RESUMO
Gene silencing by the SIR (Silent Information Region) family of proteins in S. cerevisiae has been extensively studied and has served as a founding paradigm for our general understanding of gene repression and its links to histone deacetylation and chromatin structure. In recent years, our understanding of other mechanisms of gene repression in S.cerevisiae was significantly advanced. In this review, we focus on such Sir-independent mechanisms of gene repression executed by various Histone Deacetylases (HDACs) and Histone Methyl Transferases (HMTs). We focus on the genes regulated by these enzymes and their known mechanisms of action. We describe the cooperation and redundancy between HDACs and HMTs, and their involvement in gene repression by non-coding RNAs or by their non-histone substrates. We also propose models of epigenetic transmission of the chromatin structures produced by these enzymes and discuss these in the context of gene repression phenomena in other organisms. These include the recycling of the epigenetic marks imposed by HMTs or the recycling of the complexes harboring HDACs.
Assuntos
Inativação Gênica , Histona Desacetilases/genética , Histona Metiltransferases/genética , Proteínas Reguladoras de Informação Silenciosa de Saccharomyces cerevisiae/genética , Transcrição Gênica , Cromatina/genética , Histonas/genética , Saccharomyces cerevisiae/genéticaRESUMO
Weaver syndrome, first described in 1974, is characterized by tall stature, a typical facial appearance, and variable intellectual disability. In 2011, mutations in the histone methyltransferase, EZH2, were shown to cause Weaver syndrome. To date, we have identified 48 individuals with EZH2 mutations. The mutations were primarily missense mutations occurring throughout the gene, with some clustering in the SET domain (12/48). Truncating mutations were uncommon (4/48) and only identified in the final exon, after the SET domain. Through analyses of clinical data and facial photographs of EZH2 mutation-positive individuals, we have shown that the facial features can be subtle and the clinical diagnosis of Weaver syndrome is thus challenging, especially in older individuals. However, tall stature is very common, reported in >90% of affected individuals. Intellectual disability is also common, present in ~80%, but is highly variable and frequently mild. Additional clinical features which may help in stratifying individuals to EZH2 mutation testing include camptodactyly, soft, doughy skin, umbilical hernia, and a low, hoarse cry. Considerable phenotypic overlap between Sotos and Weaver syndromes is also evident. The identification of an EZH2 mutation can therefore provide an objective means of confirming a subtle presentation of Weaver syndrome and/or distinguishing Weaver and Sotos syndromes. As mutation testing becomes increasingly accessible and larger numbers of EZH2 mutation-positive individuals are identified, knowledge of the clinical spectrum and prognostic implications of EZH2 mutations should improve.
Assuntos
Anormalidades Múltiplas/genética , Hipotireoidismo Congênito/genética , Anormalidades Craniofaciais/genética , Transtornos do Crescimento/genética , Deformidades Congênitas da Mão/genética , Deficiência Intelectual/genética , Complexo Repressor Polycomb 2/genética , Anormalidades Múltiplas/fisiopatologia , Adolescente , Criança , Pré-Escolar , Deleção Cromossômica , Hipotireoidismo Congênito/complicações , Hipotireoidismo Congênito/fisiopatologia , Anormalidades Craniofaciais/complicações , Anormalidades Craniofaciais/fisiopatologia , Deficiências do Desenvolvimento , Proteína Potenciadora do Homólogo 2 de Zeste , Feminino , Transtornos do Crescimento/complicações , Transtornos do Crescimento/fisiopatologia , Deformidades Congênitas da Mão/complicações , Deformidades Congênitas da Mão/fisiopatologia , Humanos , Deficiência Intelectual/complicações , Deficiência Intelectual/fisiopatologia , Masculino , Mutação , Fenótipo , Síndrome de Sotos/genética , Síndrome de Sotos/fisiopatologiaRESUMO
The Dishevelled gene was first identified in Drosophila mutants with disoriented hair and bristle polarity and subsequent work has now demonstrated its importance in critical and diverse aspects of biology. Since those early discoveries, Dishevelled has been shown to coordinate a plethora of developmental and cellular processes that range from controlling cell polarity during gastrulation to partnering with chromatin modifying enzymes to regulate histone methylation at genomic loci. While the role of DVL in development is well-respected and the cytosolic function of DVL has been studied more extensively, its nuclear role continues to remain murky. In this review we highlight some of the seminal discoveries that have contributed to the field, but the primary focus is to discuss recent advances with respect to the nuclear role of Dishevelled. This nuclear function of Dishevelled is a dimension which is proving to be increasingly important yet remains enigmatic.
Assuntos
Proteínas Wnt , Via de Sinalização Wnt , Núcleo Celular/genética , Núcleo Celular/metabolismo , Proteínas Desgrenhadas/genética , Proteínas Desgrenhadas/metabolismo , Gastrulação , Proteínas Wnt/metabolismoRESUMO
PURPOSE: The aim of the present study was to evaluate the effect of the histone lysine-methyltransferase (HKMT) inhibitor chaetocin on chromatin structure and its effect on ionizing radiation (IR) induced DNA damage response. METHODS: Concentration and time-dependent effects of chaetocin on chromatin clustering and its reversibility were analyzed by immunofluorescent assays in the non-small cell lung carcinoma (NSCLC) cell lines H460 and H1299Q4 and in human skin fibroblasts. In addition, IR induced damage response (γH2AX, 53BP1, and pATM foci formation) was studied by immunofluorescent assays. The effect on survival was determined by performing single-cell clonogenic assays. RESULTS: Chaetocin significantly increased the radiation sensitivity of H460 (F test on nonlinear regression, p < .0011) and of H1299 (p = .0201). In addition, treatment with 15 nM chaetocin also decreased the total radiation doses that control 50% of the plaque monolayers (TCD50) from 17.2 ± 0.3 Gy to 7.3 ± 0.4 Gy (p < .0001) in H1299 cells and from 11.6 ± 0.1 Gy to 6.5 ± 0.3 Gy (p < .0001). Phenotypically, chaetocin led to a time and concentration-dependent clustering of the chromatin in H1299 as well as in fibroblasts, but not in H460 cells. This phenotype of chaetocin induced chromatin clustering (CICC) was reversible and depended on the expression of the HKMTs SUV39H1 and G9a. Treatment with siRNA for SUV39h1 and G9a significantly reduced the CICC phenotype. Immunofluorescent assay results showed that the CICC phenotype was enriched for the heterochromatic marker proteins H3K9me3 and HP1α. γH2AX foci formation was not affected, neither in cells with normal nor with CICC phenotype. In contrast, repair signaling with 53BP1 and pATM foci formation was significantly reduced in the CICC phenotype. CONCLUSIONS: Treatment with chaetocin increased the radiation sensitivity of cells in vitro and DNA damage response, especially of 53BP1 and ATM-dependent repair by affecting chromatin structure. The obtained results support the potential use of natural HKMT inhibitors such as chaetocin or other bioactive compounds in improving radiosensitivity of cancer cells.
Assuntos
Cromatina/genética , Reparo do DNA/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Cromatina/efeitos dos fármacos , Cromatina/efeitos da radiação , Homólogo 5 da Proteína Cromobox , Reparo do DNA/efeitos da radiação , Humanos , Fosforilação/efeitos dos fármacos , Fosforilação/efeitos da radiação , Piperazinas/farmacologia , Tolerância a Radiação/efeitos dos fármacos , Transdução de Sinais/efeitos da radiaçãoRESUMO
BACKGROUND: Recent studies indicate that exposure to environmental chemicals may increase susceptibility to developing metabolic diseases. This susceptibility may in part be caused by changes to the epigenetic landscape which consequently affect gene expression and lead to changes in lipid metabolism. The epigenetic modifier enhancer of zeste 2 (Ezh2) is a histone H3K27 methyltransferase implicated to play a role in lipid metabolism and adipogenesis. In this study, we used the zebrafish (Danio rerio) to investigate the role of Ezh2 on lipid metabolism and chromatin status following developmental exposure to the Ezh1/2 inhibitor PF-06726304 acetate. We used the environmental chemical tributyltin (TBT) as a positive control, as this chemical is known to act on lipid metabolism via EZH-mediated pathways in mammals. RESULTS: Zebrafish embryos (0-5 days post-fertilization, dpf) exposed to non-toxic concentrations of PF-06726304 acetate (5 µM) and TBT (1 nM) exhibited increased lipid accumulation. Changes in chromatin were analyzed by the assay for transposase-accessible chromatin sequencing (ATAC-seq) at 50% epiboly (5.5 hpf). We observed 349 altered chromatin regions, predominantly located at H3K27me3 loci and mostly more open chromatin in the exposed samples. Genes associated to these loci were linked to metabolic pathways. In addition, a selection of genes involved in lipid homeostasis, adipogenesis and genes specifically targeted by PF-06726304 acetate via altered chromatin accessibility were differentially expressed after TBT and PF-06726304 acetate exposure at 5 dpf, but not at 50% epiboly stage. One gene, cebpa, did not show a change in chromatin, but did show a change in gene expression at 5 dpf. Interestingly, underlying H3K27me3 marks were significantly decreased at this locus at 50% epiboly. CONCLUSIONS: Here, we show for the first time the applicability of ATAC-seq as a tool to investigate toxicological responses in zebrafish. Our analysis indicates that Ezh2 inhibition leads to a partial primed state of chromatin linked to metabolic pathways which results in gene expression changes later in development, leading to enhanced lipid accumulation. Although ATAC-seq seems promising, our in-depth assessment of the cebpa locus indicates that we need to consider underlying epigenetic marks as well.
Assuntos
Cromatina/metabolismo , Proteína Potenciadora do Homólogo 2 de Zeste/metabolismo , Metabolismo dos Lipídeos , Proteínas de Peixe-Zebra/metabolismo , Adipogenia , Animais , Proteínas Estimuladoras de Ligação a CCAAT/genética , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Cromatina/química , Montagem e Desmontagem da Cromatina , Sequenciamento de Cromatina por Imunoprecipitação , Proteína Potenciadora do Homólogo 2 de Zeste/antagonistas & inibidores , Inibidores Enzimáticos/farmacologia , Compostos de Trialquitina/farmacologia , Peixe-Zebra , Proteínas de Peixe-Zebra/antagonistas & inibidoresRESUMO
Heterochromatin mostly constitutes tightly packaged DNA, decorated with repressive histone marks, including histone H3 methylated at lysine 9, histone H4 methylated at lysine 20 and histone H3 methylated at lysine 27. Each of these marks is incorporated by specific histone lysine methyl transferases. While constitutive heterochromatin enriched with H3K9me3 and H4K20me3 occur within repetitive elements, including centromeres and telomeres, the facultative heterochromatin resides on the inactive X-chromosome and contains H3K27me3 mark. Origin recognition complex-associated (ORCA/LRWD1) protein is required for the initiation of DNA replication and also plays crucial roles in heterochromatin organization. ORCA associates with constitutive and facultative heterochromatin in human cells and binds to repressive histone marks. We demonstrate that ORCA binds to multiple repressive histone methyl transferases including G9a, GLP, Suv39h1 (H3K9me2/3), Suv420h1/h2 (H4K20me2/3) and EZH2 (H3K27me3). Removal of ORCA from human cells causes aberrations in the chromatin architecture. We propose that ORCA acts as a scaffold protein that enables the formation of multiple histone lysine methyltransferase complexes at heterochromatic sites thereby facilitating chromatin organization.
Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Heterocromatina/metabolismo , Histona-Lisina N-Metiltransferase/metabolismo , Proteínas dos Microtúbulos/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/química , Proteínas Adaptadoras de Transdução de Sinal/genética , Linhagem Celular Tumoral , Cromossomos Humanos X , DNA/química , DNA/metabolismo , Metilação de DNA , Inativação Gênica , Heterocromatina/química , Histona Metiltransferases , Histonas/química , Histonas/metabolismo , Humanos , Proteínas dos Microtúbulos/química , Modelos Moleculares , Ligação Proteica , Proteína Sequestossoma-1RESUMO
Parkinson's disease (PD) is the most common movement disorder affecting more than 4million people worldwide. The primary motor symptoms of the disease are due to degeneration of dopaminergic nigrostriatal neurons. Dopamine replacement therapies have therefore revolutionised disease management by partially controlling these symptoms. However these drugs can produce debilitating side effects when used long term and do not protect degenerating neurons against death. Recent evidence has highlighted a pathological imbalance in PD between the acetylation and deacetylation of the histone proteins around which deoxyribonucleic acid (DNA) is coiled, in favour of excessive histone deacetylation. This mechanism of adding/removing acetyl groups to histone lysine residues is one of many epigenetic regulatory processes which control the expression of genes, many of which will be essential for neuronal survival. Hence, such epigenetic modifications may have a pathogenic role in PD. It has therefore been hypothesised that if this pathological imbalance can be corrected with the use of histone deacetylase inhibiting agents then neurodegeneration observed in PD can be ameliorated. This article will review the current literature with regard to epigenetic changes in PD and the use of histone deacetylase inhibitors (HDACIs) in PD: examining the evidence of the neuroprotective effects of numerous HDACIs in cellular and animal models of Parkinsonian cell death. Ultimately answering the question: does epigenetic targeting of histone deacetylases hold therapeutic potential in PD?