Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 18(37): e2203630, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35980947

RESUMO

Constructing hierarchical heterostructures is considered a useful strategy to regulate surface electronic structure and improve the electrochemical kinetics. Herein, the authors develop a hollow architecture composed of MoC1- x and WC1- x carbide nanoparticles and carbon matrix for boosting electrocatalytic hydrogen evolution and lithium ions storage. The hybridization of ultrafine nanoparticles confined in the N-doped carbon nanosheets provides an appropriate hydrogen adsorption free energy and abundant boundary interfaces for lithium intercalation, leading to the synergistically enhanced composite conductivity. As a proof of concept, the as-prepared catalyst exhibits outstanding and durable electrocatalytic performance with a low overpotential of 103 and 163 mV at 10 mA cm-2 , as well as a Tafel slope of 58 and 90 mV dec-1 in alkaline electrolyte and acid electrolyte, respectively. Moreover, evaluated as an anode for a lithium-ion battery, the as-resulted sample delivers a rate capability of 1032.1 mA h g-1 at 0.1 A g-1 . This electrode indicates superior cyclability with a capability of 679.1 mA h g-1 at 5 A g-1 after 4000 cycles. The present work provides a strategy to design effective and stable bimetallic carbide composites as superior electrocatalysts and electrode materials.

2.
Chemistry ; 28(31): e202200363, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35332603

RESUMO

As competitive next-generation rechargeable batteries, lithium-sulfur batteries (LSBs) suffer from the shuttle effect and the sluggish kinetics of intermediate polysulfides during charge and discharge processes, adversely affecting their electrochemical performances and actual applications. Herein, we demonstrate a polymer encapsulation strategy to synthesize atomic Fe and N co-doped hollow carbon nanospheres (Fe-NHC) with Fe-Nx sites for modifying commercial PP separator of LSBs to suppress the shuttle effect and promote the kinetics of intermediate polysulfides. Benefiting from the excellent structural design, the doped-N with positive charges could effectively adsorb negatively charged soluble polysulfides, help attract the soluble polysulfides to the Fe atoms and boost the catalytic transformation of the soluble polysulfides. Additionally, such a thin carbon shell could provide a short mass diffusion pathway and hence promote the adsorption and the catalytic conversion. Therefore, the battery with the Fe-NHC/PP separator delivers outstanding cycling and rate performances. At the large current density of 1 C, the specific capacity is 1079 mA h g-1 and maintains a low loss of 0.076 % per cycle within 500 cycles. Even at a harsh current density of 4 C, a high capacity of 824 mA h g-1 is still achieved, indicating the advantage of the Fe-NHC/PP separator in LSBs.

3.
Chemistry ; 27(68): 16879-16888, 2021 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-34357594

RESUMO

A novel hybrid photocatalyst composed of hollow carbon nanospheres (NCS) and graphitic carbon nitride (CN) curly nanosheets has been prepared by the calcination of a NCS precursor and freeze-dried urea. The optimized photocatalyst exhibits an efficient photocatalytic performance under visible light irradiation with a highest H2 generation rate of 3612.3 µmol g-1 h-1 , leading to an apparent quantum yield of 10.04 % at 420 nm, five times higher than the widely reported benchmark photocatalyst CN (2.01 % AQY). The materials characterization shows that NCS-modified CN curly nanosheets can promote photoelectron transfer and suppress charge recombination through their special coupling interface and NCS as an electron acceptor, which significantly improves the photocatalytic efficiency. Thus, this study provides an efficient strategy for the design of highly efficient photocatalyst, particularly suitable for a totally metal-free photocatalytic system.

4.
Nanotechnology ; 33(8)2021 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-34781279

RESUMO

Taking advantage of both Faradaic and carbonaceous materials is an efficient way to synthesize composite electrodes with enhanced performance for supercapacitors. In this study, NiCo2S4nanoflakes were grown on the surface of nitrogen-doped hollow carbon nanospheres (NHCSs), forming a NiCo2S4/NHCS composite with a core-shell structure. This three-dimensionally confined growth of NiCo2S4can effectively inhibit its aggregation and facilitate mass transport and charge transfer. Accordingly, the NiCo2S4/NHCS composite exhibited high cycling stability with only 9.2% capacitance fading after 10 000 cycles, outstanding specific capacitance of 902 F g-1at 1 A g-1, and it retained 90.6% of the capacitance at 20 A g-1. Moreover, an asymmetric supercapacitor composed of NiCo2S4/NHCS and activated carbon electrodes delivered remarkable energy density (31.25 Wh kg-1at 750 W kg-1), excellent power density (15003 W kg-1at 21.88 Wh kg-1), and satisfactory cycling stability (13.4% capacitance fading after 5000 cycles). The outstanding overall performance is attributed to the synergistic effect of the NiCo2S4shell and NHSC core, which endows the composite with a stable structure, high electrical conductivity, abundant active reaction sites, and short ion-transport pathways. The synthesized NiCo2S4/NHCS composite is a competitive candidate for the electrodes of high-performance supercapacitors.

5.
Nanotechnology ; 32(23)2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33657541

RESUMO

The development of low-cost, highly efficient and stable non-precious metal electrocatalyst for the oxygen reduction reaction (ORR) substituting Pt has attracted much attention. Herein, we developed a promising structural platform for the fabrication of carbon nanospheres functionalized with hollow nanostructures of M-NHCS (M = Fe, Co and Mn) based on metallo-deuteroporphyrins (MDP). Benefited from the multi-layered active sites and hollow substrate with more exposed active surface area, convenient channels for the transport of electrons, the resulting Fe-NHCS electrocatalysts exhibit enhanced electrocatalytic performance in ORR with an onset potential of 0.90 V (versus RHE), and a high selectivity in the direct 4-electron pathway. The Fe-NHCS electrocatalysts also show a good methanol tolerance superior to Pt/C catalysts and an extremely high stability with only 13.0 mV negative after 5000 cycles in alkaline media. Experiments have verified that maintaining the multi-layered Fe-N-C active sites and hollow substrate were essential to deliver the high performance for ORR. The work opens new avenues for utilizing MDP-based materials in future energy conversion applications.

6.
Environ Res ; 201: 111603, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34214563

RESUMO

Hollow nanospheres play a pivotal role in the electro-catalytic oxygen reduction reaction (ORR), which is a crucial step in microbial fuel cell (MFC) device. Herein, the hollow nitrogen-doped carbon nanospheres (HNCNS) were synthesized with the sacrifice of silica coated carbon nanospheres (CNS@SiO2) as template. HNCNS remarkably enhanced the ORR activity compared to the solid carbon and solid silica spheres. By tuning calcination temperature (800-1100 °C), the surface chemistry properties of HNCNS were effectively regulated. The optimal HNCNS-1000 catalyst which was calcined at 1000 °C exhibited the highest ORR activity in neutral media with the onset potential of 0.255 V and half-wave potential of -0.006 V (vs. Ag/AgCl). Single chamber MFC (SCMFC) assembled with HNCNS-1000 cathode unveiled comparable activity to a conventional Pt/C reference. It showed the highest maximum power density of 1307 ± 26 mW/m2, excellent output stability of 5.8% decline within 680 h, chemical oxygen demand (COD) removal of 94.0 ± 0.3% and coulombic efficiency (CE) of 7.9 ± 0.9%. These excellent results were attributed to a cooperative effect of the optimized surface properties (e.g., structural defects, relative content of pyrrolic nitrogen and specific surface area) and the formation of hollow nanosphere structure. Furthermore, the positive linear relationship of the structural defects and pyrrolic nitrogen species with the maximum power generation in SCMFC were clearly elucidated. This study demonstrated that the cost effective HNCNS-1000 was a promising alternative to commercial Pt/C catalyst for practical application in MFCs treating wastewater. Our result revealed the effectiveness of MFC fabricated with HNCNS-1000 cathode catalyst in terms of power generation and wastewater treatment.


Assuntos
Fontes de Energia Bioelétrica , Nanosferas , Carbono , Eletrodos , Nitrogênio , Oxigênio , Dióxido de Silício , Águas Residuárias
7.
J Nanobiotechnology ; 19(1): 137, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33985525

RESUMO

Photothermal therapy has attracted extensive attentions in cancer treatment due to its precise spatial-temporal controllability, minimal invasiveness, and negligible side effects. However, two major deficiencies, unsatisfactory heat conversion efficiency and limited tissue penetration depth, hugely impeded its clinical application. In this work, hollow carbon nanosphere modified with polyethylene glycol-graft-polyethylenimine (HPP) was elaborately synthesized. The synthesized HPP owns outstanding physical properties as a photothermal agent, such as uniform core-shell structure, good biocompatibility and excellent heat conversion efficiency. Upon NIR-II laser irradiation, the intracellular HPP shows excellent photothermal activity towards cancer cell killing. In addition, depending on the large internal cavity of HPP, the extended biomedical application as drug carrier was also demonstrated. In general, the synthesized HPP holds a great potential in NIR-II laser-activated cancer photothermal therapy.


Assuntos
Materiais Biocompatíveis , Carbono/química , Nanosferas/química , Fototerapia/métodos , Terapia Fototérmica , Animais , Portadores de Fármacos/química , Humanos , Neoplasias/terapia , Polietilenoglicóis
8.
Mikrochim Acta ; 188(1): 8, 2021 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-33389187

RESUMO

A Cu2+-modified carboxylated hollow carbon nanospheres (Cu2+-HCNSs-COOH) was designed with enhanced peroxidase-like activity for the detection of hydrogen peroxide (H2O2) and degradation of methylene blue (MB). Hollow polymer nanospheres were fabricated from aniline, pyrrole, Triton-100, and ammonium persulfate via confined interfacial copolymerization reaction, which can be pyrolyzed to create HCNSs with the hollow gap diameter of about 20 nm under high temperature. Combining the synergistic effect of coordination and electrostatic interaction, Cu2+-HCNSs-COOH was constructed by anchoring Cu2+ on the surface of HCNSs-COOH. Furthermore, Cu2+-HCNSs-COOH has higher affinity for 3,3',5,5'-tetramethylbenzidine and H2O2 of 0.20 mM and 0.88 mM, respectively. Based on the rapid response of Cu2+-HCNSs-COOH to H2O2, we constructed a colorimetric sensing platform by detecting the absorbance of the 3,3',5,5'-tetramethylbenzidine-H2O2 system at 652 nm for quantifying H2O2, which holds good linear relationship between 1 and 150 µM and has a detection limit of 0.61 µM. We also investigated the degradation of MB in the presence of Cu2+-HCNSs-COOH and H2O2, which can degrade 80.7% pollutants within 30 min. This research developed an unusual nanozyme for bioassays and water pollution treatment, which broadened the way for the rapid development of clinical diagnostics and water pollution treatment.


Assuntos
Peróxido de Hidrogênio/análise , Azul de Metileno/química , Nanosferas/química , Compostos de Anilina/química , Benzidinas/química , Carbono/química , Catálise , Compostos Cromogênicos , Colorimetria/métodos , Cobre/química , Cinética , Limite de Detecção , Micelas , Oxirredução , Pirróis/química , Purificação da Água/métodos
9.
Small ; : e2004770, 2020 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-33090697

RESUMO

To unlock the great potential of lithium metal anodes for high-performance batteries, a number of critical challenges must be addressed. The uncontrolled dendrite growth and volume changes during cycling (especially, at high rates) will lead to short lifespan, low Coulombic efficiency (CE), and security risks of the batteries. Here it is reported that Li metal anodes, employing the monodisperse, lithiophilic, robust, and large-cavity N-doped hollow carbon nanospheres (NHCNSs) as the host, show remarkable performances-high areal capacity (10 mAh cm-2), high CE (up to 99.25% over 500 cycles), complete suppression of dendrite growth, dense packing of Li anode, and an extremely smooth electrode surface during repeated Li plating/stripping. In symmetric cells, a highly stable voltage hysteresis over a long cycling life >1200 h is achieved, and a low and stable voltage hysteresis can be realized even at an ultrahigh current density of 64 mA cm-2. Furthermore, the NHCNSs-based anodes, when paired with a LiFePO4 (LFP) cathode in full cells, give rise to highly improved rate capability (104 mAh g-1 at 10 C) and cycling stability (91.4% capacity retention for 200 cycles), enabling a promising candidate for the next-generation high energy/power density batteries.

10.
Small ; 15(8): e1804874, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30690888

RESUMO

Herein, the design and synthesis of ZIF-67 nanoparticles (NPs) with tunable size grown inside hollow carbon nanospheres (ZIF-67@HCSs) via a space-confined strategy is reported. HCSs are first prepared via pyrolysis of polystyrene@polypyrrole (PS@PPy) composite nanospheres. Further infiltration of 2-methylimidazole (MI) into the HCSs (MI@HCSs) using a melting-diffusion strategy, followed by immersing MI@HCSs into Co(NO3 )2 solution through the pores and channels of HCSs results in the formation of ZIF-67@HCSs. The as-synthesized ZIF-67@HCSs with tunable ZIF-67 size is achieved by changing the amount of MI. Due to the high pore volume provided by nanoscale ZIF-67 NPs, the as-prepared core-shell ZIF-67@HCSs exhibit outstanding adsorption capacity for CO2 .

11.
Nanotechnology ; 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31842009

RESUMO

We regret to inform about an error in the above-mentioned paper, i.e., the raw Raman spectrum of copper-carbon DC arc discharge product prepared with 10% of CH4 in the gas mixture of CH4/He as shown in figure 5c. This raw spectrum and its deconvoluted components are replaced. The corresponding text about Raman results is re-described. These errors do not affect the discussion or interpretation of the results. We would like to apologize for any inconvenience caused.

12.
Biochem Biophys Res Commun ; 495(1): 867-872, 2018 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-29170134

RESUMO

Combined use of different therapies is conducive to improve the effectiveness of cancer therapy. The chemo-photothermal therapy is commonly used in one nanocarrier to provide an excellent synergistic effect for cancer therapy over photothermal therapy (PTT) or chemotherapy alone. In this study, biocompatible and monodisperse hollow carbon nanospheres (HCNs) were developed as a multifunctional platform for the delivery of paclitaxel (PTX) and PTT of cancer simultaneously. The mesoporous HCNs have large pore volume and proper channels for loading and release of PTX. Upon near-infrared (NIR) laser illumination, the photothermal mediator of HCNs could effectively convert absorbed light into heat, which triggered rapid release of chemotherapeutic drug from HCNs through dissociating the interactions between PTX and HCNs by heat energy. A large number of tumor cells were significantly destroyed when hct116 cells treated with PTX@HCNs were irradiated, which was mainly attribute to the synergistic result of HCNs-mediated photothermal damage and cytotoxicity of light-triggered PTX release.


Assuntos
Nanocápsulas/administração & dosagem , Nanoporos/ultraestrutura , Nanosferas/administração & dosagem , Neoplasias Experimentais/terapia , Paclitaxel/administração & dosagem , Fototerapia/métodos , Antineoplásicos/administração & dosagem , Carbono/química , Terapia Combinada/métodos , Células HCT116 , Humanos , Hipertermia Induzida/métodos , Terapia a Laser/métodos , Nanocápsulas/química , Nanocápsulas/ultraestrutura , Nanosferas/química , Neoplasias Experimentais/patologia , Resultado do Tratamento
13.
Small ; : e1800785, 2018 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-29931728

RESUMO

Despite the therapeutic usefulness of near-infrared irradiation (NIR)-induced potent photothermal effects (PTE) and photodynamic effects (PDE), they inevitably damage normal tissues, often posing threat to life when treating tumors adjacent to key organs or major blood vessels. In this study, the frequently overlooked, "weak" PTE and PDE (no killing capability) are employed to synergize chemotherapy against multidrug resistance (MDR) without impairing normal tissues. An NIR-responsive nanosystem, gold (Au)-nanodot-decorated hollow carbon nanospheres coated with hyaluronic acid, is synthesized as a doxorubicin (DOX) carrier with excellent photothermal and photodynamic properties. Upon low-level infrared irradiation, the mild heat of weak PTE moderately boosts DOX unloading, meanwhile the weak PDE moderately disturbs the P-glycoprotein function for retaining intracellular DOX by impairing mitochondrial ATP production. These two "moderate" alterations are quantitatively and functionally sufficient to augment the efficacy of chemotherapy in reversing MDR without damaging neighboring tissue. Thus, this work creates a gold-dot-decorated nanocarbon spheres based nanosystem for trimodal therapy, reveals the therapeutic value of the frequently ignored weak PTE/PDE, and demonstrates that synergizing with chemotherapy to overcome drug resistance does not necessarily require potent PTE/PDE.

14.
Chemistry ; 24(8): 1988-1997, 2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29235705

RESUMO

Hollow carbon nanospheres (HCNs) with specific surface areas up to 2949 m2 g-1 and pore volume up to 2.9 cm3 g-1 were successfully synthesized from polyaniline-co-polypyrrole hollow nanospheres by carbonization and CO2 activation. The cavity diameter and wall thickness of HCNs can be easily controlled by activation time. Owing to their large inner cavity and enclosed structure, HCNs are desirable carriers for encapsulating sulfur. To better understand the effects of pore characteristics and sulfur contents on the performances of lithium-sulfur batteries, three composites of HCNs and sulfur are prepared and studied in detail. The composites of HCNs with moderate specific surface areas and suitable sulfur content present a better performance. The first discharge capacity of this composite reaches 1401 mAh g-1 at 0.2 C. Even after 200 cycles, the discharge capacity remains at 626 mAh g-1 .

15.
Small ; 13(6)2017 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-27860353

RESUMO

Design and synthesis of porous and hollow carbon spheres have attracted considerable interest in the past decade due to their superior physicochemical properties and widespread applications. However, it is still a big challenge to achieve controllable synthesis of hollow carbon nanospheres with center-radial large mesopores in the shells and inner surface roughness. Herein, porous hollow carbon nanospheres (PHCNs) are successfully synthesized with tunable center-radial mesopore channels in the shells and crater-like inner surfaces by employing dendrimer-like mesoporous silica nanospheres (DMSNs) as hard templates. Compared with conventional mesoporous nanospheres, DMSN templates not only result in the formation of center-radial large mesopores in the shells, but also produce a crater-like inner surface. PHCNs can be tuned from open center-radial mesoporous shells to relatively closed microporous shells. After functionalization with polyethyleneimine (PEI) and poly(ethylene glycol) (PEG), PHCNs not only have negligible cytotoxicity, excellent photothermal property, and high coloading capacity of 482 µg of doxorubicin and 44 µg of siRNA per mg, but can also efficiently deliver these substances into cells, thus displaying enhanced cancer cell killing capacity by triple-combination therapy.


Assuntos
Carbono/química , Doxorrubicina/farmacologia , Hipertermia Induzida , Nanosferas/química , Fototerapia , RNA Interferente Pequeno/metabolismo , Células A549 , Materiais Biocompatíveis/farmacologia , Humanos , Nanosferas/ultraestrutura , Porosidade , Eletricidade Estática
16.
Int J Biol Macromol ; 254(Pt 3): 128076, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37972828

RESUMO

With the rapid science and technology advancement, the oil-water separation in oily wastewater has become an urgent problem, especially the emulsified oil-water mixtures. Hollow carbon spheres (HCSs) have tremendous potential in separating oil-water emulsions due to their rich porous channels and high surface-to-volume ratio. In this work, as-prepared chitosan/poly(γ-glutamic acid) nanoparticles crosslinked by Ni2+ (Ni2+/CS/γ-PGA NPs) were used as carbon precursor to fabricate HCSs. This strategy separated the formation process of the biomolecular microspheres and the carbonization process. Especially, the Ni2+/CS/γ-PGA NPs were fabricated from the self-assembly of chitosan and γ-PGA in aqueous solution and the crosslinking of Ni2+ via the electrostatic interactions, facilitating the formation of biomolecular microspheres and making the usable of biomolecule-based carbon precursors diversity. After lyophilization, Ni2+/CS/γ-PGA NPs powder was obtained, which was then carbonized in a tube furnace under N2 atmosphere. During the carbonization process, the nickel species aggregated together to form the core of nickel@carbon nanoparticles, and carbon formed the shell. At last, nickel nanoparticles were removed from the carbon framework by hydrochloric acid, obtaining HCSs with super-hydrophobicity and lipophilicity. The as-prepared HCSs exhibited excellent separation performance in oil-in-water emulsions.


Assuntos
Quitosana , Nanopartículas , Emulsões , Carbono , Níquel , Água
17.
Nanomaterials (Basel) ; 14(6)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535698

RESUMO

Carbon-based materials are one of the ideal negative electrode materials for potassium ion batteries. However, the limited active sites and sluggish diffusion ion kinetics still hinder its commercialization process. To address these problems, we design a novel carbon composite anode, by confining highly reactive short-chain sulfur molecules into nitrogen-doped hollow carbon nanospheres (termed SHC-450). The formation process involves the controlled synthesis of hollow polyaniline (PANI) nanospheres as precursors via an Ostwald ripening mechanism and subsequent sulfuration treatment. The high content of constrained short-chain sulfur molecules (20.94 wt%) and considerable N (7.15 wt%) ensure sufficient active sites for K+ storage in SHC-450. Accordingly, the SHC-450 electrode exhibits a high reversible capacity of 472.05 mAh g-1 at 0.1 A g-1 and good rate capability (172 mAh g-1 at 2 A g-1). Thermogravimetric analysis shows that SHC-450 has impressive thermal stability to withstand a high temperature of up to 640 °C. Ex situ spectroscopic characterizations reveal that the short-chain sulfur provides high capacity through reversible formation of K2S. Moreover, its special hollow structure not only provides ample space for highly active short-chain sulfur reactants but also effectively mitigates volume expansion during the sulfur conversion process. This work offers new perspectives on enhanced K+ storage performance from an interesting anode design and the space-limited domain principle.

18.
Materials (Basel) ; 16(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068027

RESUMO

The lignin-based mesoporous hollow carbon@MnO2 nanosphere composites (L-C-NSs@MnO2) were fabricated by using lignosulfonate as the carbon source. The nanostructured MnO2 particles with a diameter of 10~20 nm were uniformly coated onto the surfaces of the hollow carbon nanospheres. The obtained L-C-NSs@MnO2 nanosphere composite showed a prolonged cycling lifespan and excellent rate performance when utilized as an anode for LIBs. The L-C-NSs@MnO2 nanocomposite (24.6 wt% of MnO2) showed a specific discharge capacity of 478 mAh g-1 after 500 discharge/charge cycles, and the capacity contribution of MnO2 in the L-C-NSs@MnO2 nanocomposite was estimated ca. 1268.8 mAh g-1, corresponding to 103.2% of the theoretical capacity of MnO2 (1230 mAh g-1). Moreover, the capacity degradation rate was ca. 0.026% per cycle after long-term and high-rate Li+ insertion/extraction processes. The three-dimensional lignin-based carbon nanospheres played a crucial part in buffering the volumetric expansion and agglomeration of MnO2 nanoparticles during the discharge/charge processes. Furthermore, the large specific surface areas and mesoporous structure properties of the hollow carbon nanospheres significantly facilitate the fast transport of the lithium-ion and electrons, improving the electrochemical activities of the L-C-NSs@MnO2 electrodes. The presented work shows that the combination of specific structured lignin-based carbon nanoarchitecture with MnO2 provides a brand-new thought for the designation and synthesis of high-performance materials for energy-related applications.

19.
Biomater Adv ; 154: 213618, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37725871

RESUMO

Recently, nanozymes show increasing biological applications and promising possibilities for therapeutic intervention, while their mediated therapeutic outcomes are severely compromised due to their insufficient catalytic activity and specificity. Herein, ternary FeCoMn single atoms were incorporated into N-doped hollow mesoporous carbon nanospheres by in situ confinement pyrolysis at 800 °C as high-efficiency nanozyme. The confinement strategy endows the as-prepared nanozyme with the enhanced catalase- and oxidase-like activities. Specifically, the FeCoMn TSAs/N-HCSs nanozyme can decompose intracellular H2O2 to generate O2 and subsequently convert O2 to cytotoxic superoxide radicals (O2∙-), which can initiate cascade enzymatic reactions in tumor microenvironment (TME) for chemodynamic therapy (CDT). Moreover, the cancer therapy was largely enhanced by loading with doxorubicin (DOX). Impressively, the FeCoMn TSAs/N-HCSs nanozyme-mediated CDT and the DOX-induced chemotherapy endow the DOX@FeCoMn TSAs/N-HCSs with effective tumor inhibition, showing the superior therapeutic efficacy.


Assuntos
Nanosferas , Neoplasias , Peróxido de Hidrogênio , Benzopiranos , Carbono , Doxorrubicina/farmacologia , Doxorrubicina/uso terapêutico , Neoplasias/tratamento farmacológico
20.
ACS Appl Mater Interfaces ; 14(10): 12551-12561, 2022 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-35257574

RESUMO

Potassium-ion batteries (KIBs) are gradually being considered as an alternative for lithium-ion batteries because of their non-negligible advantages such as abundance and low expenditure of K, as well as higher electrochemical potential than another alternative─sodium-ion batteries. Nevertheless, when the electrode materials are inserted and extracted with large-sized K+ ions, the tremendous volume change will cause the collapse of the microstructures of electrodes and make the charging/discharging process irreversible, thus disapproving their extended application. In response to this, we put forward a feasible strategy to realize the in situ assembly of layered MoSe2 nanosheets onto N, P codoped hollow carbon nanospheres (MoSe2/NP-HCNSs) through thermal annealing and heteroatom doping strategies, and the resulting nanoengineered material can function well as an anode for KIBs. This cleverly designed nanostructure of MoSe2/NP-HCNS can broaden the interlayer spacing of MoSe2 to boost the efficiency of the insertion/extraction of K ions and also can accommodate large volume change-caused mechanical strain, facilitate electrolyte penetration, and prevent the aggregation of MoSe2 nanosheets. This synthetic method generates abundant defects to increase the amounts of active sites, as well as conductivity. The hierarchical nanostructure can effectively increase the proportion of pseudo-capacitance and promote interfacial electronic transfer and K+ diffusion, thus imparting great electrochemical performance. The MoSe2/NP-HCNS anode exhibits a high reversible capacity of 239.9 mA h g-1 at 0.1 A g-1 after 200 cycles and an ultralong cycling life of 161.1 mA h g-1 at 1 A g-1 for a long period of 1000 cycles. This nanoengineering method opens up new insights into the development of promising anode materials for KIBs.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa