Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 152
Filtrar
1.
Am J Physiol Endocrinol Metab ; 326(5): E663-E672, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38568150

RESUMO

Despite the fact that genes and the environment are known to play a central role in islet function, our knowledge of how these parameters interact to modulate insulin secretory function remains relatively poor. Presently, we performed ex vivo glucose-stimulated insulin secretion and insulin content assays in islets of 213 mice from 13 inbred mouse strains on chow, Western diet (WD), and a high-fat, carbohydrate-free (KETO) diet. Strikingly, among these 13 strains, islets from the commonly used C57BL/6J mouse strain were the least glucose responsive. Using matched metabolic phenotyping data, we performed correlation analyses of isolated islet parameters and found a positive correlation between basal and glucose-stimulated insulin secretion, but no relationship between insulin secretion and insulin content. Using in vivo metabolic measures, we found that glucose tolerance determines the relationship between ex vivo islet insulin secretion and plasma insulin levels. Finally, we showed that islet glucose-stimulated insulin secretion decreased with KETO in almost all strains, concomitant with broader phenotypic changes, such as increased adiposity and glucose intolerance. This is an important finding as it should caution against the application of KETO diet for beta-cell health. Together these data offer key insights into the intersection of diet and genetic background on islet function and whole body glucose metabolism.NEW & NOTEWORTHY Thirteen strains of mice on chow, Western diet, and high-fat, carbohydrate-free (KETO), correlating whole body phenotypes to ex vivo pancreatic islet functional measurements, were used. The study finds a huge spectrum of functional islet responses and insulin phenotypes across all strains and diets, with the ubiquitous C57Bl/6J mouse exhibiting the lowest secretory response of all strains, highlighting the overall importance of considering genetic background when investigating islet function. Ex vivo basal and stimulated insulin secretion are correlated in the islet, and KETO imparts widescale downregulation of islet insulin secretion.


Assuntos
Dieta Hiperlipídica , Secreção de Insulina , Insulina , Ilhotas Pancreáticas , Camundongos Endogâmicos C57BL , Animais , Camundongos , Ilhotas Pancreáticas/metabolismo , Secreção de Insulina/fisiologia , Insulina/metabolismo , Insulina/sangue , Masculino , Dieta Ocidental , Glucose/metabolismo , Dieta com Restrição de Carboidratos , Camundongos Endogâmicos , Glicemia/metabolismo , Intolerância à Glucose/metabolismo , Intolerância à Glucose/genética
2.
Am J Physiol Gastrointest Liver Physiol ; 324(3): G232-G243, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36625475

RESUMO

Nonalcoholic fatty liver disease (NAFLD), the most prevalent chronic liver disease, is characterized by substantial variations in case-level severity. In this study, we used a genetically diverse Collaborative Cross (CC) mouse population model to analyze the global transcriptome and clarify the molecular mechanisms involved in hepatic fat accumulation that determine the level and severity of NAFLD. Twenty-four strains of male CC mice were maintained on a high-fat/high-sucrose (HF/HS) diet for 12 wk, and their hepatic gene expression profiles were determined by next-generation RNA sequencing. We found that the development of the nonalcoholic fatty liver (NAFL) phenotype in CC mice coincided with significant changes in the expression of hepatic genes at the population level, evidenced by the presence of 724 differentially expressed genes involved in lipid and carbohydrate metabolism, cell morphology, vitamin and mineral metabolism, energy production, and DNA replication, recombination, and repair. Importantly, expression of 68 of these genes strongly correlated with the extent of hepatic lipid accumulation in the overall population of HF/HS diet-fed male CC mice. Results of partial least squares (PLS) modeling showed that these derived hepatic gene expression signatures help to identify the individual mouse strains that are highly susceptible to the development of NAFLD induced by an HF/HS diet. These findings imply that gene expression profiling, combined with a PLS modeling approach, may be a useful tool to predict NAFLD severity in genetically diverse patient populations.NEW & NOTEWORTHY Feeding male Collaborative Cross mice an obesogenic diet allows modeling NAFLD at the population level. The development of NAFLD coincided with significant hepatic transcriptomic changes in this model. Genes (724) were differentially expressed and expression of 68 genes strongly correlated with the extent of hepatic lipid accumulation. Partial least squares modeling showed that derived hepatic gene expression signatures may help to identify individual mouse strains that are highly susceptible to the development of NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Masculino , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/metabolismo , Transcriptoma , Camundongos de Cruzamento Colaborativo/genética , Sacarose/metabolismo , Fígado/metabolismo , Dieta Hiperlipídica , Lipídeos , Camundongos Endogâmicos C57BL , Metabolismo dos Lipídeos
3.
Biochem Biophys Res Commun ; 682: 207-215, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37826944

RESUMO

BACKGROUND AND AIMS: Cardiovascular disease (CVD) is known to be linked with metabolic associated fatty liver disease and type 2 diabetes, but few studies assessed this relationship in prediabetes, especially among women, who are at greater risk of CVD. We aimed to evaluate cardiac alterations and its relationship with hepatic lipid metabolism in prediabetic female rats submitted to high-fat-high-sucrose diet (HFS). METHODS AND RESULTS: Wistar female rats were divided into 2 groups fed for 5 months with standard or HFS diet. We analyzed cardiac morphology, function, perfusion and fibrosis by Magnetic Resonance Imaging. Hepatic lipid contents along with inflammation and lipid metabolism gene expression were assessed. Five months of HFS diet induced glucose intolerance (p < 0.05), cardiac remodeling characterized by increased left-ventricular volume, wall thickness and mass (p < 0.05). No significant differences were found in left-ventricular ejection fraction and cardiac fibrosis but increased myocardial perfusion (p < 0.01) and reduced cardiac index (p < 0.05) were shown. HFS diet induced hepatic lipid accumulation with increased total lipid mass (p < 0.001) and triglyceride contents (p < 0.05), but also increased mitochondrial (CPT1a, MCAD; (p < 0.001; p < 0.05) and peroxisomal (ACO, LCAD; (p < 0.05; p < 0.001) ß-oxidation gene expression. Myocardial wall thickness and perfusion were correlated with hepatic ß-oxidation genes expression. Furthermore, myocardial perfusion was also correlated with hepatic lipid content and glucose intolerance. CONCLUSION: This study brings new insights on the relationship between cardiac sub-clinical alterations and hepatic metabolism in female prediabetic rats. Further studies are warranted to explore its involvement in the higher CVD risk observed among prediabetic women.


Assuntos
Doenças Cardiovasculares , Diabetes Mellitus Tipo 2 , Intolerância à Glucose , Estado Pré-Diabético , Humanos , Ratos , Feminino , Animais , Estado Pré-Diabético/metabolismo , Sacarose/efeitos adversos , Sacarose/metabolismo , Metabolismo dos Lipídeos , Intolerância à Glucose/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Remodelação Ventricular , Volume Sistólico , Ratos Wistar , Função Ventricular Esquerda , Fígado/metabolismo , Fibrose , Perfusão , Doenças Cardiovasculares/metabolismo , Lipídeos , Dieta Hiperlipídica/efeitos adversos
4.
Biol Pharm Bull ; 46(12): 1683-1691, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37779053

RESUMO

Dyslipidemia is a lifestyle-related (physical inactivity or obesity) disease; therefore, dietary foods that can easily be consumed in daily life is important to prevent dyslipidemia. Ergosterol, a precursor of vitamin D2, is a fungal sterol present in the membranes of edible mushrooms and other fungi. Ergosterol is converted to brassicasterol by 7-dehydrocholesterol reductase (DHCR7), a cholesterol biosynthesis enzyme that converts 7-dehydrocholesterol (a precursor of vitamin D3) into cholesterol. Previously, we reported that ergosterol increases 7-dehydrocholesterol, decreases cholesterol levels by competitive effect of DHCR7, and reduces DHCR7 mRNA and protein levels in human HepG2 hepatoma cells. Here, we investigated the effects of long-term high ergosterol intake on the cholesterol, vitamin D2, and D3 biosynthetic pathways of rats fed a high-fat and high-sucrose (HFHS) diet using GC-MS and LC with tandem mass spectrometry. In HFHS rats, oral ergosterol administration for 14 weeks significantly decreased plasma low-density lipoprotein cholesterol, total bile acid, and cholesterol precursor (squalene and desmosterol) levels and increased 7-dehydrocholesterol levels compared to HFHS rats without ergosterol. Ergosterol, brassicasterol, and vitamin D2 were detected, cholesterol levels were slightly decreased, and levels of vitamin D3 and its metabolites were slightly increased in rats fed HFHS with ergosterol. These results showed that ergosterol increased vitamin D2 levels, inhibited the cholesterol biosynthetic pathway, and possibly promoted vitamin D3 biosynthesis in vivo. Therefore, daily ergosterol intake may aid in the prevention of dyslipidemia.


Assuntos
Dislipidemias , Vitamina D , Ratos , Humanos , Animais , Ergosterol/farmacologia , Vias Biossintéticas , Sacarose , Vitaminas/farmacologia , Colesterol/metabolismo , Colecalciferol , Dieta , Dieta Hiperlipídica/efeitos adversos
5.
J Clin Biochem Nutr ; 73(3): 205-213, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37970552

RESUMO

Obesity increases the risk of arterial hypertension in young adults and favors an early-onset cardiomyopathy by generating oxidative stress. In this sense, indiscriminate consumption of sucrose and fructose sweetened beverages from early ages causes obesity, however its consequences on the heart when there is a genetic predisposition to develop hypertension are not clear. We compared the effects of sucrose, fructose, and their combination in weanling male spontaneously hypertensive rats to determine the relationship between genetic hypertension, obesity, and consumption of these sugars on the degree of cardiac hypertrophy, oxidative stress and Ca2+/calmodulin dependent protein kinase II delta oxidation. Histological, biochemical, and Western blot studies were performed 12 weeks after treatment initiation. We found that chronic consumption of sucrose or fructose leads to obesity, exacerbates genetic arterial hypertension-induced metabolic alterations, and increases cardiac oxidative stress, Ca2+/calmodulin dependent protein kinase II delta oxidation and cardiac hypertrophy. Nonetheless, when sucrose and fructose are consumed together, metabolic alterations worsen and are accompanied by dilated cardiomyopathy. These data suggest that sucrose and fructose combined consumption starting from maternal weaning in rats with genetic predisposition to arterial hypertension accelerates the progression of cardiomyopathy resulting in an early dilated cardiomyopathy.

6.
Mol Cell Biochem ; 477(4): 1309-1320, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35138512

RESUMO

The prevalence of the metabolic syndrome (MetS) and its cardiac comorbidities as cardiac hypertrophy (CH) have increased considerably due to the high consumption of carbohydrates, such as sucrose and/or fructose. We compared the effects of sucrose (S), fructose (F) and their combination (S + F) on the development of MetS in weaned male Wistar rats and established the relationship between the consumption of these sugars and the degree of cardiac CH development, oxidative stress (OS) and Calcium/calmodulin-dependent protein kinase type II subunit delta oxidation (ox-CaMKIIδ). 12 weeks after the beginning of treatments with S, F or S + F, arterial pressure was measured and 8 weeks later (to complete 20 weeks) the animals were sacrificed and blood samples, visceral adipose tissue and hearts were obtained. Biochemical parameters were determined in serum and cardiac tissue to evaluate the development of MetS and OS. To evaluate CH, atrial natriuretic peptide (ANP), CaMKIIδ and ox-CaMKIIδ were determined by western blot and histological studies were performed in cardiac tissue. Our data showed that chronic consumption of S + F exacerbates MetS-induced CH which is related with a higher OS and ox-CaMKIIδ.


Assuntos
Proteína Quinase Tipo 2 Dependente de Cálcio-Calmodulina/metabolismo , Cardiomegalia/enzimologia , Carboidratos da Dieta/efeitos adversos , Frutose/efeitos adversos , Síndrome Metabólica/enzimologia , Miocárdio/enzimologia , Estresse Oxidativo/efeitos dos fármacos , Sacarose/efeitos adversos , Animais , Carboidratos da Dieta/farmacologia , Frutose/farmacologia , Masculino , Oxirredução/efeitos dos fármacos , Ratos , Ratos Wistar , Sacarose/farmacologia
7.
Mol Biol Rep ; 49(8): 7417-7424, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35705770

RESUMO

BACKGROUND: In recent years, nonalcoholic fatty liver disease (NAFLD) has reached epidemic proportions. Characteristic findings in NAFLD patients are elevated iron stores, as iron plays an important role in the pathophysiology of chronic liver disease. The current study was aimed at investigating the possible protective effects of N. sativa seeds and P. ovata husks on the regulation of iron homeostasis in NAFLD. METHODS: Two age groups of Wistar rats (four weeks and twelve weeks old), further subdivided into four groups were fed on high fat/high sucrose (HF/SF) diet for sixteen weeks to induce NAFLD and randomized into three groups (HF/SF diet control (Group I), HF/SF diet with N. sativa seeds (Group II) and HF/SF diet with P. ovata husks (Group III) and normal diet, serving as negative control (Group 0). At the end of the experiment, histochemical analysis of hepatic sections, biochemical evaluates of the blood, and gene expression analysis were conducted. RESULTS: The results revealed that both N. sativa seeds and P. ovata husks possess the capacity to maintain iron homeostasis by regulating the level of blood hemoglobin, serum iron contents, expression of key genes involved in iron metabolism, and iron deposition in hepatic sections. While N. sativa seeds proved more effective. CONCLUSIONS: N. sativa seeds are a more potent iron regulator compared to P. ovata husks at reducing the iron overburden associated with NAFLD.


Assuntos
Hepatopatia Gordurosa não Alcoólica , Animais , Dieta Hiperlipídica/efeitos adversos , Homeostase , Ferro/metabolismo , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Ratos , Ratos Wistar , Sementes , Sacarose/metabolismo
8.
J Sci Food Agric ; 102(11): 4802-4812, 2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35229291

RESUMO

BACKGROUND: Prebiotics, such as algal polysaccharides, can be used to manage metabolic diseases by modulating gut microbiota. However, the effect of Pyropia yezoensis porphyran (PYP), a red algal polysaccharide, on gut microbiota has not been reported. Thus, the objective of this study was to determine effects of PYP on metabolic disorders caused by high sucrose (HS) and underlying mechanisms involved in such effects. RESULTS: Biochemical analysis demonstrated that an HS diet increased triglyceride and circulating sugar contents (metabolic abnormalities) in Drosophila larvae. It also increased the relative abundance of harmful microbiota within the larvae as identified by 16S ribosomal DNA analysis. PYP supplementation at 25 and 50 g kg-1 equivalently reduced metabolic abnormalities in the HS group. Therefore, 25 g kg-1 PYP was selected to investigate its effects on the metabolic pathway and gut microbiota of larvae in the HS group. The activity of PYP in ameliorating metabolic abnormalities by reverse transcription quantitative real-time polymerase chain reaction analysis was consistent with the expression trend of key factors involved in metabolism regulation. PYP reduced the relative abundance of bacteria causing metabolic abnormalities, such as Escherichia-Shigella and Fusobacterium, but increased the relative abundance of beneficial bacteria such as Bacillus and Akkermansia. However, PYP had no effect on triglyceride and circulating sugar contents in HS-fed larvae treated with a mixture of antibiotics designed to remove gut microbiota. CONCLUSION: PYP exhibits anti-metabolic disorder activity by modulating gut microbiota, thereby supporting the development of PYP as a functional prebiotic derived from red algae food. Copyright © 2022 John Wiley & Sons, Ltd. © 2022 Society of Chemical Industry.


Assuntos
Microbioma Gastrointestinal , Doenças Metabólicas , Rodófitas , Animais , Dieta Hiperlipídica , Drosophila melanogaster/genética , Doenças Metabólicas/tratamento farmacológico , Camundongos , Camundongos Endogâmicos C57BL , Polissacarídeos/farmacologia , Prebióticos , Sefarose/análogos & derivados , Sacarose , Triglicerídeos
9.
Biochemistry (Mosc) ; 86(5): 525-532, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33993857

RESUMO

Fatty acids (FAs) present in the adipose tissue (AT) can be modified by elongases and desaturases. These enzymes are regulated by different factors including nutrients. The aim of the study was to evaluate the impact of high-sucrose diet (HSD; 68% sucrose) on the levels of mRNAs for elongases (Elovl2, Elovl5, Elovl6) and desaturases (Fads1, Fads2, Scd) and on the activity of the corresponding proteins in the rat AT. Male Wistar rats were randomized into two study groups: fed with an HSD and with a standard diet (ST). The mRNA levels were determined by a semi-quantitative reverse transcription-PCR. FA composition was analyzed by gas chromatography, and FA ratios were used to estimate the activity of the enzymes. In the HSD rats, the levels of Elovl5, Elovl6, Fads1, and Scd mRNAs were higher, while the level of Fads2 mRNA was lower than in the ST group. Higher levels of Elovl5 and Elovl6 mRNAs corresponded to higher relative activities of these enzymes, while downregulation of the Fads2 mRNA was associated with the lower activity of this desaturase. In contrast, an increase in the level of Scd mRNA was accompanied by a decrease in the enzyme activity. Less monounsaturated FAs were detected in the AT of HSD rats than in the ST group. The composition of individual FAs differed between the groups. This study supports the notion that the regulation of mRNA levels and activity of both elongases and desaturases play an important role in managing the AT lipid composition in response to changes in the dietary status.


Assuntos
Tecido Adiposo/enzimologia , Sacarose Alimentar/farmacologia , Ácidos Graxos Dessaturases/genética , Elongases de Ácidos Graxos/genética , Ácidos Graxos/metabolismo , Tecido Adiposo/metabolismo , Animais , Dieta , Sacarose Alimentar/metabolismo , Ácidos Graxos Dessaturases/metabolismo , Elongases de Ácidos Graxos/metabolismo , Ácidos Graxos/análise , Regulação da Expressão Gênica , Masculino , RNA Mensageiro , Ratos , Ratos Wistar
10.
J Biol Chem ; 294(42): 15206-15217, 2019 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-31481463

RESUMO

Metabolic syndrome has become a global health challenge and was recently reported to be positively correlated with increased sucrose consumption. Mechanistic analyses of excess sucrose-induced progression of metabolic syndrome have been focused mainly on abnormal hepatic lipogenesis, and the exact contribution of excess sucrose to metabolic disorders remains controversial. Considering that carbohydrate and lipid metabolisms exhibit clear circadian rhythms, here we investigated the possible contribution of diurnal oscillations to responses of hepatic lipid metabolism to excess sucrose. We found that excess sucrose dose-dependently promotes fatty liver and hyperlipidemia in in rats fed a high-sucrose diet (HSD). We observed that excess sucrose enhances the oscillation amplitudes of the expression of clock genes along with the levels of hepatic lipid and carbohydrate metabolism-related mRNAs that increase lipogenesis. We did not observe similar changes in the levels of the transcription factors regulating the expression of these genes. This suggested that the excess sucrose-induced, circadian rhythm-dependent amplification of lipogenesis is post-transcriptionally regulated via the stability of metabolic gene transcripts. Of note, our findings also provide evidence that fructose causes some of the HSD-induced, circadian rhythm-dependent alterations in lipogenic gene expression. Our discovery of HSD-induced circadian rhythm-dependent alterations in lipogenesis at the post-transcriptional level may inform future studies investigating the complex relationships among sucrose uptake, circadian rhythm, and metabolic enzyme expression. Our findings could contribute to the design of chrono-nutritional interventions to prevent or manage the development of fatty liver and hyperlipidemia in sucrose-induced metabolic syndrome.


Assuntos
Ritmo Circadiano , Sacarose Alimentar/efeitos adversos , Fígado Gorduroso/genética , Fígado/fisiopatologia , Síndrome Metabólica/genética , Animais , Sacarose Alimentar/metabolismo , Fígado Gorduroso/etiologia , Fígado Gorduroso/metabolismo , Fígado Gorduroso/fisiopatologia , Humanos , Lipogênese , Fígado/metabolismo , Masculino , Síndrome Metabólica/etiologia , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Ratos , Ratos Wistar
11.
Biol Reprod ; 102(1): 63-75, 2020 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-31436293

RESUMO

Prepregnancy obesity associates with adverse reproductive outcomes that impact maternal and fetal health. While obesity-driven mechanisms underlying adverse pregnancy outcomes remain unclear, local uterine immune cells are strong but poorly studied candidates. Uterine immune cells, particularly uterine natural killer cells (uNKs), play central roles in orchestrating developmental events in pregnancy. However, the effect of obesity on uNK biology is poorly understood. Using an obesogenic high-fat/high-sugar diet (HFD) mouse model, we set out to examine the effects of maternal obesity on uNK composition and establishment of the maternal-fetal interface. HFD exposure resulted in weight gain-dependent increases in systemic inflammation and rates of fetal resorption. While HFD did not affect total uNK frequencies, HFD exposure did lead to an increase in natural cytotoxicity receptor-1 expressing uNKs as well as overall uNK activity. Importantly, HFD-associated changes in uNK coincided with impairments in uterine artery remodeling in mid but not late pregnancy. Comparison of uNK mRNA transcripts from control and HFD mice identified HFD-directed changes in genes that play roles in promoting activity/cytotoxicity and vascular biology. Together, this work provides new insight into how obesity may impact uNK processes central to the establishment of the maternal-fetal interface in early and mid pregnancy. Moreover, these findings shed light on the cellular processes affected by maternal obesity that may relate to overall pregnancy health.


Assuntos
Dieta Hiperlipídica , Células Matadoras Naturais/imunologia , Útero/imunologia , Remodelação Vascular/fisiologia , Animais , Feminino , Inflamação/imunologia , Inflamação/metabolismo , Células Matadoras Naturais/metabolismo , Camundongos , Receptor 1 Desencadeador da Citotoxicidade Natural/metabolismo , Fator de Necrose Tumoral alfa/sangue , Útero/irrigação sanguínea , Útero/metabolismo
12.
Appetite ; 145: 104499, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31669578

RESUMO

Sugar-sweetened beverages are the major source of added calories in the Western diet and their prevalence is associated with obesity and metabolic disruption. Despite the critical role of the taste system in determining food selection and consumption, the effects of chronic sucrose consumption on the peripheral taste system in mammals have received limited attention. We offered female Sprague Dawley rats free access to water and one of three diets for up to 40 days: (1) sucrose-free chow or "NS" diet; (2) a high-sucrose dry diet or "HS"; or (3) 30% sucrose solution and the NS diet, designated "LiqS" diet. Sucrose consumption by LiqS rats gradually increased and by day 14 was equal to that of HS rats. Food intake decreased in LiqS rats, but their energy intake remained higher than for NS or HS rats. There was no significant difference in weight gain of the groups during the study. Recordings from the chorda tympani nerve (CT), which innervates taste buds on the anterior tongue, revealed decreased responses to 1 M sucrose in both LiqS and HS rats and to acesulfame K and salt tastants in LiqS rats after 40 days on diet. Umami, bitter, and acid response magnitudes were unchanged in both groups. These results demonstrate that chronic sucrose exposure inhibits taste responses to higher concentrations of sweet stimuli. More surprisingly, CT responses to NaCl and 0.5M NaAc were significantly reduced in rats on the LiqS diet. Thus, the physical form of the diet influences taste responsiveness to salt and sweet taste function. These data suggest that taste buds are previously unappreciated targets of chronic sucrose consumption.


Assuntos
Sacarose Alimentar/administração & dosagem , Paladar/efeitos dos fármacos , Animais , Nervo da Corda do Tímpano/efeitos dos fármacos , Nervo da Corda do Tímpano/fisiologia , Fenômenos Eletrofisiológicos , Ingestão de Energia , Feminino , Preferências Alimentares/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Soluções , Paladar/genética , Papilas Gustativas/efeitos dos fármacos , Papilas Gustativas/fisiologia , Aumento de Peso/efeitos dos fármacos
13.
Am J Physiol Endocrinol Metab ; 316(4): E674-E686, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30860882

RESUMO

Studies show maternal obesity is a risk factor for metabolic syndrome and nonalcoholic fatty liver disease (NAFLD) in offspring. Here we evaluated potential mechanisms underlying these phenotypes. Female C57Bl6 mice were fed chow or an obesogenic high-fat/high-sucrose (HF/HS) diet with subsequent mating of F1 and F2 female offspring to lean males to develop F2 and F3 generations, respectively. Offspring were fed chow or fibrogenic (high transfat, cholesterol, fructose) diets, and histopathological, metabolic changes, and bile acid (BA) homeostasis was evaluated. Chow-fed F1 offspring from maternal HF/HS lineages (HF/HS) developed periportal fibrosis and inflammation with aging, without differences in hepatic steatosis but increased BA pool size and shifts in BA composition. F1, but not F2 or F3, offspring from HF/HS showed increased steatosis on a fibrogenic diet, yet inflammation and fibrosis were paradoxically decreased in F1 offspring, a trend continued in F2 and F3 offspring. HF/HS feeding leads to increased periportal fibrosis and inflammation in chow-fed offspring without increased hepatic steatosis. By contrast, fibrogenic diet-fed F1 offspring from HF/HS dams exhibited worse hepatic steatosis but decreased inflammation and fibrosis. These findings highlight complex adaptations in NAFLD phenotypes with maternal diet.


Assuntos
Ácidos e Sais Biliares/metabolismo , Colesterol/metabolismo , Dieta , Fígado/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Efeitos Tardios da Exposição Pré-Natal/metabolismo , Triglicerídeos/metabolismo , Animais , Dieta Hiperlipídica , Gorduras na Dieta , Sacarose Alimentar , Feminino , Fibrose , Frutose , Homeostase , Inflamação , Fígado/patologia , Masculino , Síndrome Metabólica , Camundongos , Camundongos Endogâmicos C57BL , Obesidade , Gravidez , Efeitos Tardios da Exposição Pré-Natal/patologia , Ácidos Graxos trans
14.
Arch Biochem Biophys ; 665: 46-56, 2019 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-30797748

RESUMO

The purpose of this study was to investigate the effects of a high fat and a high sucrosediet in wild type and BDNF (+/-) mice on oxidative stress in epididymal and subcutaneousadipose tissues by measuring different markers of oxidative stress and antioxidant enzymes. Wild type (WT) and BDNF (+/-) male mice were divided into six groups receiving fed control diet (CD), high sucrose diet (HSD), or high fat diet (HFD) for four months. Levels of 3-nitrotyrosine (3-NT) increased in the HFD-fed BDNF (+/-) mice, while 4-hydroxynonenal (4-HNE) levels increased in the CD and HFD-fed BDNF (+/-) groups. Malondialdehyde (MDA) levels decreased in subcutaneous tissue compared to epididymal adipose tissue, independently of diet type. Superoxide dismutase (SOD) activity was reduced by HFD (p < 0.05), butglutathione peroxidase (GSH-Px) activity was increased by HSD in epididymal adipose tissuein BDNF (+/-) mice (p < 0.05). GSH-Px activities was increased by CD and HFD in subcutaneous adipose tissue of BDNF (+/-) (p < 0.05). SOD2 and GSH-Px3 expressions were only decreased by HSD in epididymal and subcutaneous adipose tissues of BDNF (+/-) mice (p < 0.05). In conclusion, reduced BDNF may increase OS in epididymal adipose tissue, but not in subcutaneous adipose tissue following HSD and HFD.


Assuntos
Tecido Adiposo/metabolismo , Fator Neurotrófico Derivado do Encéfalo/genética , Dieta Hiperlipídica , Sacarose Alimentar/administração & dosagem , Estresse Oxidativo , Animais , Biomarcadores/metabolismo , Peso Corporal , Glutationa Peroxidase/metabolismo , Masculino , Malondialdeído/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Superóxido Dismutase/metabolismo
15.
Can J Physiol Pharmacol ; 97(11): 1064-1072, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31299169

RESUMO

Metabolic syndrome (MetS) is a cluster of risk factors, including insulin resistance among others, underlying the development of diabetes and (or) cardiovascular diseases. Studies show a close relationship between cardiac dysfunction and abnormal cAMP catabolism, which contributes to pathological remodelling. Stimulating the synthesis of cAMP via suppression of phosphodiesterases (PDEs) has positive therapeutic effects. Therefore, we examined the role of PDEs on cardiac dysfunction in high-carbohydrate diet-induced MetS rats. We first demonstrated significantly high expression levels of PDE3 and PDE4, the most highly expressed subtypes, together with depressed cAMP levels in heart tissue from MetS rats. Second, we demonstrated the activity of these PDEs by using either their basal or PDE inhibitor-induced intracellular levels of cAMP and Ca2+, the transient intracellular Ca2+ changes under electrical stimulation, isometric contractions in papillary muscle strips and some key signalling proteins (such as RyR2, PLN, PP1A, and PKA) are responsible for the Ca2+ homeostasis in isolated cardiomyocytes from MetS rats. The clear recovery in decreased basal cAMP levels, increased protein expression levels of PDE3 and PDE4, and positive responses in the altered Ca2+ homeostasis to PDE inhibitors as seen in our study can provide important insights about the roles of activated PDEs in depressed contractile activity in hearts from MetS rats.


Assuntos
Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 4/metabolismo , Carboidratos da Dieta/efeitos adversos , Coração/efeitos dos fármacos , Coração/fisiopatologia , Síndrome Metabólica/induzido quimicamente , Síndrome Metabólica/fisiopatologia , Animais , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Síndrome Metabólica/enzimologia , Contração Muscular/efeitos dos fármacos , Inibidores de Fosfodiesterase/farmacologia , Ratos
16.
Mar Drugs ; 18(1)2019 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-31906027

RESUMO

Diet-induced obesity has been linked to metabolic disorders such as cardiovascular diseases andtype 2 diabetes. A factor linking diet to metabolic disorders is oxidative stress, which can damagebiomolecules, especially proteins. The present study was designed to investigate the effect of marineomega-3 polyunsaturated fatty acids (PUFAs) (eicosapentaenoic acid (EPA) and docosahexaenoic acid(DHA)) and their combination with grape seed polyphenols (GSE) on carbonyl-modified proteins fromplasma and liver in Wistar Kyoto rats fed an obesogenic diet, namely high-fat and high-sucrose (HFHS)diet. A proteomics approach consisting of fluorescein 5-thiosemicarbazide (FTSC) labelling of proteincarbonyls, visualization of FTSC-labelled protein on 1-DE or 2-DE gels, and protein identification byMS/MS was used for the protein oxidation assessment. Results showed the efficiency of the combinationof both bioactive compounds in decreasing the total protein carbonylation induced by HFHS diet in bothplasma and liver. The analysis of carbonylated protein targets, also referred to as the 'carbonylome',revealed an individual response of liver proteins to supplements and a modulatory effect on specificmetabolic pathways and processes due to, at least in part, the control exerted by the supplements on theliver protein carbonylome. This investigation highlights the additive effect of dietary fish oils and grapeseed polyphenols in modulating in vivo oxidative damage of proteins induced by the consumption ofHFHS diets.


Assuntos
Ácidos Graxos Ômega-3/farmacologia , Fígado/efeitos dos fármacos , Polifenóis/farmacologia , Proteínas/metabolismo , Animais , Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/efeitos adversos , Ácidos Docosa-Hexaenoicos/administração & dosagem , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/administração & dosagem , Ácido Eicosapentaenoico/análogos & derivados , Ácido Eicosapentaenoico/farmacologia , Ácidos Graxos Ômega-3/administração & dosagem , Fígado/metabolismo , Obesidade/fisiopatologia , Estresse Oxidativo/efeitos dos fármacos , Polifenóis/administração & dosagem , Carbonilação Proteica/efeitos dos fármacos , Proteômica , Ratos , Ratos Endogâmicos WKY , Vitis/química
17.
Vopr Pitan ; 88(6): 61-67, 2019.
Artigo em Russo | MEDLINE | ID: mdl-31860200

RESUMO

The study of mechanisms of the metabolic disorders in conditions of deficiency or excess of individual nutrients in the diet is a live issue. The influence of the simultaneous excess sucrose intake and protein deficiency in the diet on the functional state of the liver remains poorly understood. The aim of the research was to study the rate of generation of the superoxide radicals, the content of triglycerides and glycogen in the liver, as well as the activity of enzymatic markers of the liver state in rats fed diets with different protein and sucrose content. Material and methods. The studies were conducted over 28 days on 48 white non-linear rats, randomized into 4 groups: 1 - animals fed full-value semi-synthetic ration (14% protein); 2 - animals receiving low-protein ration (4.7% protein); 3 - animals receiving high-sucrose diet (40% sucrose), 4 - animals receiving low-protein high-sucrose diet. Serum sorbitol dehydrogenase activity was determined by the kinetic method in the reaction of NADH-dependent reduction of D-fructose to D-sorbitol. Serum alanine aminotransferase activity and aspartate aminotransferase was evaluated using a kit of reagents (Ukraine). Results and discussion. It was found that in rats fed low protein diet, no changes in the de Ritis coefficient were observed, while the activity of sorbitol dehydrogenase in blood serum increased 1.7 fold. However, no changes in the rate of superoxide radical formation, as well as glycogen and triglyceride level in the liver were observed. In animals fed highsugar diet, a rise in the de Ritis coefficient on the background of increased serum sorbitol dehydrogenase activity (more than 3.5 times) was revealed. At the same time, the rate of the superoxide radical formation in the liver mitochondria enhanced by 3 fold, with an increased accumulation of glycogen and triglycerides. The most pronounced changes in liver state were observed in animals fed low-protein/high-sugar diet: a marked increase in the de Ritis coefficient with a 5-fold increase in the activity of sorbitol dehydrogenase, and a 6-fold elevation in the intensity of the superoxide radical generation in liver mitochondria. The triglyceride content in the liver doubled, while the glycogen content remained at the level of control values. Conclusion. The data obtained represent disturbances of the functional liver state as a consequence of the relatively short-term excessive consumption of sucrose, especially in combination with a alimentary protein deficiency. It was found that the leading factor in the formation of destructive changes in the liver was excessive sucrose consumption, while the concomitant protein deficiency exacerbated the functional changes in hepatocytes.


Assuntos
Ração Animal , Carboidratos da Dieta/farmacologia , Proteínas Alimentares/farmacologia , Fígado/metabolismo , Mitocôndrias Hepáticas/metabolismo , Sacarose/farmacologia , Animais , Biomarcadores/metabolismo , Carboidratos da Dieta/efeitos adversos , Proteínas Alimentares/efeitos adversos , Feminino , Fígado/patologia , Masculino , Mitocôndrias Hepáticas/patologia , Ratos , Sacarose/efeitos adversos
18.
J Recept Signal Transduct Res ; 38(1): 76-82, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29369009

RESUMO

INTRODUCTION/AIMS: In recent years, it has been shown that free fatty acids receptors (FFAR) of whose function in the cell surface plays a significant role in the regulation of cell function and nutrition as well are activated by various endogenous ligands, but mainly by fatty acids. Within FFAR of our interest are GPR 41, 43 and 120. The functions of these receptors are varied and dependent on the tissue where they are. The activation and signaling of these receptors, FFAR, are involved in many physiological processes, and currently the target of many drugs in metabolic disorders like obesity, diabetes and atherosclerosis. MATERIAL AND METHODS: Obesity was induced with hypercaloric diet (HD) in male Wistar rats for 20 weeks (n = 10). At the end, adipose tissue (abdominal and subcutaneous) was taken to perform assays for relative quantification mRNA expression by end-point RT-PCR and protein level expression by Western blot. RESULTS: These present data have shown for the first time that total mRNA isolation and protein expression from both adipose tissues (abdominal and subcutaneous) of rat in obesity condition yield significative statistical difference among the control versus obese groups, showing that the diet high in carbohydrates modifies the total presence of mRNA and protein level expression of the receptors GPR41, 43 and 120. CONCLUSIONS: Further comparative methods are in process to clarify whether or not the obesity changes the functional receptors in these two tissues for new pharmacological approaches.


Assuntos
Obesidade/tratamento farmacológico , Obesidade/genética , Receptores Acoplados a Proteínas G/genética , Tecido Adiposo/metabolismo , Animais , Aterosclerose/tratamento farmacológico , Aterosclerose/patologia , Diabetes Mellitus/tratamento farmacológico , Diabetes Mellitus/patologia , Dieta Hiperlipídica , Modelos Animais de Doenças , Ácidos Graxos não Esterificados/genética , Ácidos Graxos não Esterificados/metabolismo , Regulação da Expressão Gênica/genética , Humanos , Insulina/genética , Insulina/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Ratos , Receptores Acoplados a Proteínas G/metabolismo
19.
Eur J Nutr ; 57(1): 339-349, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27730364

RESUMO

PURPOSE: Polyphenol metabolites are key mediators of the biological activities of polyphenols. This study aimed to evaluate the long-term effects of a high-fat high-sucrose (HFHS) diet on the metabolism of proanthocyanidins from grape seed extract (GSE). METHODS: Adult female Wistar-Kyoto rats were fed a standard (STD) or HFHS diet supplemented or not with GSE for 16 weeks. PA metabolites were determined by targeted HPLC-MS/MS analysis. RESULTS: A lower concentration of total microbial-derived PA metabolites was present in urine and the aqueous fraction of faeces in the HFHS + GSE group than in the STD + GSE group. In contrast, a tendency towards the formation of conjugated (epi)catechin metabolites in the HFHS + GSE group was observed. CONCLUSIONS: These results show that a HFHS diet significantly modifies PA metabolism, probably via: (1) a shift in microbial communities not counteracted by the polyphenols themselves; and (2) an up-regulation of hepatic enzymes.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Sacarose Alimentar/administração & dosagem , Extrato de Sementes de Uva/química , Proantocianidinas/metabolismo , Vitis , Animais , Catequina/metabolismo , Dieta , Fezes/química , Feminino , Microbioma Gastrointestinal/fisiologia , Extrato de Sementes de Uva/administração & dosagem , Proantocianidinas/administração & dosagem , Proantocianidinas/urina , Ratos , Ratos Endogâmicos WKY
20.
Eur J Nutr ; 57(1): 83-94, 2018 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27566476

RESUMO

PURPOSE: Rats fed a long-term sucrose-rich diet (SRD) developed adipose tissue dysfunction. In the adipose tissue of these SRD-fed rats, the present study analyzed the possible beneficial effects of dietary Salba (chia) seeds in improving or reversing the depletion of antioxidant defenses, changes in pro-inflammatory cytokines and ROS production. METHODS: Wistar rats were fed a SRD for 3 months. After that, half of the animals continued with the SRD until month 6, while in the other half, corn oil was replaced by chia seeds for 3 months (SRD + chia). A reference group consumed a control diet all the time. RESULTS: Compared with the SRD-fed rats, the animals fed a SRD + chia showed a reduction in epididymal fat pad weight; the activities of antioxidant enzymes CAT, SOD and GPx returned to control values, while GR significantly improved; mRNA GPx increased, and both mRNA SOD and the redox state of glutathione returned to control values; a significant increase in the expression of Nrf2 was recorded. These results were accompanied by a decrease in XO activity and ROS contents as well as plasma IL-6 and TNF-α levels. Chia seeds reversed the decrease in PPARγ protein mass level and increased the n-3/n-6 fatty acids ratio of membrane phospholipids. Besides, dyslipidemia and insulin sensitivity were normalized. CONCLUSION: This study provides new information concerning some mechanisms related to the beneficial effects of dietary chia seeds in reversing adipose tissue oxidative stress and improving the adipose tissue dysfunction induced by a SRD.


Assuntos
Tecido Adiposo/fisiopatologia , Citocinas/fisiologia , Dislipidemias/dietoterapia , Estresse Oxidativo/fisiologia , PPAR gama/fisiologia , Salvia , Tecido Adiposo/química , Tecido Adiposo/patologia , Animais , Antioxidantes/metabolismo , Dieta , Sacarose Alimentar/efeitos adversos , Dislipidemias/patologia , Dislipidemias/fisiopatologia , Ingestão de Energia , Ácidos Graxos/administração & dosagem , Ácidos Graxos/análise , Inflamação , Resistência à Insulina/fisiologia , Masculino , Tamanho do Órgão , Ratos , Ratos Wistar , Sementes
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa