patients meeting the criteria of HBM (DXA T/Z-score ≥ 2.5 at all sites) were included in this retrospective study. Osteologic assessment using dual-energy X-ray absorptiometry (DXA), high-resolution peripheral quantitative computed tomography (HR-pQCT), and serum analyses was performed. The presence of CLCN7 and/or other HBM gene mutations affecting bone mass were tested using a custom designed bone panel. While a DXA threshold for ADO II could be implemented (DXA Z-score ≥ + 6.0), the differences in bone microarchitecture were of lesser extent compared to the benign HBM group. All adult patients with ADO II suffered from elevated fracture rates independent from Z-score. In HR-pQCT, structural alterations, such as bone islets were found only inconsistently. In cases of HBM, a DXA Z-score ≥ 6 may be indicative for an inheritable HBM disorder, such as ADO II. Microarchitectural bone alterations might represent local microfracture repair or accumulation of cartilage remnants due to impaired osteoclast function, but seem not to be correlated with fracture risk.


Assuntos
Densidade Óssea/fisiologia , Osso e Ossos/fisiopatologia , Vértebras Lombares/fisiopatologia , Osteopetrose/metabolismo , Absorciometria de Fóton/métodos , Adolescente , Adulto , Idoso , Criança , Feminino , Fraturas Ósseas , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
12.
J Clin Densitom ; 21(4): 480-484, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28648836

RESUMO

High bone mass (HBM), a rare phenotype, can be detected by dual-energy X-ray absorptiometry (DXA) scanning. Measurements with peripheral quantitative computed tomography at the tibia have found increased trabecular bone mineral density and changes in cortical bone density and structure, all of which lead to increased bone strength. However, no studies on cortical and trabecular bone have been performed at the femur. The recently developed 3-dimensional (3D)-DXA software algorithm quantifies the trabecular and cortical volumetric bone mineral density (vBMD) and the anatomical distribution of cortical thickness using routine hip DXA scans. We analyzed the femurs of 15 women with HBM and 15 controls from the Barcelona Osteoporosis (BARCOS) cohort using the 3D-DXA technique. The mean vBMD of proximal femur was 29.7% higher in HBM cases than in controls for the integral bone, 41.3% higher for the trabecular bone, and 7.3% higher for the cortical bone (p < 0.001). No differences in bone size were detected between cases and controls. Patients with HBM had a thicker cortex and higher trabecular and cortical vBMDs, as measured by 3D-DXA at the femur and compared to controls; bone size was similar in both groups. To the best of our knowledge, this is the first description of trabecular and cortical characteristics of the hip in patients with HBM.


Assuntos
Absorciometria de Fóton/métodos , Densidade Óssea , Osso Esponjoso/diagnóstico por imagem , Osso Cortical/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Idoso , Algoritmos , Densidade Óssea/fisiologia , Osso Esponjoso/fisiologia , Estudos de Casos e Controles , Osso Cortical/fisiologia , Feminino , Fêmur/fisiologia , Humanos , Imageamento Tridimensional , Pessoa de Meia-Idade
13.
Biochim Biophys Acta ; 1863(3): 490-498, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26681532

RESUMO

Osteoblasts are emerging regulators of myeloid malignancies since genetic alterations in them, such as constitutive activation of ß-catenin, instigate their appearance. The LDL receptor-related protein 5 (LRP5), initially proposed to be a co-receptor for Wnt proteins, in fact favors bone formation by suppressing gut-serotonin synthesis. This function of Lrp5 occurring in the gut is independent of ß-catenin activation in osteoblasts. However, it is unknown whether Lrp5 can act directly in osteoblast to influence other functions that require ß-catenin signaling, particularly, the deregulation of hematopoiesis and leukemogenic properties of ß-catenin activation in osteoblasts, that lead to development of acute myeloid leukemia (AML). Using mice with gain-of-function (GOF) Lrp5 alleles (Lrp5(A214V)) that recapitulate the human high bone mass (HBM) phenotype, as well as patients with the T253I HBM Lrp5 mutation, we show here that Lrp5 GOF mutations in both humans and mice do not activate ß-catenin signaling in osteoblasts. Consistent with a lack of ß-catenin activation in their osteoblasts, Lrp5(A214V) mice have normal trilinear hematopoiesis. In contrast to leukemic mice with constitutive activation of ß-catenin in osteoblasts (Ctnnb1(CAosb)), accumulation of early myeloid progenitors, a characteristic of AML, myeloid-blasts in blood, and segmented neutrophils or dysplastic megakaryocytes in the bone marrow, are not observed in Lrp5(A214V) mice. Likewise, peripheral blood count analysis in HBM patients showed normal hematopoiesis, normal percentage of myeloid cells, and lack of anemia. We conclude that Lrp5 GOF mutations do not activate ß-catenin signaling in osteoblasts. As a result, myeloid lineage differentiation is normal in HBM patients and mice. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.


Assuntos
Hematopoese , Proteína-5 Relacionada a Receptor de Lipoproteína de Baixa Densidade/genética , Mutação , Osteoblastos/metabolismo , beta Catenina/metabolismo , Adulto , Idoso , Animais , Densidade Óssea/genética , Linhagem Celular , Linhagem Celular Tumoral , Feminino , Citometria de Fluxo , Humanos , Masculino , Camundongos Knockout , Pessoa de Meia-Idade , Osteogênese/genética , Transdução de Sinais/genética , Adulto Jovem
14.
Am J Med Genet A ; 170(12): 3150-3156, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27576954

RESUMO

Osteogenesis Imperfecta (OI) is an inherited bone fragility disorder most commonly associated with autosomal dominant mutations in the type I collagen genes. Autosomal recessive mutations in a number of genes have also been described, including the BMP1 gene that encodes the mammalian Tolloid (mTLD) and its shorter isoform bone morphogenic protein-1 (BMP1). To date, less than 20 individuals with OI have been identified with BMP1 mutations, with skeletal phenotypes ranging from mild to severe and progressively deforming. In the majority of patients, bone fragility was associated with increased bone mineral density (BMD); however, the full range of phenotypes associated with BMP1 remains unclear. Here, we describe three children with mutations in BMP1 associated with a highly variable phenotype: a sibship homozygous for the c.2188delC mutation that affects only the shorter BMP1 isoform and a further patient who is compound heterozygous for a c.1293C>G nonsense mutation and a c.1148G>A missense mutation in the CUB1 domain. These individuals had recurrent fractures from early childhood, are hypermobile and have no evidence of dentinogenesis imperfecta. The homozygous siblings with OI had normal areal BMD by dual energy X-ray absorptiometry whereas the third patient presented with a high bone mass phenotype. Intravenous bisphosphonate therapy was started in all patients, but discontinued in two patients and reduced in another due to concerns about increasing bone stiffness leading to chalk-stick fractures. Given the association of BMP1-related OI with very high bone material density, concerns remain whether anti-resorptive therapy is indicated in this ultra-rare form of OI.© 2016 Wiley Periodicals, Inc.


Assuntos
Densidade Óssea/genética , Proteína Morfogenética Óssea 1/genética , Colágeno Tipo I/genética , Osteogênese Imperfeita/genética , Adolescente , Osso e Ossos/fisiopatologia , Criança , Difosfonatos/administração & dosagem , Feminino , Homozigoto , Humanos , Masculino , Mutação , Osteogênese Imperfeita/tratamento farmacológico , Osteogênese Imperfeita/fisiopatologia , Fenótipo
15.
Acta Endocrinol (Buchar) ; 12(4): 461-464, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-31149132

RESUMO

BACKGROUND: Unexplained high bone mass (HBM) (Bone Mineral Density-BMD Z-score at the lumbar spine or hip of ≥+3.2 SD, or a combined spine and hip Z score ≥4 SD) after routine bone densitometry occurs with a prevalence of approximately 2 out of 1.000 and is currently believed to be a mild form of skeletal dysplasia (1). RESULTS: We present the case of a patient with unexplained HBM (Z-scores at L3, L1-L4, total hip and radius total were +3, +2.7, +2 and +1.8, respectively) and concurrent symptomatic primay hyperparathyroidism (total serum calcium 11.9 mg/dL, serum Parathyroid Hormone - PTH 189.3 pg/mL) of long duration. There were no significant BMD changes at any skeletal site after the surgical cure of hyperparathyroidism. Testing for LRP (low density lipoprotein receptor-related proteins) 5 gene mutations was negative. CONCLUSIONS: We presented an unusual case of the association of a HBM with primary hyperparathyroidism with resistance to the catabolic action of PTH. In spite of the negative result of LRP5 testing we do believe that a mutation of a gene involved in the Wnt pathway in bone is responsible.

16.
Eur J Med Genet ; 69: 104936, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38593953

RESUMO

Osteopetrosis refers to a group of related rare bone diseases characterized by a high bone mass due to impaired bone resorption by osteoclasts. Despite the high bone mass, skeletal strength is compromised and the risk of fracture is high, particularly in the long bones. Osteopetrosis was classically categorized by inheritance pattern into autosomal recessive forms (ARO), which are severe and diagnosed within the first years of life, an intermediate form and an autosomal dominant (ADO) form; the latter with variable clinical severity and typically diagnosed during adolescence or in young adulthood. Subsequently, the AD form was shown to be a result of mutations in the gene CLCN7 encoding for the ClC-7 chloride channel). Traditionally, the diagnosis of osteopetrosis was made on radiograph appearance alone, but recent molecular and genetic advances have enabled a greater fidelity in classification of osteopetrosis subtypes. In the more severe ARO forms (e.g., malignant infantile osteopetrosis MIOP) typical clinical features have severe consequences and often result in death in early childhood. Major complications of ADO are atypical fractures with delay or failure of repair and challenge in orthopedic management. Bone marrow failure, dental abscess, deafness and visual loss are often underestimated and neglected in relation with lack of awareness and expertise. Accordingly, the care of adult patients with osteopetrosis requires a multidisciplinary approach ideally in specialized centers. Apart from hematopoietic stem cell transplantation in certain infantile forms, the treatment of patients with osteopetrosis, has not been standardized and remains supportive. Further clinical studies are needed to improve our knowledge of the natural history, optimum management and impact of osteopetrosis on the lives of patients living with the disorder.


Assuntos
Osteoclastos , Osteopetrose , Osteopetrose/genética , Osteopetrose/patologia , Humanos , Osteoclastos/patologia , Adulto , Canais de Cloreto/genética , Mutação
17.
J Clin Endocrinol Metab ; 109(7): 1891-1898, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38173341

RESUMO

CONTEXT: Osteopathia striata with cranial sclerosis (OSCS) is a rare bone disorder with X-linked dominant inheritance, characterized by a generalized hyperostosis in the skull and long bones and typical metaphyseal striations in the long bones. So far, loss-of-function variants in AMER1 (also known as WTX or FAM123B), encoding the APC membrane recruitment protein 1 (AMER1), have been described as the only molecular cause for OSCS. AMER1 promotes the degradation of ß-catenin via AXIN stabilization, acting as a negative regulator of the WNT/ß-catenin signaling pathway, a central pathway in bone formation. OBJECTIVE: In this study, we describe a Dutch adult woman with an OSCS-like phenotype, namely, generalized high bone mass and characteristic metaphyseal striations, but no genetic variant affecting AMER1. RESULTS: Whole exome sequencing led to the identification of a mosaic missense variant (c.876A > C; p.Lys292Asn) in CTNNB1, coding for ß-catenin. The variant disrupts an amino acid known to be crucial for interaction with AXIN, a key factor in the ß-catenin destruction complex. Western blotting experiments demonstrate that the p.Lys292Asn variant does not significantly affect the ß-catenin phosphorylation status, and hence stability in the cytoplasm. Additionally, luciferase reporter assays were performed to investigate the effect of p.Lys292Asn ß-catenin on canonical WNT signaling. These studies indicate an average 70-fold increase in canonical WNT signaling activity by p.Lys292Asn ß-catenin. CONCLUSION: In conclusion, this study indicates that somatic variants in the CTNNB1 gene could explain the pathogenesis of unsolved cases of osteopathia striata.


Assuntos
Mosaicismo , Osteosclerose , beta Catenina , Humanos , beta Catenina/genética , beta Catenina/metabolismo , Feminino , Osteosclerose/genética , Osteosclerose/patologia , Mutação de Sentido Incorreto , Adulto , Via de Sinalização Wnt/genética , Pessoa de Meia-Idade , Sequenciamento do Exoma , Proteínas Supressoras de Tumor , Proteínas Adaptadoras de Transdução de Sinal
18.
Bone ; 187: 117172, 2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38909879

RESUMO

Gain-of-function mutations in the low-density lipoprotein receptor-related protein 5 (LRP5) can cause high-bone-mass (HBM) phenotype, with 19 identified mutations so far. The A242T mutation in LRP5 has been found in 9 families, making it one of the most prevalent mutations. However, the correlation between the A242T mutation and HBM phenotype remains unverified in animal models. This study aimed to investigate the bone properties in a new transgenic mouse model carrying the LRP5 A241T missense mutation, equivalent to A242T in humans. Heterozygous Lrp5A241T mice were generated using CRISPR/Cas9 genome editing. Body weight increased with age from 4 to 16 weeks, higher in males than females, with no difference between Lrp5A241T mice and wild-type control. Micro-CT showed slightly longer femur and notably elevated trabecular bone mass of the femur and fifth lumbar spine with higher bone mineral density, bone volume fraction, and trabecular thickness in Lrp5A241T mice compared to wild-type mice. Additionally, increased cortical bone thickness and volume of the femur shaft and skull were observed in Lrp5A241T mice. Three-point bending tests of the tibia demonstrated enhanced bone strength properties in Lrp5A241T mice. Histomorphometry confirmed that the A241T mutation increased bone formation without affecting osteoblast number and reduced resorption activities in vivo. In vitro experiments indicated that the LRP5 A241T mutation enhanced osteogenic capacity of osteoblasts with upregulation of the Wnt signaling pathway, with no significant impact on the resorptive activity of osteoclasts. In summary, mice carrying the LRP5 A241T mutation displayed high bone mass and quality due to enhanced bone formation and reduced bone resorption in vivo, potentially mediated by the augmented osteogenic potential of osteoblasts. Continued investigation into the regulatory mechanisms of its bone metabolism and homeostasis may contribute to the advancement of novel therapeutic strategies for bone disorders.

19.
Bone ; 179: 116976, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38042445

RESUMO

Mef2c is a transcription factor that mediates key cellular behaviors that promote endochondral ossification and bone formation. Previously, Mef2c has been shown to regulate Sost transcription via its osteocyte-specific enhancer, ECR5, and conditional deletions of Mef2cfl/fl with either Col1-Cre or Dmp1-Cre produced generalized high bone mass (HBM) consistent with Van Buchem Disease phenotypes. However, Sost-/-; Mef2cfl/fl; Dmp1-Cre mice produced a significantly higher bone mass phenotype that Sost-/- alone suggesting that Mef2c modulates bone mass through additional mechanisms, independent of Sost. To identify new Mef2c transcriptional targets important in bone metabolism, we profiled gene expression by single-cell RNA sequencing in subpopulations of cells isolated from Mef2cfl/fl; Dmp1-Cre and Mef2cfl/fl; Bglap-Cre femurs, both strains exhibiting similar high bone mass phenotypes. However, we found Mef2cfl/fl; Bglap-Cre to also display a growth plate defect characterized by an expansion of several osteoprogenitor subpopulations. Differential gene expression analysis identified a total of 96 up- and 2434 down- regulated genes in Mef2cfl/fl; Bglap-Cre and 176 up- and 1041 down- regulated genes in Mef2cfl/fl; Dmp1-Cre bone cell subpopulations compared to wildtype mice. Mef2c deletion affected the transcriptomes across several cell types including mesenchymal progenitors (MP), osteoprogenitors (OSP), osteoblast (OB), and osteocyte (OCY) subpopulations. Several energy metabolism genes such as Uqcrb, Ndufv2, Ndufs3, Ndufa13, Ndufb9, Ndufb5, Cox6a1, Cox5a, Atp5o, Atp5g2, Atp5b, Atp5 were significantly down regulated in Mef2c-deficient OBs and OCYs, in both strains. Binding motif analysis of promoter regions of differentially expressed genes identified Mef2c binding in Bone Sialoprotein (BSP/Ibsp), a gene known to cause increased trabecular BV/TV in the femurs of Ibsp-/- mice. Immunohistochemical analysis confirmed the absence of Ibsp protein in OBs and OCYs. These findings suggests that the HBM in Sost-/-; Mef2cfl/fl; Dmp1-Cre is caused by a multitude of transcriptional changes in genes that regulate bone formation, two of which are Sost and Ibsp.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal , Osso e Ossos , Fatores de Transcrição MEF2 , Animais , Camundongos , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Osso e Ossos/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Regulação da Expressão Gênica , Fatores de Transcrição MEF2/genética , Osteoblastos/metabolismo , Osteogênese/genética
20.
Rheumatology (Oxford) ; 52(6): 968-85, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23445662

RESUMO

A finding of high BMD on routine DXA scanning is not infrequent and most commonly reflects degenerative disease. However, BMD increases may also arise secondary to a range of underlying disorders affecting the skeleton. Although low BMD increases fracture risk, the converse may not hold for high BMD, since elevated BMD may occur in conditions where fracture risk is increased, unaffected or reduced. Here we outline a classification for the causes of raised BMD, based on identification of focal or generalized BMD changes, and discuss an approach to guide appropriate investigation by clinicians after careful interpretation of DXA scan findings within the context of the clinical history. We will also review the mild skeletal dysplasia associated with the currently unexplained high bone mass phenotype and discuss recent advances in osteoporosis therapies arising from improved understanding of rare inherited high BMD disorders.


Assuntos
Densidade Óssea/fisiologia , Osso e Ossos/diagnóstico por imagem , Fraturas Ósseas/diagnóstico por imagem , Osteoartrite/diagnóstico por imagem , Osteopetrose/diagnóstico por imagem , Osteoporose/diagnóstico por imagem , Absorciometria de Fóton , Humanos
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa