RESUMO
In this work, a novel CdS-SnS-SnS2/rGO photocatalyst with two tin valence states (â ¡ and IV) was successfully synthesized by a one-pot solvothermal method. For comparison, CdS-SnS2/rGO (GCS2) with tin in only the IV valence state was made by the same method. Based on a series of characterizations, CdS, SnS and SnS2 were shown to be successfully loaded onto the rGO surface. The introduction of rGO may increase charge carrier separation. The degradation efficiency increased gradually with increasing rGO loading content, and the optimum photocatalytic activity was observed at 6.0 wt% rGO loading content (GCS1), which achieved the efficient removal (84.46%) of ibuprofen over 60 min. Compared with GCS2, the CdS-SnS-SnS2/rGO composite exhibited significantly improved photocatalytic performance, which can be ascribed to the formation of a double heterostructure. rGO worked as a transfer mediator to transfer electrons from the conduction band (CB) of SnS to the CB of SnS2 at the heterointerface, which then flowed to the CB of CdS because of another heterojunction, further enhancing the separation efficiency of photogenerated carriers. Therefore, this study highlights a novel double heterojunction system with a facial preparation method, visible light response and good recyclability, which is beneficial for environmental remediation.
RESUMO
A new approach for high voltage capillary electrophoresis (CE) is proposed, which replaces the standard high voltage power supply with a Van de Graaff generator, a low current power source. Because the Van de Graaff generator is a current-limited source (10µA), potentials exceeding 100kV can be generated for CE when the electrical resistance of the capillary is maximized. This was achieved by decreasing the capillary diameter and reducing the buffer ionic strength. Using 2mM borate buffer and a 5µm i.d. capillary, fluorescently labeled amino acids were separated with efficiencies up to 3.5 million plates; a 5.7 fold improvement in separation efficiency compared to a normal power supply (NPS) typically used in CE. This separation efficiency was realized using a simple set-up without significant Joule heating, making the Van de Graaff generator a promising alternative for applying the high potentials required for enhancing resolution in the separation and analysis of highly complex samples, for example mixtures of glycans.
Assuntos
Eletroforese Capilar/instrumentação , Aminoácidos/isolamento & purificação , Soluções Tampão , Polissacarídeos/isolamento & purificaçãoRESUMO
Dibutyltin dichloride (DBTDC) was used as a catalyst to chemically bind 4-chloromehtylphenylisocynate (4-CPI) to porous monolithic silica particles via isocyanate-hydroxyl reaction, and the reaction product was reacted with sodium diethyldithiocarbamate (SDDC) to yield initiator attached silica monolith particles. Reversible addition-fragmentation transfer (RAFT) polymerization was taken place on them to result in polystyrene attached silica particles that showed excellent separation efficiency when packed in a chromatographic column (1.0 mm × 300 mm). The numbers of theoretical plates (N) of 56,500 is better than those of any commercially available HPLC or UHPLC column yet.
Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Isocianatos/química , Poliestirenos/síntese química , Dióxido de Silício/química , Catálise , Ligantes , Microscopia Eletrônica de Varredura , Tamanho da Partícula , PorosidadeRESUMO
Partially sub-2µm porous silica monolith particles have been synthesized by a renovated procedure and modified to polystyrene coated silica particles with excellent separation efficiency when used as chromatographic media. In the procedure of preparing silica monolith particles in this study, subtle control of formulation of the reaction mixture and multi-step heating followed by calcination, without any washing and sieving process, enabled formation of silica particles characterized by proper particle and pore size distribution for high separation efficiency. 3-Chloropropyl trimethoxysilane was used as the halogen terminal spacer to combine the initiator to silica particles. Uniform and thin coating of polystyrene layer on initiator attached silica particles was formed via reversible addition-fragmentation chain transfer (RAFT) polymerization. Micro-columns (1.0mm ID and 300mm length) were packed with the resultant phase and their chromatographic performance was elucidated by HPLC. A mobile phase of 60/40 (v/v) acetonitrile/water containing 0.1% TFA and a flow rate of 15µL/min were found to be the optimized conditions leading to number of theoretical plates close to 50,000 (165,000m(-1)). This is the very first study to get such highly efficient HPLC columns using a silica monolith particulate stationary phase.