Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 374
Filtrar
1.
Cell ; 171(1): 85-102.e23, 2017 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-28867287

RESUMO

Chromatin modification and higher-order chromosome structure play key roles in gene regulation, but their functional interplay in controlling gene expression is elusive. We have discovered the machinery and mechanism underlying the dynamic enrichment of histone modification H4K20me1 on hermaphrodite X chromosomes during C. elegans dosage compensation and demonstrated H4K20me1's pivotal role in regulating higher-order chromosome structure and X-chromosome-wide gene expression. The structure and the activity of the dosage compensation complex (DCC) subunit DPY-21 define a Jumonji demethylase subfamily that converts H4K20me2 to H4K20me1 in worms and mammals. Selective inactivation of demethylase activity eliminates H4K20me1 enrichment in somatic cells, elevates X-linked gene expression, reduces X chromosome compaction, and disrupts X chromosome conformation by diminishing the formation of topologically associating domains (TADs). Unexpectedly, DPY-21 also associates with autosomes of germ cells in a DCC-independent manner to enrich H4K20me1 and trigger chromosome compaction. Our findings demonstrate the direct link between chromatin modification and higher-order chromosome structure in long-range regulation of gene expression.


Assuntos
Proteínas de Caenorhabditis elegans/química , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Transporte/química , Proteínas de Transporte/metabolismo , Regulação da Expressão Gênica , Cromossomo X/química , Sequência de Aminoácidos , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Transporte/genética , Mecanismo Genético de Compensação de Dose , Embrião não Mamífero/metabolismo , Histona Desmetilases com o Domínio Jumonji/química , Histona Desmetilases com o Domínio Jumonji/metabolismo , Modelos Moleculares , Mutação , Piperidinas/metabolismo , Alinhamento de Sequência , Tiofenos/metabolismo
2.
EMBO J ; 42(23): e113798, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37849386

RESUMO

Based on studies of animals and yeasts, methylation of histone H3 lysine 4 (H3K4me1/2/3, for mono-, di-, and tri-methylation, respectively) is regarded as the key epigenetic modification of transcriptionally active genes. In plants, however, H3K4me2 correlates negatively with transcription, and the regulatory mechanisms of this counterintuitive H3K4me2 distribution in plants remain largely unexplored. A previous genetic screen for factors regulating plant regeneration identified Arabidopsis LYSINE-SPECIFIC DEMETHYLASE 1-LIKE 3 (LDL3), which is a major H3K4me2 demethylase. Here, we show that LDL3-mediated H3K4me2 demethylation depends on the transcription elongation factor Paf1C and phosphorylation of the C-terminal domain (CTD) of RNA polymerase II (RNAPII). In addition, LDL3 binds to phosphorylated RNAPII. These results suggest that LDL3 is recruited to transcribed genes by binding to elongating RNAPII and demethylates H3K4me2 cotranscriptionally. Importantly, the negative correlation between H3K4me2 and transcription is significantly attenuated in the ldl3 mutant, demonstrating the genome-wide impacts of the transcription-driven LDL3 pathway to control H3K4me2 in plants. Our findings implicate H3K4me2 demethylation in plants as chromatin records of transcriptional activity, which ensures robust gene control.


Assuntos
Arabidopsis , Animais , Arabidopsis/genética , Arabidopsis/metabolismo , Histonas/genética , Histonas/metabolismo , Lisina/metabolismo , Cromatina/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Plantas/metabolismo , Desmetilação
3.
J Biol Chem ; 300(9): 107607, 2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39084460

RESUMO

The N-terminal region of the human lysine-specific demethylase 1 (LSD1) has no predicted structural elements, contains a nuclear localization signal (NLS), undergoes multiple posttranslational modifications (PTMs), and acts as a protein-protein interaction hub. This intrinsically disordered region (IDR) extends from core LSD1 structure, resides atop the catalytic active site, and is known to be dispensable for catalysis. Here, we show differential nucleosome binding between the full-length and an N terminus deleted LSD1 and identify that a conserved NLS and PTM containing element of the N terminus contains an alpha helical structure, and that this conserved element impacts demethylation. Enzyme assays reveal that LSD1's own electropositive NLS amino acids 107 to 120 inhibit demethylation activity on a model histone 3 lysine 4 dimethyl (H3K4me2) peptide (Kiapp âˆ¼ 3.3 µM) and histone 3 lysine 4 dimethyl nucleosome substrates (IC50 ∼ 30.4 µM), likely mimicking the histone H3 tail. Further, when the identical, inhibitory NLS region contains phosphomimetic modifications, inhibition is partially relieved. Based upon these results and biophysical data, a regulatory mechanism for the LSD1-catalyzed demethylation reaction is proposed whereby NLS-mediated autoinhibition can occur through electrostatic interactions, and be partially relieved through phosphorylation that occurs proximal to the NLS. Taken together, the results highlight a dynamic and synergistic role for PTMs, intrinsically disordered regions, and structured regions near LSD1 active site and introduces the notion that phosphorylated mediated NLS regions can function to fine-tune chromatin modifying enzyme activity.

4.
Plant J ; 118(1): 191-202, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38116956

RESUMO

Seed vigor has major impact on the rate and uniformity of seedling growth, crop yield, and quality. However, the epigenetic regulatory mechanism of crop seed vigor remains unclear. In this study, a (jumonji C) JmjC gene of the histone lysine demethylase OsJMJ718 was cloned in rice, and its roles in seed germination and its epigenetic regulation mechanism were investigated. OsJMJ718 was located in the nucleus and was engaged in H3K9 methylation. Histochemical GUS staining analysis revealed OsJMJ718 was highly expressed in seed embryos. Abiotic stress strongly induced the OsJMJ718 transcriptional accumulation level. Germination percentage and seedling vigor index of OsJMJ718 knockout lines (OsJMJ718-CR) were lower than those of the wild type (WT). Chromatin immunoprecipitation followed by sequencing (ChIP-seq) of seeds imbibed for 24 h showed an increase in H3K9me3 deposition of thousands of genes in OsJMJ718-CR. ChIP-seq results and transcriptome analysis showed that differentially expressed genes were enriched in ABA and ethylene signal transduction pathways. The content of ABA in OsJMJ718-CR was higher than that in WT seeds. OsJMJ718 overexpression enhanced sensitivity to ABA during germination and early seedling growth. In the seed imbibition stage, ABA and ethylene content diminished and augmented, separately, suggesting that OsJMJ718 may adjust rice seed germination through the ABA and ethylene signal transduction pathways. This study displayed the important function of OsJMJ718 in adjusting rice seed germination and vigor, which will provide an essential reference for practical issues, such as improving rice vigor and promoting direct rice sowing production.


Assuntos
Germinação , Oryza , Germinação/genética , Oryza/metabolismo , Epigênese Genética , Sementes/metabolismo , Plântula/metabolismo , Etilenos/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Ácido Abscísico/metabolismo
5.
Bioessays ; 45(11): e2300035, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37694689

RESUMO

Ascorbic acid is a redox regulator in many physiological processes. Besides its antioxidant activity, many intriguing functions of ascorbic acid in the expression of immunoregulatory genes have been suggested. Ascorbic acid acts as a co-factor for the Fe+2 -containing α-ketoglutarate-dependent Jumonji-C domain-containing histone demethylases (JHDM) and Ten eleven translocation (TET) methylcytosine dioxygenasemediated epigenetic modulation. By influencing JHDM and TET, ascorbic acid facilitates the differentiation of double negative (CD4- CD8- ) T cells to double positive (CD4+ CD8+ ) T cells and of T-helper cells to different effector subsets. Ascorbic acid modulates plasma cell differentiation and promotes early differentiation of hematopoietic stem cells (HSCs) to NK cells. These findings indicate that ascorbic acid plays a significant role in regulating both innate and adaptive immune cells, opening up new research areas in Immunonutrition. Being a water-soluble vitamin and a safe micro-nutrient, ascorbic acid can be used as an adjunct therapy for many disorders of the immune system.


Assuntos
Ácido Ascórbico , Dioxigenases , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Dioxigenases/genética , Histona Desmetilases/genética , Histona Desmetilases/metabolismo , Imunidade , 5-Metilcitosina , Metilação de DNA
6.
Proc Natl Acad Sci U S A ; 119(34): e2200753119, 2022 08 23.
Artigo em Inglês | MEDLINE | ID: mdl-35969736

RESUMO

Jumonji C-domain-containing protein 6 (JMJD6), an iron (Fe2+) and α-ketoglutarate (α-KG)-dependent oxygenase, is expressed at high levels, correlated with poor prognosis, and considered as a therapeutic target in multiple cancer types. However, specific JMJD6 inhibitors that are potent in suppressing tumorigenesis have not been reported so far. We herein report that iJMJD6, a specific small-molecule inhibitor of JMJD6 with favorable physiochemical properties, inhibits the enzymatic activity of JMJD6 protein both in vitro and in cultured cells. iJMJD6 is effective in suppressing cell proliferation, migration, and invasion in multiple types of cancer cells in a JMJD6-dependent manner, while it exhibits minimal toxicity in normal cells. Mechanistically, iJMJD6 represses the expression of oncogenes, including Myc and CCND1, in accordance with JMJD6 function in promoting the transcription of these genes. iJMJD6 exhibits suitable pharmacokinetic properties and suppresses tumor growth in multiple cancer cell line- and patient-derived xenograft models safely. Furthermore, combination therapy with iJMJD6 and BET protein inhibitor (BETi) JQ1 or estrogen receptor antagonist fulvestrant exhibits synergistic effects in suppressing tumor growth. Taken together, we demonstrate that inhibition of JMJD6 enzymatic activity by using iJMJD6 is effective in suppressing oncogene expression and cancer development, providing a therapeutic avenue for treating cancers that are dependent on JMJD6 in the clinic.


Assuntos
Antineoplásicos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Neoplasias , Antineoplásicos/farmacologia , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica , Humanos , Neoplasias/tratamento farmacológico
7.
Glia ; 72(8): 1435-1450, 2024 08.
Artigo em Inglês | MEDLINE | ID: mdl-38613395

RESUMO

The plant homeodomain finger protein Phf8 is a histone demethylase implicated by mutation in mice and humans in neural crest defects and neurodevelopmental disturbances. Considering its widespread expression in cell types of the central nervous system, we set out to determine the role of Phf8 in oligodendroglial cells to clarify whether oligodendroglial defects are a possible contributing factor to Phf8-dependent neurodevelopmental disorders. Using loss- and gain-of-function approaches in oligodendroglial cell lines and primary cell cultures, we show that Phf8 promotes the proliferation of rodent oligodendrocyte progenitor cells and impairs their differentiation to oligodendrocytes. Intriguingly, Phf8 has a strong positive impact on Olig2 expression by acting on several regulatory regions of the gene and changing their histone modification profile. Taking the influence of Olig2 levels on oligodendroglial proliferation and differentiation into account, Olig2 likely acts as an important downstream effector of Phf8 in these cells. In line with such an effector function, ectopic Olig2 expression in Phf8-deficient cells rescues the proliferation defect. Additionally, generation of human oligodendrocytes from induced pluripotent stem cells did not require PHF8 in a system that relies on forced expression of Olig2 during oligodendroglial induction. We conclude that Phf8 may impact nervous system development at least in part through its action in oligodendroglial cells.


Assuntos
Proliferação de Células , Fator de Transcrição 2 de Oligodendrócitos , Oligodendroglia , Fatores de Transcrição , Oligodendroglia/metabolismo , Fator de Transcrição 2 de Oligodendrócitos/metabolismo , Animais , Humanos , Fatores de Transcrição/metabolismo , Fatores de Transcrição/genética , Camundongos , Proliferação de Células/fisiologia , Diferenciação Celular/fisiologia , Células Cultivadas , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Ratos , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Células-Tronco Pluripotentes Induzidas/metabolismo
8.
Cancer Sci ; 115(1): 8-16, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37923555

RESUMO

Epigenetic modifications are significant in tumor pathogenesis, wherein the process of histone demethylation is indispensable for regulating gene transcription, apoptosis, DNA replication, and repair of damaged DNA. The lysine demethylases (KDMs) serve an essential role in the aforementioned processes, with particular emphasis on the KDM4 family, also referred to as JMJD2. Multiple studies have underscored the significance of the KDM4 family in the regulation of various biological processes including, but not limited to, the cell cycle, DNA repair mechanisms, signaling pathways, and the progression of tumor formation. Nevertheless, it is imperative to elucidate the underlying mechanism of KDM4B, which belongs to the KDM4 gene family. This review presents a comprehensive examination of the structure, mechanism, and function of KDM4B, as well as a critical analysis of the current body of research pertaining to its involvement in tumorigenesis and development. Furthermore, this review explores the potential therapeutic strategies that specifically target KDM4B.


Assuntos
Neoplasias , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/patologia , Reparo do DNA/genética , Ciclo Celular , Transdução de Sinais , Replicação do DNA , Histona Desmetilases com o Domínio Jumonji/genética
9.
EMBO J ; 39(7): e103949, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-32125007

RESUMO

Histone H3 lysine-9 di-methylation (H3K9me2) and lysine-27 tri-methylation (H3K27me3) are linked to repression of gene expression, but the functions of repressive histone methylation dynamics during inflammatory responses remain enigmatic. Here, we report that lysine demethylases 7A (KDM7A) and 6A (UTX) play crucial roles in tumor necrosis factor (TNF)-α signaling in endothelial cells (ECs), where they are regulated by a novel TNF-α-responsive microRNA, miR-3679-5p. TNF-α rapidly induces co-occupancy of KDM7A and UTX at nuclear factor kappa-B (NF-κB)-associated elements in human ECs. KDM7A and UTX demethylate H3K9me2 and H3K27me3, respectively, and are both required for activation of NF-κB-dependent inflammatory genes. Chromosome conformation capture-based methods furthermore uncover increased interactions between TNF-α-induced super enhancers at NF-κB-relevant loci, coinciding with KDM7A and UTX recruitments. Simultaneous pharmacological inhibition of KDM7A and UTX significantly reduces leukocyte adhesion in mice, establishing the biological and potential translational relevance of this mechanism. Collectively, these findings suggest that rapid erasure of repressive histone marks by KDM7A and UTX is essential for NF-κB-dependent regulation of genes that control inflammatory responses of ECs.


Assuntos
Células Endoteliais/imunologia , Histona Desmetilases/metabolismo , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , MicroRNAs/genética , Animais , Adesão Celular , Células Endoteliais/citologia , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Redes Reguladoras de Genes , Histonas/química , Células Endoteliais da Veia Umbilical Humana , Humanos , Lisina/metabolismo , Masculino , Metilação , Camundongos , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
10.
Br J Haematol ; 204(6): 2468-2479, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38650379

RESUMO

Paroxysmal nocturnal haemoglobinuria (PNH) is a disorder resulting from erythrocyte membrane deficiencies caused by PIG-A gene mutations. While current treatments alleviate symptoms, they fail to address the underlying cause of the disease-the pathogenic PNH clones. In this study, we found that the expression of carbamoyl phosphate synthetase 1 (CPS1) was downregulated in PNH clones, and the level of CPS1 was negatively correlated with the proportion of PNH clones. Using PIG-A knockout K562 (K562 KO) cells, we demonstrated that CPS1 knockdown increased cell proliferation and altered cell metabolism, suggesting that CPS1 participates in PNH clonal proliferation through metabolic reprogramming. Furthermore, we observed an increase in the expression levels of the histone demethylase JMJD1C in PNH clones, and JMJD1C expression was negatively correlated with CPS1 expression. Knocking down JMJD1C in K562 KO cells upregulated CPS1 and H3K36me3 expression, decreased cell proliferation and increased cell apoptosis. Chromatin immunoprecipitation analysis further demonstrated that H3K36me3 regulated CPS1 expression. Finally, we demonstrated that histone demethylase inhibitor JIB-04 can suppressed K562 KO cell proliferation and reduced the proportion of PNH clones in PNH mice. In conclusion, aberrant regulation of the JMJD1C-H3K36me3-CPS1 axis contributes to PNH clonal proliferation. Targeting JMJD1C with a specific inhibitor unveils a potential strategy for treating PNH patients.


Assuntos
Proliferação de Células , Hemoglobinúria Paroxística , Histona Desmetilases com o Domínio Jumonji , Humanos , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Animais , Camundongos , Células K562 , Hemoglobinúria Paroxística/patologia , Hemoglobinúria Paroxística/genética , Hemoglobinúria Paroxística/metabolismo , Masculino , Feminino , Apoptose , Reprogramação Metabólica , Oxirredutases N-Desmetilantes
11.
New Phytol ; 242(6): 2570-2585, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38708492

RESUMO

In plant species, anthocyanin accumulation is specifically regulated by light signaling. Although the CONSTITUTIVELY PHOTOMORPHOGENIC1/SUPPRESSOR OF PHYA-105 (COP1/SPA) complex is known to control anthocyanin biosynthesis in response to light, the precise mechanism underlying this process remains largely unknown. Here, we report that Increase in BONSAI Methylation 1 (IBM1), a JmjC domain-containing histone demethylase, participates in the regulation of light-induced anthocyanin biosynthesis in Arabidopsis. The expression of IBM1 was induced by high light (HL) stress, and loss-of-function mutations in IBM1 led to accelerated anthocyanin accumulation under HL conditions. We further identified that IBM1 is directly associated with SPA1/3/4 chromatin in vivo to establish a hypomethylation status on H3K9 and DNA non-CG at these loci under HL, thereby releasing their expression. Genetic analysis showed that quadruple mutants of IBM1 and SPA1/3/4 resemble spa134 mutants. Overexpression of SPA1 in ibm1 mutants complements the mutant phenotype. Our results elucidate the significance and mechanism of IBM1 histone demethylase in the epigenetic regulation of anthocyanin biosynthesis in Arabidopsis under HL conditions.


Assuntos
Antocianinas , Proteínas de Arabidopsis , Epigênese Genética , Regulação da Expressão Gênica de Plantas , Histona Desmetilases com o Domínio Jumonji , Luz , Antocianinas/biossíntese , Antocianinas/genética , Arabidopsis/genética , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Cromatina/metabolismo , Metilação de DNA/genética , Histonas/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Mutação/genética , Fenótipo
12.
J Exp Bot ; 75(10): 3040-3053, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38310636

RESUMO

Sugarcane (Saccharum spp.), a leading sugar and energy crop, is seriously impacted by drought stress. However, the molecular mechanisms underlying sugarcane drought resistance, especially the functions of epigenetic regulators, remain elusive. Here, we show that a S. spontaneum KDM4/JHDM3 group JmjC protein, SsJMJ4, negatively regulates drought-stress responses through its H3K27me3 demethylase activity. Ectopic overexpression of SsJMJ4 in Arabidopsis reduced drought resistance possibly by promoting expression of AtWRKY54 and AtWRKY70, encoding two negative regulators of drought stress. SsJMJ4 directly bound to AtWRKY54 and AtWRKY70, and reduced H3K27me3 levels at these loci to ensure their proper transcription under normal conditions. Drought stress down-regulated both transcription and protein abundance of SsJMJ4, which was correlated with the reduced occupancy of SsJMJ4 at AtWRKY54 and AtWRKY70 chromatin, increased H3K27me3 levels at these loci, as well as reduced transcription levels of these genes. In S. spontaneum, drought stress-repressed transcription of SsWRKY122, an ortholog of AtWRKY54 and AtWRKY70, was associated with increased H3K27me3 levels at these loci. Transient overexpression of SsJMJ4 in S. spontaneum protoplasts raised transcription of SsWRKY122, paralleled with reduced H3K27me3 levels at its loci. These results suggest that the SsJMJ4-mediated dynamic deposition of H3K27me3 is required for an appropriate response to drought stress.


Assuntos
Secas , Proteínas de Plantas , Saccharum , Saccharum/genética , Saccharum/fisiologia , Saccharum/metabolismo , Saccharum/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regulação da Expressão Gênica de Plantas , Estresse Fisiológico , Arabidopsis/genética , Arabidopsis/fisiologia , Histona Desmetilases/metabolismo , Histona Desmetilases/genética , Histonas/metabolismo , Histonas/genética
13.
Arch Biochem Biophys ; 757: 110028, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38768746

RESUMO

Biomechanical signals in the extracellular niche are considered promising for programming the lineage specification of stem cells. Recent studies have reported that biomechanics, such as the microstructure of nanomaterials, can induce adipose-derived stem cells (ASCs) to differentiate into osteoblasts, mediating gene regulation at the epigenetic level. Therefore, in this study, transcriptome expression levels of histone demethylases in ASCs were screened after treatment with different matrix stiffnesses, and histone lysine demethylase 3B (KDM3B) was found to promote osteogenic differentiation of ASCs in response to matrix stiffness, indicating a positive modulatory effect on this biological process. ASCs exhibited widespread and polygonal shapes with a distinct bundle-like expression of vinculin parallel to the axial cytoskeleton along the cell margins on the stiff matrix rather than round shapes with a smeared and shorter expression on the soft matrix. Comparatively rigid polydimethylsiloxane material directed ASCs into an osteogenic phenotype in inductive culture media via the upregulation of osteocalcin, alkaline phosphatase, and runt-related transcription factor 2. Treatment with KDM3B-siRNA decreased the expression of osteogenic differentiation markers and impaired mitochondrial dynamics and mitochondrial membrane potential. These results illustrate the critical role of KDM3B in the biomechanics-induced osteogenic commitment of ASCs and provide new avenues for the further application of stem cells as potential therapeutics for bone regeneration.


Assuntos
Tecido Adiposo , Diferenciação Celular , Histona Desmetilases com o Domínio Jumonji , Osteogênese , Células-Tronco , Humanos , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Células Cultivadas , Matriz Extracelular/metabolismo , Dimetilpolisiloxanos/química
14.
Arch Pharm (Weinheim) ; : e2400450, 2024 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-39004853

RESUMO

Epigenetic modulators such as lysine-specific demethylase 1 (LSD1) and histone deacetylases (HDACs) are drug targets for cancer, neuropsychiatric disease, or inflammation, but inhibitors of these enzymes exhibit considerable side effects. For a potential local treatment with reduced systemic toxicity, we present here soft drug candidates as new LSD1 and HDAC inhibitors. A soft drug is a compound that is degraded in vivo to less active metabolites after having achieved its therapeutic function. This has been successfully applied for corticosteroids in the clinic, but soft drugs targeting epigenetic enzymes are scarce, with the HDAC inhibitor remetinostat being the only example. We have developed new methyl ester-containing inhibitors targeting LSD1 or HDACs and compared the biological activities of these to their respective carboxylic acid cleavage products. In vitro activity assays, cellular experiments, and a stability assay identified potent HDAC and LSD1 soft drug candidates that are superior to their corresponding carboxylic acids in cellular models.

15.
Genes Dev ; 30(5): 508-21, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26944678

RESUMO

T-cell acute lymphoblastic leukemia (T-ALL) is a heterogeneous group of hematological tumors composed of distinct subtypes that vary in their genetic abnormalities, gene expression signatures, and prognoses. However, it remains unclear whether T-ALL subtypes differ at the functional level, and, as such, T-ALL treatments are uniformly applied across subtypes, leading to variable responses between patients. Here we reveal the existence of a subtype-specific epigenetic vulnerability in T-ALL by which a particular subgroup of T-ALL characterized by expression of the oncogenic transcription factor TAL1 is uniquely sensitive to variations in the dosage and activity of the histone 3 Lys27 (H3K27) demethylase UTX/KDM6A. Specifically, we identify UTX as a coactivator of TAL1 and show that it acts as a major regulator of the TAL1 leukemic gene expression program. Furthermore, we demonstrate that UTX, previously described as a tumor suppressor in T-ALL, is in fact a pro-oncogenic cofactor essential for leukemia maintenance in TAL1-positive (but not TAL1-negative) T-ALL. Exploiting this subtype-specific epigenetic vulnerability, we propose a novel therapeutic approach based on UTX inhibition through in vivo administration of an H3K27 demethylase inhibitor that efficiently kills TAL1-positive primary human leukemia. These findings provide the first opportunity to develop personalized epigenetic therapy for T-ALL patients.


Assuntos
Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Epigênese Genética , Regulação Neoplásica da Expressão Gênica/genética , Terapia Genética , Histona Desmetilases/genética , Proteínas Nucleares/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/terapia , Proteínas Proto-Oncogênicas/metabolismo , Linhagem Celular Tumoral , Técnicas de Silenciamento de Genes , Histona Desmetilases/metabolismo , Humanos , Proteínas Nucleares/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células T Precursoras/fisiopatologia , Proteínas Proto-Oncogênicas/genética , Proteína 1 de Leucemia Linfocítica Aguda de Células T
16.
Genes Dev ; 30(11): 1278-88, 2016 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-27257215

RESUMO

Acute myeloid leukemias (AMLs) with a rearrangement of the mixed-linage leukemia (MLL) gene are aggressive hematopoietic malignancies. Here, we explored the feasibility of using the H3K9- and H3K36-specific demethylases Jmjd2/Kdm4 as putative drug targets in MLL-AF9 translocated leukemia. Using Jmjd2a, Jmjd2b, and Jmjd2c conditional triple-knockout mice, we show that Jmjd2/Kdm4 activities are required for MLL-AF9 translocated AML in vivo and in vitro. We demonstrate that expression of the interleukin 3 receptor α (Il3ra also known as Cd123) subunit is dependent on Jmjd2/Kdm4 through a mechanism involving removal of H3K9me3 from the promoter of the Il3ra gene. Importantly, ectopic expression of Il3ra in Jmjd2/Kdm4 knockout cells alleviates the requirement of Jmjd2/Kdm4 for the survival of AML cells, showing that Il3ra is a critical downstream target of Jmjd2/Kdm4 in leukemia. These results suggest that the JMJD2/KDM4 proteins are promising drug targets for the treatment of AML.


Assuntos
Regulação Neoplásica da Expressão Gênica , Subunidade alfa de Receptor de Interleucina-3/genética , Subunidade alfa de Receptor de Interleucina-3/metabolismo , Histona Desmetilases com o Domínio Jumonji/metabolismo , Leucemia Mieloide Aguda/enzimologia , Leucemia Mieloide Aguda/fisiopatologia , Animais , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Modelos Animais de Doenças , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Histona Desmetilases com o Domínio Jumonji/antagonistas & inibidores , Histona Desmetilases com o Domínio Jumonji/genética , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Metilação , Camundongos , Camundongos Knockout , Ligação Proteica , Tamoxifeno/análogos & derivados , Tamoxifeno/farmacologia , Tamoxifeno/uso terapêutico
17.
J Integr Plant Biol ; 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38953749

RESUMO

The plant hormone jasmonate (JA) regulates plant growth and immunity by orchestrating a genome-wide transcriptional reprogramming. In the resting stage, JASMONATE-ZIM DOMAIN (JAZ) proteins act as main repressors to regulate the expression of JA-responsive genes in the JA signaling pathway. However, the mechanisms underlying de-repression of JA-responsive genes in response to JA treatment remain elusive. Here, we report two nuclear factor Y transcription factors NF-YB2 and NF-YB3 (thereafter YB2 and YB3) play key roles in such de-repression in Arabidopsis. YB2 and YB3 function redundantly and positively regulate plant resistance against the necrotrophic pathogen Botrytis cinerea, which are specially required for transcriptional activation of a set of JA-responsive genes following inoculation. Furthermore, YB2 and YB3 modulated their expression through direct occupancy and interaction with histone demethylase Ref6 to remove repressive histone modifications. Moreover, YB2 and YB3 physically interacted with JAZ repressors and negatively modulated their abundance, which in turn attenuated the inhibition of JAZ proteins on the transcription of JA-responsive genes, thereby activating JA response and promoting disease resistance. Overall, our study reveals the positive regulators of YB2 and YB3 in JA signaling by positively regulating transcription of JA-responsive genes and negatively modulating the abundance of JAZ proteins.

18.
Semin Cancer Biol ; 83: 452-471, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-32814115

RESUMO

Epigenetic changes associated with histone modifications play an important role in the emergence and maintenance of the phenotype of various cancer types. In contrast to direct mutations in the main DNA sequence, these changes are reversible, which makes the development of inhibitors of enzymes of post-translational histone modifications one of the most promising strategies for the creation of anticancer drugs. To date, a wide variety of histone modifications have been found that play an important role in the regulation of chromatin state, gene expression, and other nuclear events. This review examines the main features of the most common and studied epigenetic histone modifications with a proven role in the pathogenesis of a wide range of malignant neoplasms: acetylation / deacetylation and methylation / demethylation of histone proteins, as well as the role of enzymes of the HAT / HDAC and HMT / HDMT families in the development of oncological pathologies. The data on the relationship between histone modifications and certain types of cancer are presented and discussed. Special attention is devoted to the consideration of various strategies for the development of epigenetic inhibitors. The main directions of the development of inhibitors of histone modifications are analyzed and effective strategies for their creation are identified and discussed. The most promising strategy is the use of multitarget drugs, which will affect multiple molecular targets of cancer. A critical analysis of the current status of approved epigenetic anticancer drugs has also been performed.


Assuntos
Antineoplásicos , Neoplasias , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Metilação de DNA , Epigênese Genética , Código das Histonas , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética , Neoplasias/metabolismo
19.
J Biol Chem ; 298(11): 102536, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36174675

RESUMO

The cellular response to hypoxia is regulated through enzymatic oxygen sensors, including the prolyl hydroxylases, which control degradation of the well-known hypoxia inducible factors (HIFs). Other enzymatic oxygen sensors have been recently identified, including members of the KDM histone demethylase family. Little is known about how different oxygen-sensing pathways interact and if this varies depending on the form of hypoxia, such as chronic or intermittent. In this study, we investigated how two proposed cellular oxygen-sensing systems, HIF-1 and KDM4A, KDM4B, and KDM4C, respond in cells exposed to rapid forms of intermittent hypoxia (minutes) and compared to chronic hypoxia (hours). We found that intermittent hypoxia increases HIF-1α protein through a pathway distinct from chronic hypoxia, involving the KDM4A, KDM4B, and KDM4C histone lysine demethylases. Intermittent hypoxia increases the quantity and activity of KDM4A, KDM4B, and KDM4C, resulting in a decrease in histone 3 lysine 9 (H3K9) trimethylation near the HIF1A locus. We demonstrate that this contrasts with chronic hypoxia, which decreases KDM4A, KDM4B, and KDM4C activity, leading to hypertrimethylation of H3K9 globally and at the HIF1A locus. Altogether, we found that demethylation of histones bound to the HIF1A gene in intermittent hypoxia increases HIF1A mRNA expression, which has the downstream effect of increasing overall HIF-1 activity and expression of HIF target genes. This study highlights how multiple oxygen-sensing pathways can interact to regulate and fine tune the cellular hypoxic response depending on the period and length of hypoxia.


Assuntos
Histonas , Subunidade alfa do Fator 1 Induzível por Hipóxia , Processamento de Proteína Pós-Traducional , Humanos , Desmetilação , Histona Desmetilases/metabolismo , Histonas/genética , Histonas/metabolismo , Hipóxia , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Oxigênio/metabolismo
20.
Br J Haematol ; 202(6): 1178-1191, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37469124

RESUMO

Although tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of chronic myeloid leukaemia (CML), TKI resistance remains a major challenge. Here, we demonstrated that plant homeodomain finger protein 8 (PHF8), a histone demethylase was aberrantly enriched in CML samples compared to healthy controls. PHF8 inhibited CML cell differentiation and promoted CML cell proliferation. Furthermore, the proliferation-inhibited function of PHF8-knockdown have stronger effect on imatinib mesylate (IM)-resistant CML cells. Mechanistically, we identified that PHF8 as a transcriptional modulator interacted with the promoter of the BCR::ABL1 fusion gene and alters the methylation levels of H3K9me1, H3K9me2 and H3K27me1, thereby promoting BCR::ABL1 transcription. Overall, our study suggests that targeting PHF8, which directly regulates BCR::ABL1 expression, is a useful therapeutic approach for CML.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia Mielogênica Crônica BCR-ABL Positiva , Humanos , Apoptose , Resistencia a Medicamentos Antineoplásicos/genética , Proteínas de Fusão bcr-abl/metabolismo , Histona Desmetilases/genética , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa