Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 386
Filtrar
1.
Brain ; 147(7): 2496-2506, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38325327

RESUMO

We evaluated whether spike ripples, the combination of epileptiform spikes and ripples, provide a reliable and improved biomarker for the epileptogenic zone compared with other leading interictal biomarkers in a multicentre, international study. We first validated an automated spike ripple detector on intracranial EEG recordings. We then applied this detector to subjects from four centres who subsequently underwent surgical resection with known 1-year outcomes. We evaluated the spike ripple rate in subjects cured after resection [International League Against Epilepsy Class 1 outcome (ILAE 1)] and those with persistent seizures (ILAE 2-6) across sites and recording types. We also evaluated available interictal biomarkers: spike, spike-gamma, wideband high frequency oscillation (HFO, 80-500 Hz), ripple (80-250 Hz) and fast ripple (250-500 Hz) rates using previously validated automated detectors. The proportion of resected events was computed and compared across subject outcomes and biomarkers. Overall, 109 subjects were included. Most spike ripples were removed in subjects with ILAE 1 outcome (P < 0.001), and this was qualitatively observed across all sites and for depth and subdural electrodes (P < 0.001 and P < 0.001, respectively). Among ILAE 1 subjects, the mean spike ripple rate was higher in the resected volume (0.66/min) than in the non-removed tissue (0.08/min, P < 0.001). A higher proportion of spike ripples were removed in subjects with ILAE 1 outcomes compared with ILAE 2-6 outcomes (P = 0.06). Among ILAE 1 subjects, the proportion of spike ripples removed was higher than the proportion of spikes (P < 0.001), spike-gamma (P < 0.001), wideband HFOs (P < 0.001), ripples (P = 0.009) and fast ripples (P = 0.009) removed. At the individual level, more subjects with ILAE 1 outcomes had the majority of spike ripples removed (79%, 38/48) than spikes (69%, P = 0.12), spike-gamma (69%, P = 0.12), wideband HFOs (63%, P = 0.03), ripples (45%, P = 0.01) or fast ripples (36%, P < 0.001) removed. Thus, in this large, multicentre cohort, when surgical resection was successful, the majority of spike ripples were removed. Furthermore, automatically detected spike ripples localize the epileptogenic tissue better than spikes, spike-gamma, wideband HFOs, ripples and fast ripples.


Assuntos
Eletrocorticografia , Humanos , Masculino , Feminino , Adulto , Eletrocorticografia/métodos , Adulto Jovem , Adolescente , Eletroencefalografia/métodos , Pessoa de Meia-Idade , Epilepsia/fisiopatologia , Epilepsia/cirurgia , Criança , Ondas Encefálicas/fisiologia , Encéfalo/fisiopatologia
2.
Neurobiol Dis ; 190: 106383, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38114051

RESUMO

High-frequency oscillations (HFOs) represent an electrographic biomarker of endogenous epileptogenicity and seizure-generating tissue that proved clinically useful in presurgical planning and delineating the resection area. In the neocortex, the clinical observations on HFOs are not sufficiently supported by experimental studies stemming from a lack of realistic neocortical epilepsy models that could provide an explanation of the pathophysiological substrates of neocortical HFOs. In this study, we explored pathological epileptiform network phenomena, particularly HFOs, in a highly realistic murine model of neocortical epilepsy due to focal cortical dysplasia (FCD) type II. FCD was induced in mice by the expression of the human pathogenic mTOR gene mutation during embryonic stages of brain development. Electrographic recordings from multiple cortical regions in freely moving animals with FCD and epilepsy demonstrated that the FCD lesion generates HFOs from all frequency ranges, i.e., gamma, ripples, and fast ripples up to 800 Hz. Gamma-ripples were recorded almost exclusively in FCD animals, while fast ripples occurred in controls as well, although at a lower rate. Gamma-ripple activity is particularly valuable for localizing the FCD lesion, surpassing the utility of fast ripples that were also observed in control animals, although at significantly lower rates. Propagating HFOs occurred outside the FCD, and the contralateral cortex also generated HFOs independently of the FCD, pointing to a wider FCD network dysfunction. Optogenetic activation of neurons carrying mTOR mutation and expressing Channelrhodopsin-2 evoked fast ripple oscillations that displayed spectral and morphological profiles analogous to spontaneous oscillations. This study brings experimental evidence that FCD type II generates pathological HFOs across all frequency bands and provides information about the spatiotemporal properties of each HFO subtype in FCD. The study shows that mutated neurons represent a functionally interconnected and active component of the FCD network, as they can induce interictal epileptiform phenomena and HFOs.


Assuntos
Epilepsia , Displasia Cortical Focal , Humanos , Animais , Camundongos , Modelos Animais de Doenças , Eletroencefalografia , Serina-Treonina Quinases TOR
3.
Epilepsia ; 65(1): 190-203, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37983643

RESUMO

OBJECTIVE: Temporal coordination between oscillations enables intercortical communication and is implicated in cognition. Focal epileptic activity can affect distributed neural networks and interfere with these interactions. Refractory pediatric epilepsies are often accompanied by substantial cognitive comorbidity, but mechanisms and predictors remain mostly unknown. Here, we investigate oscillatory coupling across large-scale networks in the developing brain. METHODS: We analyzed large-scale intracranial electroencephalographic recordings in children with medically refractory epilepsy undergoing presurgical workup (n = 25, aged 3-21 years). Interictal epileptiform discharges (IEDs), pathologic high-frequency oscillations (HFOs), and sleep spindles were detected. Spatiotemporal metrics of oscillatory coupling were determined and correlated with age, cognitive function, and postsurgical outcome. RESULTS: Children with epilepsy demonstrated significant temporal coupling of both IEDs and HFOs to sleep spindles in discrete brain regions. HFOs were associated with stronger coupling patterns than IEDs. These interactions involved tissue beyond the clinically identified epileptogenic zone and were ubiquitous across cortical regions. Increased spatial extent of coupling was most prominent in older children. Poor neurocognitive function was significantly correlated with high IED-spindle coupling strength and spatial extent; children with strong pathologic interactions additionally had decreased likelihood of postoperative seizure freedom. SIGNIFICANCE: Our findings identify pathologic large-scale oscillatory coupling patterns in the immature brain. These results suggest that such intercortical interactions could predict risk for adverse neurocognitive and surgical outcomes, with the potential to serve as novel therapeutic targets to restore physiologic development.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsias Parciais , Epilepsia , Humanos , Criança , Epilepsias Parciais/cirurgia , Epilepsia Resistente a Medicamentos/cirurgia , Sono , Cognição , Resultado do Tratamento , Eletroencefalografia
4.
Epilepsia ; 65(4): e55-e60, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38366848

RESUMO

High-frequency oscillations (HFOs) are associated with normal brain function, but are also increasingly recognized as potential biomarkers of epileptogenic tissue. Considering the important role of interneuron activity in physiological HFO generation, we studied their modulation by midazolam (MDZ), an agonist of γ-aminobutyric acid type A (GABAA)-benzodiazepine receptors. Here, we analyzed 80 intracranial electrode contacts in amygdala and hippocampus of 13 patients with drug-refractory focal epilepsy who had received MDZ for seizure termination during presurgical monitoring. Ripples (80-250 Hz) and fast ripples (FRs; 250-400 Hz) were compared before and after seizures with MDZ application, and according to their origin either within or outside the individual seizure onset zone (SOZ). We found that MDZ distinctly suppressed all HFOs (ripples and FRs), whereas the reduction of ripples was significantly less pronounced inside the SOZ compared to non-SOZ contacts. The rate of FRs inside the SOZ was less affected, especially in hippocampal contacts. In a few cases, even a marked increase of FRs following MDZ administration was seen. Our results demonstrate, for the first time, a significant HFO modulation in amygdala and hippocampus by MDZ, thus giving insights into the malfunction of GABA-mediated inhibition within epileptogenic areas and its role in HFO generation.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Midazolam/farmacologia , Eletroencefalografia/métodos , Convulsões , Hipocampo , Tonsila do Cerebelo , Epilepsia Resistente a Medicamentos/tratamento farmacológico , Ácido gama-Aminobutírico
5.
Epilepsia ; 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39101302

RESUMO

OBJECTIVE: To use intracranial electroencephalography (EEG) to characterize functional magnetic resonance imaging (fMRI) activation maps associated with high-frequency oscillations (HFOs) (80-250 Hz) and examine their proximity to HFO- and seizure-generating tissue. METHODS: Forty-five patients implanted with intracranial depth electrodes underwent a simultaneous EEG-fMRI study at 3 T. HFOs were detected algorithmically from cleaned EEG and visually confirmed by an experienced electroencephalographer. HFOs that co-occurred with interictal epileptiform discharges (IEDs) were subsequently identified. fMRI activation maps associated with HFOs were generated that occurred either independently of IEDs or within ±200 ms of an IED. For all significant analyses, the Maximum, Second Maximum, and Closest activation clusters were identified, and distances were measured to both the electrodes where the HFOs were observed and the electrodes involved in seizure onset. RESULTS: We identified 108 distinct groups of HFOs from 45 patients. We found that HFOs with IEDs produced fMRI clusters that were closer to the local field potentials of the corresponding HFOs observed within the EEG than HFOs without IEDs. In addition to the fMRI clusters being closer to the location of the EEG correlate, HFOs with IEDs generated Maximum clusters with greater z-scores and larger volumes than HFOs without IEDs. We also observed that HFOs with IEDs resulted in more discrete activation maps. SIGNIFICANCE: Intracranial EEG-fMRI can be used to probe the hemodynamic response to HFOs. The hemodynamic response associated with HFOs that co-occur with IEDs better identifies known epileptic tissue than HFOs that occur independently.

6.
Epilepsia ; 65(10): 2935-2945, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39180407

RESUMO

OBJECTIVE: Evidence suggests that the most promising results in interictal localization of the epileptogenic zone (EZ) are achieved by a combination of multiple stereo-electroencephalography (SEEG) biomarkers in machine learning models. These biomarkers usually include SEEG features calculated in standard frequency bands, but also high-frequency (HF) bands. Unfortunately, HF features require extra effort to record, store, and process. Here we investigate the added value of these HF features for EZ localization and postsurgical outcome prediction. METHODS: In 50 patients we analyzed 30 min of SEEG recorded during non-rapid eye movement sleep and tested a logistic regression model with three different sets of features. The first model used broadband features (1-500 Hz); the second model used low-frequency features up to 45 Hz; and the third model used HF features above 65 Hz. The EZ localization by each model was evaluated by various metrics including the area under the precision-recall curve (AUPRC) and the positive predictive value (PPV). The differences between the models were tested by the Wilcoxon signed-rank tests and Cliff's Delta effect size. The differences in outcome predictions based on PPV values were further tested by the McNemar test. RESULTS: The AUPRC score of the random chance classifier was .098. The models (broad-band, low-frequency, high-frequency) achieved median AUPRCs of .608, .582, and .522, respectively, and correctly predicted outcomes in 38, 38, and 33 patients. There were no statistically significant differences in AUPRC or any other metric between the three models. Adding HF features to the model did not have any additional contribution. SIGNIFICANCE: Low-frequency features are sufficient for correct localization of the EZ and outcome prediction with no additional value when considering HF features. This finding allows significant simplification of the feature calculation process and opens the possibility of using these models in SEEG recordings with lower sampling rates, as commonly performed in clinical routines.


Assuntos
Eletroencefalografia , Humanos , Eletroencefalografia/métodos , Feminino , Masculino , Adulto , Adulto Jovem , Adolescente , Resultado do Tratamento , Técnicas Estereotáxicas , Pessoa de Meia-Idade , Epilepsia/cirurgia , Epilepsia/fisiopatologia , Epilepsia/diagnóstico , Criança , Epilepsia Resistente a Medicamentos/cirurgia , Epilepsia Resistente a Medicamentos/fisiopatologia , Epilepsia Resistente a Medicamentos/diagnóstico
7.
Epilepsia ; 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-39388291

RESUMO

OBJECTIVE: Epilepsy raises critical challenges to accurately localize the epileptogenic zone (EZ) to guide presurgical planning. Previous research has suggested that interictal spikes overlapping with high-frequency oscillations, referred to here as pSpikes, serve as a reliable biomarker for EZ estimation, but there remains a question as to whether and to how pSpikes perform as compared to other types of epileptic spikes. This study aims to address this question by investigating the source imaging capabilities of pSpikes alongside other spike types. METHODS: A total of 2819 interictal spikes from 76-channel scalp electroencephalography (EEG) were analyzed in a cohort of 24 drug-resistant focal epilepsy patients. All patients received surgical resection, and 16 were declared seizure-free based on at least 1 year of postoperative follow-up. A recently developed electrophysiological source imaging algorithm-fast spatiotemporal iteratively reweighted edge sparsity (FAST-IRES)-was used for source imaging of the detected interictal spikes. The performance of 217 pSpikes was compared with 772 nSpikes (spikes with irregular high-frequency activations), 1830 rSpikes (spikes with no high-frequency activity), and all 2819 aSpikes (all interictal spikes). RESULTS: The localization and extent estimation using pSpikes are concordant with the clinical ground truth; using pSpikes yields the best performance compared with nSpikes, rSpikes, and conventional spike imaging (aSpikes). For multiple spike type seizure-free patients, the mean localization error for pSpike imaging was 6.8 mm, compared with 15.0 mm for aSpikes. The sensitivity, precision, and specificity were .41, .67, and .93 for pSpikes compared with .32, .48, and .93 for aSpikes. SIGNIFICANCE: These results demonstrate the merits of noninvasive EEG source localization, and that (1) pSpike is a superior biomarker, outperforming conventional spike imaging for the localization of epileptic sources, and especially those with multiple irritative zones; and (2) FAST-IRES provides accurate source estimation that is highly concordant with clinical ground truth, even in situations of single spike analysis with low signal-to-noise ratio.

8.
Epilepsia ; 65(8): 2238-2247, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38829313

RESUMO

Epilepsy's myriad causes and clinical presentations ensure that accurate diagnoses and targeted treatments remain a challenge. Advanced neurotechnologies are needed to better characterize individual patients across multiple modalities and analytical techniques. At the XVIth Workshop on Neurobiology of Epilepsy: Early Onset Epilepsies: Neurobiology and Novel Therapeutic Strategies (WONOEP 2022), the session on "advanced tools" highlighted a range of approaches, from molecular phenotyping of genetic epilepsy models and resected tissue samples to imaging-guided localization of epileptogenic tissue for surgical resection of focal malformations. These tools integrate cutting edge research, clinical data acquisition, and advanced computational methods to leverage the rich information contained within increasingly large datasets. A number of common challenges and opportunities emerged, including the need for multidisciplinary collaboration, multimodal integration, potential ethical challenges, and the multistage path to clinical translation. Despite these challenges, advanced epilepsy neurotechnologies offer the potential to improve our understanding of the underlying causes of epilepsy and our capacity to provide patient-specific treatment.


Assuntos
Epilepsia , Humanos , Epilepsia/diagnóstico , Epilepsia/diagnóstico por imagem , Epilepsia/fisiopatologia , Epilepsia/genética , Neuroimagem/métodos
9.
Brain ; 146(2): 561-575, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36093747

RESUMO

Understanding the neuronal basis of epileptic activity is a major challenge in neurology. Cellular integration into larger scale networks is all the more challenging. In the local field potential, interictal epileptic discharges can be associated with fast ripples (200-600 Hz), which are a promising marker of the epileptogenic zone. Yet, how neuronal populations in the epileptogenic zone and in healthy tissue are affected by fast ripples remain unclear. Here, we used a novel 'hybrid' macro-micro depth electrode in nine drug-resistant epileptic patients, combining classic depth recording of local field potentials (macro-contacts) and two or three tetrodes (four micro-wires bundled together) enabling up to 15 neurons in local circuits to be simultaneously recorded. We characterized neuronal responses (190 single units) with the timing of fast ripples (2233 fast ripples) on the same hybrid and other electrodes that target other brain regions. Micro-wire recordings reveal signals that are not visible on macro-contacts. While fast ripples detected on the closest macro-contact to the tetrodes were always associated with fast ripples on the tetrodes, 82% of fast ripples detected on tetrodes were associated with detectable fast ripples on the nearest macro-contact. Moreover, neuronal recordings were taken in and outside the epileptogenic zone of implanted epileptic subjects and they revealed an interlay of excitation and inhibition across anatomical scales. While fast ripples were associated with increased neuronal activity in very local circuits only, they were followed by inhibition in large-scale networks (beyond the epileptogenic zone, even in healthy cortex). Neuronal responses to fast ripples were homogeneous in local networks but differed across brain areas. Similarly, post-fast ripple inhibition varied across recording locations and subjects and was shorter than typical inter-fast ripple intervals, suggesting that this inhibition is a fundamental refractory process for the networks. These findings demonstrate that fast ripples engage local and global networks, including healthy tissue, and point to network features that pave the way for new diagnostic and therapeutic strategies. They also reveal how even localized pathological brain dynamics can affect a broad range of cognitive functions.


Assuntos
Ondas Encefálicas , Epilepsia , Humanos , Epilepsia/patologia , Encéfalo/patologia , Córtex Cerebral/patologia , Ondas Encefálicas/fisiologia , Mapeamento Encefálico , Eletroencefalografia
10.
Cereb Cortex ; 33(21): 10723-10735, 2023 10 14.
Artigo em Inglês | MEDLINE | ID: mdl-37724433

RESUMO

Based on acoustoelectric effect, acoustoelectric brain imaging has been proposed, which is a high spatiotemporal resolution neural imaging method. At the focal spot, brain electrical activity is encoded by focused ultrasound, and corresponding high-frequency acoustoelectric signal is generated. Previous studies have revealed that acoustoelectric signal can also be detected in other non-focal brain regions. However, the processing mechanism of acoustoelectric signal between different brain regions remains sparse. Here, with acoustoelectric signal generated in the left primary visual cortex, we investigated the spatial distribution characteristics and temporal propagation characteristics of acoustoelectric signal in the transmission. We observed a strongest transmission strength within the frontal lobe, and the global temporal statistics indicated that the frontal lobe features in acoustoelectric signal transmission. Then, cross-frequency phase-amplitude coupling was used to investigate the coordinated activity in the AE signal band range between frontal and occipital lobes. The results showed that intra-structural cross-frequency coupling and cross-structural coupling co-occurred between these two lobes, and, accordingly, high-frequency brain activity in the frontal lobe was effectively coordinated by distant occipital lobe. This study revealed the frontooccipital long-range interaction mechanism of acoustoelectric signal, which is the foundation of improving the performance of acoustoelectric brain imaging.


Assuntos
Encéfalo , Lobo Frontal , Lobo Frontal/diagnóstico por imagem , Mapeamento Encefálico
11.
Cereb Cortex ; 33(6): 2838-2856, 2023 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35788286

RESUMO

Focal cortical epilepsies are frequently refractory to available anticonvulsant drug therapies. One key factor contributing to this state is the limited availability of animal models that allow to reliably study focal cortical seizures and how they recruit surrounding brain areas in vivo. In this study, we selectively expressed the inhibitory chemogenetic receptor, hM4D, in GABAergic neurons in focal cortical areas using viral gene transfer. GABAergic silencing using Clozapine-N-Oxide (CNO) demonstrated reliable induction of local epileptiform events in the electroencephalogram signal of awake freely moving mice. Anesthetized mice experiments showed consistent induction of focal epileptiform-events in both the barrel cortex (BC) and the medial prefrontal cortex (mPFC), accompanied by high-frequency oscillations, a known characteristic of human seizures. Epileptiform-events showed propagation indication with favored propagation pathways: from the BC on 1 hemisphere to its counterpart and from the BC to the mPFC, but not vice-versa. Lastly, sensory whisker-pad stimulation evoked BC epileptiform events post-CNO, highlighting the potential use of this model in studying sensory-evoked seizures. Combined, our results show that targeted chemogenetic inhibition of GABAergic neurons using hM4D can serve as a novel, versatile, and reliable model of focal cortical epileptic activity suitable for systematically studying cortical ictogenesis in different cortical areas.


Assuntos
Clozapina , Epilepsias Parciais , Neurônios GABAérgicos , Neurônios , Regulação Viral da Expressão Gênica , Clozapina/análogos & derivados , Eletroencefalografia , Convulsões , Animais
12.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33875582

RESUMO

High-frequency oscillations (HFOs) are a promising biomarker for localizing epileptogenic brain and guiding successful neurosurgery. However, the utility and translation of noninvasive HFOs, although highly desirable, is impeded by the difficulty in differentiating pathological HFOs from nonepileptiform high-frequency activities and localizing the epileptic tissue using noninvasive scalp recordings, which are typically contaminated with high noise levels. Here, we show that the consistent concurrence of HFOs with epileptiform spikes (pHFOs) provides a tractable means to identify pathological HFOs automatically, and this in turn demarks an epileptiform spike subgroup with higher epileptic relevance than the other spikes in a cohort of 25 temporal epilepsy patients (including a total of 2,967 interictal spikes and 1,477 HFO events). We found significant morphological distinctions of HFOs and spikes in the presence/absence of this concurrent status. We also demonstrated that the proposed pHFO source imaging enhanced localization of epileptogenic tissue by 162% (∼5.36 mm) for concordance with surgical resection and by 186% (∼12.48 mm) with seizure-onset zone determined by invasive studies, compared to conventional spike imaging, and demonstrated superior congruence with the surgical outcomes. Strikingly, the performance of spike imaging was selectively boosted by the presence of spikes with pHFOs, especially in patients with multitype spikes. Our findings suggest that concurrent HFOs and spikes reciprocally discriminate pathological activities, providing a translational tool for noninvasive presurgical diagnosis and postsurgical evaluation in vulnerable patients.


Assuntos
Mapeamento Encefálico/métodos , Epilepsia/fisiopatologia , Adulto , Biomarcadores , Encéfalo/cirurgia , Estudos de Coortes , Eletroencefalografia/métodos , Epilepsia/cirurgia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Magnetoencefalografia/métodos , Masculino , Pessoa de Meia-Idade
13.
Neurobiol Dis ; 177: 105999, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36638892

RESUMO

Interictal electroencephalogram (EEG) patterns, including high-frequency oscillations (HFOs), interictal spikes (ISs), and slow wave activities (SWAs), are defined as specific oscillations between seizure events. These interictal oscillations reflect specific dynamic changes in network excitability and play various roles in epilepsy. In this review, we briefly describe the electrographic characteristics of HFOs, ISs, and SWAs in the interictal state, and discuss the underlying cellular and network mechanisms. We also summarize representative evidence from experimental and clinical epilepsy to address their critical roles in ictogenesis and epileptogenesis, indicating their potential as electrophysiological biomarkers of epilepsy. Importantly, we put forwards some perspectives for further research in the field.


Assuntos
Epilepsia , Transtornos Mentais , Humanos , Epilepsia/diagnóstico , Eletroencefalografia , Convulsões , Biomarcadores
14.
Neurobiol Dis ; 180: 106065, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36907521

RESUMO

Interictal activity and seizures are the hallmarks of focal epileptic disorders (which include mesial temporal lobe epilepsy, MTLE) in humans and in animal models. Interictal activity, which is recorded with cortical and intracerebral EEG recordings, comprises spikes, sharp waves and high-frequency oscillations, and has been used in clinical practice to identify the epileptic zone. However, its relation with seizures remains debated. Moreover, it is unclear whether specific EEG changes in interictal activity occur during the time preceding the appearance of spontaneous seizures. This period, which is termed "latent", has been studied in rodent models of MTLE in which spontaneous seizures start to occur following an initial insult (most often a status epilepticus induced by convulsive drugs such as kainic acid or pilocarpine) and may mirror epileptogenesis, i.e., the process leading the brain to develop an enduring predisposition to seizure generation. Here, we will address this topic by reviewing experimental studies performed in MTLE models. Specifically, we will review data highlighting the dynamic changes in interictal spiking activity and high-frequency oscillations occurring during the latent period, and how optogenetic stimulation of specific cell populations can modulate them in the pilocarpine model. These findings indicate that interictal activity: (i) is heterogeneous in its EEG patterns and thus, presumably, in its underlying neuronal mechanisms; and (ii) can pinpoint to the epileptogenic processes occurring in focal epileptic disorders in animal models and, perhaps, in epileptic patients.


Assuntos
Epilepsias Parciais , Epilepsia do Lobo Temporal , Epilepsia , Animais , Humanos , Epilepsia do Lobo Temporal/induzido quimicamente , Pilocarpina/toxicidade , Convulsões/induzido quimicamente , Eletroencefalografia
15.
Epilepsia ; 64(6): 1541-1553, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36928628

RESUMO

OBJECTIVE: We aim to determine whether automatically detected ripple rate (ADRR) of 10-min scalp electroencephalography (EEG) during slow-wave sleep can be a useful tool for rapid epilepsy differentiation and seizure activity assessment, and we analyze the clinical factors that may affect the scalp ripple rates. METHODS: We retrospectively included 336 patients who underwent long-term video-EEG with a sampling rate ≥1000 Hz, and three groups were established based on their final clinical diagnosis (non-epilepsy; non-active epilepsy [epilepsy being seizure-free for at least 1 year]; and active epilepsy [epilepsy with one or more seizures in the past year]). ADRRs between groups were compared and diagnostic thresholds set according to the maximum of Youden index with the receiver-operating characteristic curve. RESULTS: The 336 patients comprised 49 non-epilepsy and 287 epilepsy patients (95 non-active epilepsy and 192 active epilepsy). The median ADRR of the epilepsy group was significantly greater than in the non-epilepsy group, with a diagnostic threshold of 4.25 /min (specificity 89.8%, sensitivity 47.74%, p<.001). Following stratification by age, the area under the curve was greatest in the 0-20 year subgroup, threshold 4.10 /min (specificity 100%, sensitivity 52.47%, p<.001). Regarding distinguishing active epilepsy from non-active epilepsy patients, the area under the curve was also greatest in patients 0-20 years of age, threshold 13.05/min (specificity 98.36%, sensitivity 35.64%, p<.001). Following stratification by epilepsy type, the diagnostic efficiency was best in children with developmental and epileptic encephalopathies/epileptic encephalopathies (DEEs/EEs) (threshold 5.20/min, specificity 100%, sensitivity 100%) and self-limited focal epilepsies (SeLFEs) (threshold 5.45/min, specificity 80%, sensitivity 100%). Multivariate analysis revealed that the influential factors of ADRRs were age, depth of epileptogenic lesion, and seizure frequency. SIGNIFICANCE: ADRR of scalp EEG can be a rapid and specific method to differentiate epilepsy and evaluate seizure activity. This method is especially suitable for young patients.


Assuntos
Epilepsia , Couro Cabeludo , Criança , Humanos , Estudos Retrospectivos , Epilepsia/diagnóstico , Convulsões/diagnóstico , Eletroencefalografia/métodos
16.
Epilepsia ; 64(3): 667-677, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36510851

RESUMO

OBJECTIVE: This study aimed to investigate the quantitative relationship between interictal 18 F-fluorodeoxyglucose-positron emission tomography (FDG-PET) and interictal high-frequency oscillations (HFOs) from stereo-electroencephalography (SEEG) recordings in patients with refractory epilepsy. METHODS: We retrospectively included 32 patients. FDG-PET data were quantified through statistical parametric mapping (SPM) t test modeling with normal controls. Interictal SEEG segments with four, 10-min segments were selected randomly. HFO detection and classification procedures were automatically performed. Channel-based HFOs separating ripple (80-250 Hz) and fast ripple (FR; 250-500 Hz) counts were correlated with the surrounding metabolism T score at the individual and group level, respectively. The association was further validated across anatomic seizure origins and sleep vs wake states. We built a joint feature FR × T reflecting the FR and hypometabolism concordance to predict surgical outcomes in 28 patients who underwent surgery. RESULTS: We found a negative correlation between interictal FDG-PET and HFOs through the linear mixed-effects model (R2  = .346 and .457 for ripples and FRs, respectively, p < .001); these correlations were generalizable to different epileptogenic-zone lobar localizations and vigilance states. The FR × T inside the resection volume could be used as a predictor for surgical outcomes with an area under the curve of 0.81. SIGNIFICANCE: The degree of hypometabolism is associated with HFO generation rate, especially for FRs. This relationship would be meaningful for selection of SEEG candidates and for optimizing SEEG scheme planning. The concordance between FRs and hypometabolism inside the resection volume could provide prognostic information regarding surgical outcome.


Assuntos
Eletroencefalografia , Fluordesoxiglucose F18 , Humanos , Estudos Retrospectivos , Eletroencefalografia/métodos , Tomografia por Emissão de Pósitrons , Resultado do Tratamento
17.
Epilepsia ; 64(2): 348-363, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36527426

RESUMO

OBJECTIVE: Favorable seizure outcome is reported following resection of bottom-of-sulcus dysplasia (BOSD). We assessed the distribution of epileptogenicity and dysplasia in and around BOSD to better understand this clinical outcome and the optimal surgical approach. METHODS: We studied 27 children and adolescents with magnetic resonance imaging (MRI)-positive BOSD who underwent epilepsy surgery; 85% became seizure-free postresection (median = 5.0 years follow-up). All patients had resection of the dysplastic sulcus, and 11 had additional resection of the gyral crown (GC) or adjacent gyri (AG). Markers of epileptogenicity were relative cortical hypometabolism on preoperative 18 F-fluorodeoxyglucose (FDG) positron emission tomography (PET), and spiking, ripples, fast ripples, spike-high-frequency oscillation cross-rate, and phase amplitude coupling (PAC) on preresection and postresection electrocorticography (ECoG), all analyzed at the bottom-of-sulcus (BOS), top-of-sulcus (TOS), GC, and AG. Markers of dysplasia were increased cortical thickness on preoperative MRI, and dysmorphic neuron density and variant allele frequency of somatic MTOR mutations in resected tissue, analyzed at similar locations. RESULTS: Relative cortical metabolism was significantly reduced and ECoG markers were significantly increased at the BOS compared to other regions. Apart from spiking and PAC, which were greater at the TOS compared to the GC, there were no significant differences in PET and other ECoG markers between the TOS, GC, and AG, suggesting a cutoff of epileptogenicity at the TOS rather than a tapering gradient on the cortical surface. MRI and tissue markers of dysplasia were all maximal in the BOS, reduced in the TOS, and mostly absent in the GC. Spiking and PAC reduced significantly over the GC after resection of the dysplastic sulcus. SIGNIFICANCE: These findings support the concept that dysplasia and intrinsic epileptogenicity are mostly limited to the dysplastic sulcus in BOSD and support resection or ablation confined to the MRI-visible lesion as a first-line surgical approach. 18 F-FDG PET and ECoG abnormalities in surrounding cortex seem to be secondary phenomena.


Assuntos
Epilepsia , Displasia Cortical Focal , Criança , Adolescente , Humanos , Eletroencefalografia , Fluordesoxiglucose F18 , Epilepsia/diagnóstico por imagem , Epilepsia/etiologia , Epilepsia/cirurgia , Imageamento por Ressonância Magnética/métodos
18.
Epilepsia ; 64 Suppl 3: S25-S36, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36897228

RESUMO

Electroencephalography (EEG) has been the primary diagnostic tool in clinical epilepsy for nearly a century. Its review is performed using qualitative clinical methods that have changed little over time. However, the intersection of higher resolution digital EEG and analytical tools developed in the past decade invites a re-exploration of relevant methodology. In addition to the established spatial and temporal markers of spikes and high-frequency oscillations, novel markers involving advanced postprocessing and active probing of the interictal EEG are gaining ground. This review provides an overview of the EEG-based passive and active markers of cortical excitability in epilepsy and of the techniques developed to facilitate their identification. Several different emerging tools are discussed in the context of specific EEG applications and the barriers we must overcome to translate these tools into clinical practice.


Assuntos
Excitabilidade Cortical , Epilepsia , Humanos , Epilepsia/diagnóstico , Eletroencefalografia/métodos
19.
Epilepsia ; 64(11): 3049-3060, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37592755

RESUMO

OBJECTIVE: Focal cortical dysplasia (FCD), hippocampal sclerosis (HS), nonspecific gliosis (NG), and normal tissue (NT) comprise the majority of histopathological results of surgically treated drug-resistant epilepsy patients. Epileptic spikes, high-frequency oscillations (HFOs), and connectivity measures are valuable biomarkers of epileptogenicity. The question remains whether they could also be utilized for preresective differentiation of the underlying brain pathology. This study explored spikes and HFOs together with functional connectivity in various epileptogenic pathologies. METHODS: Interictal awake stereoelectroencephalographic recordings of 33 patients with focal drug-resistant epilepsy with seizure-free postoperative outcomes were analyzed (15 FCD, 8 HS, 6 NT, and 4 NG). Interictal spikes and HFOs were automatically identified in the channels contained in the overlap of seizure onset zone and resected tissue. Functional connectivity measures (relative entropy, linear correlation, cross-correlation, and phase consistency) were computed for neighboring electrode pairs. RESULTS: Statistically significant differences were found between the individual pathologies in HFO rates, spikes, and their characteristics, together with functional connectivity measures, with the highest values in the case of HS and NG/NT. A model to predict brain pathology based on all interictal measures achieved up to 84.0% prediction accuracy. SIGNIFICANCE: The electrophysiological profile of the various epileptogenic lesions in epilepsy surgery patients was analyzed. Based on this profile, a predictive model was developed. This model offers excellent potential to identify the nature of the underlying lesion prior to resection. If validated, this model may be particularly valuable for counseling patients, as depending on the lesion type, different outcomes are achieved after epilepsy surgery.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Eletroencefalografia/métodos , Epilepsia/diagnóstico , Epilepsia/cirurgia , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Técnicas Estereotáxicas , Encéfalo/diagnóstico por imagem , Encéfalo/cirurgia
20.
Epilepsia ; 64(7): 1910-1924, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37150937

RESUMO

OBJECTIVE: Effective surgical treatment of drug-resistant epilepsy depends on accurate localization of the epileptogenic zone (EZ). High-frequency oscillations (HFOs) are potential biomarkers of the EZ. Previous research has shown that HFOs often occur within submillimeter areas of brain tissue and that the coarse spatial sampling of clinical intracranial electrode arrays may limit the accurate capture of HFO activity. In this study, we sought to characterize microscale HFO activity captured on thin, flexible microelectrocorticographic (µECoG) arrays, which provide high spatial resolution over large cortical surface areas. METHODS: We used novel liquid crystal polymer thin-film µECoG arrays (.76-1.72-mm intercontact spacing) to capture HFOs in eight intraoperative recordings from seven patients with epilepsy. We identified ripple (80-250 Hz) and fast ripple (250-600 Hz) HFOs using a common energy thresholding detection algorithm along with two stages of artifact rejection. We visualized microscale subregions of HFO activity using spatial maps of HFO rate, signal-to-noise ratio, and mean peak frequency. We quantified the spatial extent of HFO events by measuring covariance between detected HFOs and surrounding activity. We also compared HFO detection rates on microcontacts to simulated macrocontacts by spatially averaging data. RESULTS: We found visually delineable subregions of elevated HFO activity within each µECoG recording. Forty-seven percent of HFOs occurred on single 200-µm-diameter recording contacts, with minimal high-frequency activity on surrounding contacts. Other HFO events occurred across multiple contacts simultaneously, with covarying activity most often limited to a .95-mm radius. Through spatial averaging, we estimated that macrocontacts with 2-3-mm diameter would only capture 44% of the HFOs detected in our µECoG recordings. SIGNIFICANCE: These results demonstrate that thin-film microcontact surface arrays with both highresolution and large coverage accurately capture microscale HFO activity and may improve the utility of HFOs to localize the EZ for treatment of drug-resistant epilepsy.


Assuntos
Ondas Encefálicas , Epilepsia Resistente a Medicamentos , Epilepsia , Humanos , Eletroencefalografia/métodos , Epilepsia/cirurgia , Epilepsia/diagnóstico , Encéfalo , Epilepsia Resistente a Medicamentos/diagnóstico , Epilepsia Resistente a Medicamentos/cirurgia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa