RESUMO
Formamidinium lead iodide (FAPbI3) represents an optimal absorber material in perovskite solar cells (PSCs), while the application of FAPbI3 in inverted-structured PSCs has yet to be successful, mainly owing to its inferior film-forming on hydrophobic or defective hole-transporting substrates. Herein, we report a substantial improvement of FAPbI3-based inverted PSCs, which is realized by a multifunctional amphiphilic molecular hole-transporter, (2-(4-(10H-phenothiazin-10-yl)phenyl)-1-cyanovinyl)phosphonic acid (PTZ-CPA). The phenothiazine (PTZ) based PTZ-CPA, carrying a cyanovinyl phosphonic acid (CPA) group, forms a superwetting hole-selective underlayer that enables facile deposition of high-quality FAPbI3 thin films. Compared to a previously established carbazole-based hole-selective material (2-(3,6-dimethoxy-9H-carbazol-9-yl)ethyl)phosphonic acid (MeO-2PACz), the crystallinity of FAPbI3 is enhanced and the electronic defects are passivated by the PTZ-CPA more effectively, resulting in remarkable increases in photoluminescence quantum yield (four-fold) and Shockley-Read-Hall lifetime (eight-fold). Moreover, the PTZ-CPA shows a larger molecular dipole moment and improved energy level alignment with FAPbI3, benefiting the interfacial hole-collection. Consequently, FAPbI3-based inverted PSCs achieve an unprecedented efficiency of 25.35 % under simulated air mass 1.5 (AM1.5) sunlight. The PTZ-CPA based device shows commendable long-term stability, maintaining over 90 % of its initial efficiency after continuous operation at 40 °C for 2000â hours.
RESUMO
Further enhancing the operational lifetime of inverted-structure perovskite solar cells (PSCs) is crucial for their commercialization, and the design of hole-selective contacts at the illumination side plays a key role in operational stability. In this work, the self-anchoring benzo[rst]pentaphene (SA-BPP) is developed as a new type of hole-selective contact toward long-term operationally stable inverted PSCs. The SA-BPP molecule with a graphene-like conjugated structure shows a higher photostability and mobility than that of the frequently-used triphenylamine and carbazole-based hole-selective molecules. Besides, the anchoring groups of SA-BPP promote the formation of a large-scale uniform hole contact on ITO substrate and efficiently passivate the perovskite absorbers. Benefiting from these merits, the champion efficiencies of 22.03% for the small-sized cells and 17.08% for 5 × 5 cm2 solar modules on an aperture area of 22.4 cm2 are achieved based on this SA-BPP contact. Also, the SA-BPP-based device exhibits promising operational stability, with an efficiency retention of 87.4% after 2000 h continuous operation at the maximum power point under simulated 1-sun illumination, which indicates an estimated T80 lifetime of 3175 h. This novel design concept of hole-selective contacts provides a promising strategy for further improving the PSC stability.
RESUMO
The spontaneous formation of self-assembly monolayer (SAM) on various substrates represents an effective strategy for interfacial engineering of optoelectronic devices. Hole-selective SAM is becoming popular among high-performance inverted perovskite solar cells (PSCs), but the presence of strong acidic anchors (such as -PO3H2) in state-of-the-art SAM is detrimental to device stability. Herein, we report for the first time that acidity-weakened boric acid can function as an alternative anchor to construct efficient SAM-based hole-selective contact (HSC) for PSCs. Theoretical calculations reveal that boric acid spontaneously chemisorbs onto indium tin oxide (ITO) surface with oxygen vacancies facilitating the adsorption progress. Spectroscopy and electrical measurements indicate that boric acid anchor significantly mitigates ITO corrosion. The excess boric acid containing molecules improves perovskite deposition and results in a coherent and well-passivated bottom interface, which boosts the fill factor (FF) performance for a variety of perovskite compositions. The optimal boric acid-anchoring HSC (MTPA-BA) can achieve power conversion efficiency close to 23% with a high FF of 85.2%. More importantly, the devices show improved stability: 90% of their initial efficiency is retained after 2400 h of storage (ISOS-D-1) or 400 h of operation (ISOS-L-1), which are 5-fold higher than those of phosphonic acid SAM-based devices. Acidity-weakened boric acid SAMs, which are friendly to ITO, exhibits well the great potential to improve the stability of the interface as well as the device.
RESUMO
Dopant-free carrier-selective contacts are becoming increasingly attractive for application in silicon solar cells because of the depositions for their fabrication being simpler and occurring at lower temperatures. However, these contacts are limited by poor thermal and environmental stability. In this contribution, the use of the conductive high work function of cuprous iodide, with its characteristic thermal and ambient stability, has enabled a hole-selective contact for p-type silicon solar cells because of the large conduction band offset and small valence offset at the CuI/p-Si interface. The contact resistivity (≈30 mΩ·cm2) of the Ag/CuI (20 nm)/p-Si contact after annealing to 200 °C represents the CuI-based hole-selective contact with low resistance and high thermal stability. Microscopic images and elemental mapping of the Ag/CuI/p-Si contact interface revealed that a nonuniform, continuous CuI layer separates the Ag electrode and p-type Si. Thermal treatment at 200 °C results in the intermixing of the Ag and CuI layers. As a result, the 200 °C thermal process improves the efficiency (20.7%) and stability of the p-Si solar cells featuring partial CuI hole-selective contact. Furthermore, the devices employing the CuI/Ag contact are thermally stable upon annealing to temperatures up to 350 °C. These results not only demonstrate the use of metal iodide instead of metal oxides as hole-selective contacts for efficient silicon solar cells but also have important implications regarding industrial feasibility and longevity for deployment in the field.
RESUMO
The promising n-Si-based solar cell is constructed for the purpose of realizing hole- and electron-selective passivating contact, using a textured front indium tin oxide/MoO x structure and a planar rear a-SiO x/poly(Si(n+)) structure severally. The simple MoO x/n-Si heterojunction device obtains an efficiency of 16.7%. It is found that the accompanying ternary hybrid SiO x(Mo) interlayer (3.5-4.0 nm) is formed at the MoO x/n-Si boundary zone without preoxidation and is of amorphous structure, which is determined by a high-resolution transmission electron microscope with energy-dispersive X-ray spectroscopy mapping. The creation of lower-oxidation states in MoO x film indicates that the gradient distribution of SiO x with Mo element occurs within the interlayer, acting as a passivation of silicon substrate, which is revealed by X-ray photoelectron spectroscopy with depth etching. Specifically, calculations by density functional theory manifest that there are two half-filled levels (localized states) and three unoccupied levels (extended states) relating to Mo component in the ternary hybrid a-SiO x(Mo) interlayer, which play the roles of defect-assisted tunneling and direct tunneling for photogenerated holes, respectively. The transport process of photogenerated holes in the MoO x/n-Si heterojunction device is well-described by the tunnel-recombination model. Meanwhile, the a-SiO x/poly(Si(n+)) has been assembled on the rear of the device for direct tunneling of photoinduced electrons and blocking photoinduced holes.
RESUMO
Al2O3 on Si is known to form an ultrathin interfacial SiO2 during deposition and subsequent annealing, which creates a negative fixed charge ( Qfix) that enables field-effect passivation and low surface recombination velocities in Si solar cells. Various concepts were suggested to explain the origin of this negative Qfix. In this study, we investigate Al-O monolayers (MLs) from atomic layer deposition (ALD) sandwiched between deliberately grown/deposited SiO2 films. We show that the Al atoms have an ultralow diffusion coefficient (â¼4 × 10-18 cm2/s at 1000 °C), are deposited at a constant rate of â¼5 × 1014 Al atoms/(cm2 cycle) from the first ALD cycle, and are tetrahedral O-coordinated because the adjacent SiO2 imprints its tetrahedral near-order and bond length into the Al-O MLs. By variation in the tunnel-SiO2 thickness and the number of Al-O MLs, we demonstrate that the tetrahedral coordination alone is not sufficient for the formation of Qfix but that a SiO2/Al2O3 interface within a tunneling distance from the substrate must be present. The Al-induced acceptor states at these interfaces have energy levels slightly below the Si valence band edge and require charging by electrons from either the Si substrate or from Si/SiO2 dangling bonds to create a negative Qfix. Hence, tunneling imposes limitations for the SiO2 and Al2O3 layer thicknesses. In addition, Coulomb repulsion between the charged acceptor states results in an optimum number of Al-O MLs, i.e., separation of both interfaces. We achieve maximum negative Qfix of â¼5 × 1012 cm-2 (comparable to thick ALD-Al2O3 on Si) with â¼1.7 nm tunnel-SiO2 and just seven ALD-Al2O3 cycles (â¼8 Å) after optimized annealing at 850 °C for 30 s. The findings are discussed in the context of a passivating, hole-selective tunnel contact for high-efficiency Si solar cells.
RESUMO
A high recombination rate and high thermal budget for aluminum (Al) back surface field are found in the industrial p-type silicon solar cells. Direct metallization on lightly doped p-type silicon, however, exhibits a large Schottky barrier for the holes on the silicon surface because of Fermi-level pinning effect. As a result, low-temperature-deposited, dopant-free chromium trioxide (CrO x, x < 3) with high stability and high performance is first applied in a p-type silicon solar cell as a hole-selective contact at the rear surface. By using 4 nm CrO x between the p-type silicon and Ag, we achieve a reduction of the contact resistivity for the contact of Ag directly on p-type silicon. For further improvement, we utilize a CrO x (2 nm)/Ag (30 nm)/CrO x (2 nm) multilayer film on the contact between Ag and p-type crystalline silicon (c-Si) to achieve a lower contact resistance (40 mΩ·cm2). The low-resistivity Ohmic contact is attributed to the high work function of the uniform CrO x film and the depinning of the Fermi level of the SiO x layer at the silicon interface. Implementing the advanced hole-selective contacts with CrO x/Ag/CrO x on the p-type silicon solar cell results in a power conversion efficiency of 20.3%, which is 0.1% higher than that of the cell utilizing 4 nm CrO x. Compared with the commercialized p-type solar cell, the novel CrO x-based hole-selective transport material opens up a new possibility for c-Si solar cells using high-efficiency, low-temperature, and dopant-free deposition techniques.
RESUMO
Organic-inorganic hybrid perovskite solar cells (PSCs) have drawn worldwide intense research in recent years. Herein, we have first applied another p-type inorganic hole-selective contact material, CuS nanoparticles (CuS NPs), in an inverted planar heterojunction (PHJ) perovskite solar cell. The CuS NP-modification of indium tin oxide (ITO) has successfully tuned the surface work function from 4.9 to 5.1 eV but not affect the surface roughness and transmittance, which can effectively reduce the interfacial carrier injection barrier and facilitate high hole extraction efficiency between the perovskite and ITO layers. After optimization, the maximum power conversion efficiency (PCE) has been over 16% with low J-V hysteresis and excellent stability. Therefore, the low-cost solution-processed and stable CuS NPs would be an alternative interfacial modification material for industrial production in perovskite solar cells.