Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 100
Filtrar
1.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38048080

RESUMO

Environmental perturbations are encountered by microorganisms regularly and will require metabolic adaptations to ensure an organism can survive in the newly presenting conditions. In order to study the mechanisms of metabolic adaptation in such conditions, various experimental and computational approaches have been used. Genome-scale metabolic models (GEMs) are one of the most powerful approaches to study metabolism, providing a platform to study the systems level adaptations of an organism to different environments which could otherwise be infeasible experimentally. In this review, we are describing the application of GEMs in understanding how microbes reprogram their metabolic system as a result of environmental variation. In particular, we provide the details of metabolic model reconstruction approaches, various algorithms and tools for model simulation, consequences of genetic perturbations, integration of '-omics' datasets for creating context-specific models and their application in studying metabolic adaptation due to the change in environmental conditions.


Assuntos
Algoritmos , Simulação por Computador
2.
Mol Ecol ; 32(9): 2351-2363, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36785954

RESUMO

Wolbachia are among the most prevalent and widespread endosymbiotic bacteria on Earth. Wolbachia's success in infecting an enormous number of arthropod species is attributed to two features: the range of phenotypes they induce in their hosts, and their ability to switch between host species. Whilst much progress has been made in elucidating their induced phenotypes, our understanding of Wolbachia host-shifting is still very limited: we lack answers to even fundamental questions concerning Wolbachia's routes of transfer and the importance of factors influencing host shifts. Here, we investigate the diversity and host-shift patterns of Wolbachia in scale insects, a group of arthropods with intimate associations with other insects that make them well suited to studying host shifts. Using Illumina multitarget amplicon sequencing of Wolbachia-infected scale insects and their direct associates we determined the identity of all Wolbachia strains. We then fitted a generalized additive mixed model to our data to estimate the influence of host phylogeny and the geographical distribution on Wolbachia strain sharing among scale insect species. The model predicts no significant contribution of host geography but strong effects of host phylogeny, with high rates of Wolbachia sharing among closely related species and a sudden drop-off in sharing with increasing phylogenetic distance. We also detected the same Wolbachia strain in scale insects and several intimately associated species (ants, wasps and flies). This indicates putative host shifts and potential routes of transfers via these associates and highlights the importance of ecological connectivity in Wolbachia host-shifting.


Assuntos
Hemípteros , Wolbachia , Animais , Hemípteros/microbiologia , Insetos/genética , Filogenia , Simbiose/genética , Vespas/genética , Wolbachia/genética
3.
Mol Phylogenet Evol ; 188: 107904, 2023 11.
Artigo em Inglês | MEDLINE | ID: mdl-37579893

RESUMO

The pea crabs, superfamily Pinnotheroidea, are exceptional among brachyuran crabs in their diverse symbiotic associations involving both inquilinism and protective symbiosis. While this group presents a rare opportunity for evolutionary comparative study of host switching and morphological evolution in marine macroinvertebrates, previous phylogenetic studies have been focused on systematics. Here, we reconstructed the most extensive phylogeny of Pinnotheroidea based on two mitochondrial and six nuclear markers, with the aim of elucidating the host switching pathways and the correlation between symbiotic lifestyles and selected morphological adaptations. Ancestral state reconstruction of host association revealed a monophyletic origin of symbiosis in the form of inquilinism. Subsequent shifts in microhabitat preference for burrows or worm tubes, and the move to protective symbiosis, primarily in the switch to mollusc endosymbiosis, contributed to radiation in Pinnotheridae. Further parallel colonisations of echinoderms and tunicates occurred but did not lead to extensive diversification, except in the Clypeasterophilus + Dissodactylus lineage, which experienced a unique switch to echinoderm ectosymbiosis. The evolution of the third maxillipeds, carapace shape and ambulatory pereiopods suggests a rather strong coupling with the symbiotic lifestyle (whether inquilinism or protective symbiosis). Phenotypic diversity of these characters was higher among species engaged in protective symbiosis, with convergence in form (or function) among those sharing the same host affiliation. Species having different host affiliations or symbiotic lifestyles might also exhibit convergence in the form of the three morphological traits, suggesting a common adaptive value of the specialisations. Pinnotherid crabs overall exhibited a lower trait diversity than the also symbiotic palaemonid shrimps with comparable species diversity. This may plausibly be attributed to differences in potential for morphological modification to serve additional functions among the traits analysed in the two groups, the less frequent host switching and the less diverse host affiliations, and thus a less complicated evolutionary history in pinnotherids.


Assuntos
Braquiúros , Palaemonidae , Animais , Braquiúros/genética , Filogenia , Simbiose/genética , Moluscos , Equinodermos
4.
Mol Phylogenet Evol ; 179: 107667, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36400419

RESUMO

Host-parasite coevolution is one of the fundamentals of evolutionary biology. Due to the intertwined evolutionary history of two interacting species and reciprocal coadaptation processes of hosts and parasites, we can expect that studying parasites will shed more light onto the evolutionary processes of their hosts. Monogenea (ectoparasitic Platyhelminthes) and their cyprinoid fish hosts represent one of the best models for studying host-parasite evolutionary relationships using a cophylogenetic approach. These parasites have developed remarkably high host specificity, where each host species often serves as a potential host for its own host-specific monogenean species. Here, the cophylogenetic relationships in the Dactylogyrus-Squalius system was investigated, as Squalius is one of several cyprinoid genera with puzzling phylogeography and inhabits all four major peri-Mediterranean peninsulas. Of 29 endemic Squalius species examined for the presence of Dactylogyrus parasites, a total of 13 Dactylogyrus species were collected from the gills of 20 Squalius species across a wide range of distribution. Phylogenetic reconstruction revealed a polyphyletic origin for Dactylogyrus species parasitizing congeneric Squalius, with four major clades being recognized. On the basis of the delimitation of host specificity, strict specialists parasitizing single host species, geographic specialists parasitizing congeners in a limited geographical region, and true generalists parasitizing congeners in various geographical regions were recognized in Dactylogyrus species parasitizing Squalius. The phylogenetic reconstruction of Squalius hosts revealed two major clades, the first encompassing only peri-Mediterranean species and the second including species from other Euro-Asian regions. Distance-based cophylogenetic methods did not reveal a statistically significant global cophylogenetic structure in the studied system; however, several host-parasite links among Iberian endemic species contributed significantly to the overall structure. The widest host range and associated genetic variability were recorded for D. folkmanovae, parasitizing nine Squalius species, and D. vistulae, parasitizing 13 Squalius species. Two different dispersion mechanisms and morphological adaptations to Squalius hosts were clearly reflected in the contrasting cophylogenetic patterns for these two species with different levels of host specificity. While host-parasite cospeciation plays an important role in diversification within D. folkmanovae, diversification within D. vistulae is driven mainly by host switching.


Assuntos
Cyprinidae , Parasitos , Platelmintos , Trematódeos , Animais , Filogenia , Trematódeos/genética , Platelmintos/genética , Interações Hospedeiro-Parasita/genética , Cyprinidae/genética
5.
Mol Phylogenet Evol ; 180: 107677, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36572162

RESUMO

Studies on parasite biogeography and host spectrum provide insights into the processes driving parasite diversification. Global geographical distribution and a multi-host spectrum make the tapeworm Ligula intestinalis a promising model for studying both the vicariant and ecological modes of speciation in parasites. To understand the relative importance of host association and biogeography in the evolutionary history of this tapeworm, we analysed mtDNA and reduced-represented genomic SNP data for a total of 139 specimens collected from 18 fish-host genera across a distribution range representing 21 countries. Our results strongly supported the existence of at least 10 evolutionary lineages and estimated the deepest divergence at approximately 4.99-5.05 Mya, which is much younger than the diversification of the fish host genera and orders. Historical biogeography analyses revealed that the ancestor of the parasite diversified following multiple vicariance events and was widespread throughout the Palearctic, Afrotropical, and Nearctic between the late Miocene and early Pliocene. Cyprinoids were inferred as the ancestral hosts for the parasite. Later, from the late Pliocene to Pleistocene, new lineages emerged following a series of biogeographic dispersal and host-switching events. Although only a few of the current Ligula lineages show narrow host-specificity (to a single host genus), almost no host genera, even those that live in sympatry, overlapped between different Ligula lineages. Our analyses uncovered the impact of historical distribution shifts on host switching and the evolution of host specificity without parallel host-parasite co-speciation. Historical biogeography reconstructions also found that the parasite colonized several areas (Afrotropical and Australasian) much earlier than was suggested by only recent faunistic data.


Assuntos
Cestoides , Parasitos , Animais , Parasitos/genética , Filogenia , Cestoides/genética , DNA Mitocondrial/genética , Genômica , Filogeografia
6.
Parasitology ; 150(13): 1167-1177, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37929579

RESUMO

Of the 5 human malarial parasites, Plasmodium falciparum and Plasmodium vivax are the most prevalent species globally, while Plasmodium malariae, Plasmodium ovale curtisi and Plasmodium ovale wallikeri are less prevalent and typically occur as mixed-infections. Plasmodium knowlesi, previously considered a non-human primate (NHP) infecting species, is now a cause of human malaria in Malaysia. The other NHP Plasmodium species, Plasmodium cynomolgi, Plasmodium brasilianum, Plasmodium inui, Plasmodium simium, Plasmodium coatneyi and Plasmodium fieldi cause malaria in primates, which are mainly reported in southeast Asia and South America. The non-knowlesi NHP Plasmodium species also emerged and were found to cross-transmit from their natural hosts (NHP) ­ to human hosts in natural settings. Here we have reviewed and collated data from the literature on the NHPs-to-human-transmitting non-knowlesi Plasmodium species. It was observed that the natural transmission of these NHP parasites to humans had been reported from 2010 onwards. This study shows that: (1) the majority of the non-knowlesi NHP Plasmodium mixed species infecting human cases were from Yala province of Thailand; (2) mono/mixed P. cynomolgi infections with other human-infecting Plasmodium species were prevalent in Malaysia and Thailand and (3) P. brasilianum and P. simium were found in Central and South America.


Assuntos
Malária , Plasmodium knowlesi , Animais , Humanos , Malária/parasitologia , Primatas , Sudeste Asiático , Plasmodium vivax
7.
Phytopathology ; 113(3): 413-422, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36287619

RESUMO

Phytoplasmas are small phloem-restricted and insect-transmissible bacteria that infect many plant species, including important crops and ornamental plants, causing severe economic losses. Our previous studies screened phytoplasmas in hundreds of leafhoppers collected from natural habitats worldwide and identified multiple genetically different phytoplasmas in seven leafhopper species (potential insect vectors). As an initial step toward determining the impact of these phytoplasmas on the ecosystem, ribulose 1,5-biphosphate carboxylase large subunit (rbcL), a commonly used plant DNA barcoding marker, was employed to identify the plant species that the phytoplasma-harboring leafhoppers feed on. The DNA of 17 individual leafhoppers was PCR amplified using universal rbcL primers. PCR products were cloned, and five clones per amplicon were randomly chosen for Sanger sequencing. Moreover, Illumina high-throughput sequencing on selected PCR products was conducted and confirmed no missing targets in Sanger sequencing. The nucleotide BLAST results revealed 14 plant species, including six well-known plant hosts of phytoplasmas such as tomato, alfalfa, and maize. The remaining species have not been documented as phytoplasma hosts, expanding our knowledge of potential plant hosts. Notably, the DNA of tomato and maize (apparently cultivated in well-managed croplands) was detected in some phytoplasma-harboring leafhopper species sampled in non-crop lands, suggesting the spillover/spillback risk of phytoplasma strains between crop and non-crop areas. Furthermore, our results indicate that barcoding (or metabarcoding) is a valuable tool to study the three-way interactions among phytoplasmas, plant hosts, and vectors. The findings contribute to a better understanding of phytoplasma host range, host shift, and disease epidemiology.


Assuntos
Hemípteros , Phytoplasma , Animais , Phytoplasma/genética , Código de Barras de DNA Taxonômico , Ecossistema , Doenças das Plantas/microbiologia , Insetos , Hemípteros/microbiologia , Produtos Agrícolas , DNA
8.
J Helminthol ; 97: e40, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37199513

RESUMO

Gyrodactylus sprostonae Ling, 1962 is a highly invasive parasite reported across freshwater environments of the northern hemisphere. The taxon was originally described from Carassius auratus (Linnaeus, 1758) and Cyprinus carpio Linnaeus, 1758 in China. This parasite has never been reported in Africa or the southern hemisphere. Recently, this taxon was collected from an indigenous yellowfish, Labeobarbus aeneus (Burchell, 1822), in the Vaal River, South Africa. The present study includes the conclusive identification of the gyrodactylid parasites collected from L. aeneus, including additional taxonomic data, using microscopy and molecular techniques. Microscopy included light microscopy (LM) of whole worms and scanning electron microscopy (SEM) of isolated haptoral sclerites. Additionally, morphometric data were obtained from SEM and compared to that generated using LM. For molecular analysis, the internal transcribed spacer (ITS) region of rDNA was amplified and phylogenetic topologies constructed. The specimens were morphometrically and genetically highly similar to other data for G. sprostonae. Additional point-to-point measurements and ITS rDNA sequences were generated for the taxon, contributing to the morphometric and molecular data for G. sprostonae. The study also includes the first study of the isolated haptoral sclerites of the taxon using SEM, with similar morphometric results to LM. This is the first record of G. sprostonae in the southern hemisphere and from a new, indigenous African host, L. aeneus, indicating host switching to smallmouth yellowfish. Furthermore, these results expand on the knowledge of the distribution of invasive parasites in South Africa, as well as Gyrodactylus species diversity in Africa.


Assuntos
Carpas , Cyprinidae , Doenças dos Peixes , Trematódeos , Animais , Filogenia , Cyprinidae/parasitologia , África Austral , DNA Ribossômico/genética , Doenças dos Peixes/parasitologia
9.
J Virol ; 94(9)2020 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-32075934

RESUMO

Polyomaviruses (PyVs) are small DNA viruses carried by diverse vertebrates. The evolutionary relationships of viruses and hosts remain largely unclear due to very limited surveillance in sympatric communities. In order to investigate whether PyVs can transmit among different mammalian species and to identify host-switching events in the field, we conducted a systematic study of a large collection of bats (n = 1,083) from 29 sympatric communities across China which contained multiple species with frequent contact. PyVs were detected in 21 bat communities, with 192 PyVs identified in 186 bats from 15 species within 6 families representing at least 28 newly described PyVs. Surveillance results and phylogenetic analyses surprisingly revealed three interfamily PyV host-switching events in these sympatric bat communities: two distinct PyVs were identified in two bat species in restricted geographical locations, while another PyV clustered phylogenetically with PyVs carried by bats from a different host family. Virus-host relationships of all discovered PyVs were also evaluated, and no additional host-switching events were found. PyVs were identified in different horseshoe bat species in sympatric communities without observation of host-switching events, showed high genomic identities, and clustered with each other. This suggested that even for PyVs with high genomic identities in closely related host species, the potential for host switching is low. In summary, our findings revealed that PyV host switching in sympatric bat communities can occur but is limited and that host switching of bat-borne PyVs is relatively rare on the predominantly evolutionary background of codivergence with their hosts.IMPORTANCE Since the discovery of murine polyomavirus in the 1950s, polyomaviruses (PyVs) have been considered highly host restricted in mammals. Sympatric bat communities commonly contain several different bat species in an ecological niche facilitating viral transmission, and they therefore represent a model to identify host-switching events of PyVs. In this study, we screened PyVs in a large number of bats in sympatric communities from diverse habitats across China. We provide evidence that cross-species bat-borne PyV transmission exists, though is limited, and that host-switching events appear relatively rare during the evolutionary history of these viruses. PyVs with close genomic identities were also identified in different bat species without host-switching events. Based on these findings, we propose an evolutionary scheme for bat-borne PyVs in which limited host-switching events occur on the background of codivergence and lineage duplication, generating the viral genetic diversity in bats.


Assuntos
Quirópteros/genética , Quirópteros/virologia , Polyomavirus/genética , Animais , Evolução Biológica , China , Variação Genética/genética , Genoma Viral/genética , Especificidade de Hospedeiro/genética , Infecções por Polyomavirus/virologia , Análise de Sequência de DNA/métodos
10.
Mol Phylogenet Evol ; 165: 107297, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34438049

RESUMO

Parasite diversification is influenced by many of the same factors that affect speciation of free-living organisms, such as biogeographic barriers. However, the ecology and evolution of the host lineage also has a major impact on parasite speciation. Here we explore the interplay between biogeography and host-association on the pattern of diversification in a group of ectoparasitic lice (Insecta: Phthiraptera: Penenirmus) that feeds on the feathers of woodpeckers, barbets, and honeyguides (Piciformes) and some songbirds (Passeriformes). We use whole genome sequencing of 41 ingroup and 12 outgroup samples to develop a phylogenomic dataset of DNA sequences from a reference set of 2395 single copy ortholog genes, for a total of nearly four million aligned base positions. The phylogenetic trees resulting from both concatenated and gene-tree/species-tree coalescent analyses were nearly identical and highly supported. These trees recovered the genus Penenirmus as monophyletic and identified several major clades, which tended to be associated with one major host group. However, cophylogenetic analysis revealed that host-switching was a prominent process in the diversification of this group. This host-switching generally occurred within single major biogeographic regions. We did, however, find one case in which it appears that a rare dispersal event by a woodpecker lineage from North America to Africa allowed its associated louse to colonize a woodpecker in Africa, even though the woodpecker lineage from North America never became established there.


Assuntos
Anoplura , Aves Canoras , Animais , Plumas , Interações Hospedeiro-Parasita/genética , Filogenia , Aves Canoras/genética , Aves Canoras/parasitologia
11.
Parasitology ; 148(8): 985-993, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33775262

RESUMO

Parasites have the power to impose significant regulatory pressures on host populations, making evolutionary patterns of host switching by parasites salient to a range of contemporary ecological issues. However, relatively little is known about the colonization of new hosts by parasitic, commensal and mutualistic eukaryotes of metazoans. As ubiquitous symbionts of coelomate animals, Blastocystis spp. represent excellent candidate organisms for the study of evolutionary patterns of host switching by protists. Here, we apply a big-data phylogenetic approach using archival sequence data to assess the relative roles of several host-associated traits in shaping the evolutionary history of the Blastocystis species-complex within an ecological framework. Patterns of host usage were principally determined by geographic location and shared environments of hosts, suggesting that weight of exposure (i.e. propagule pressure) represents the primary force for colonization of new hosts within the Blastocystis species-complex. While Blastocystis lineages showed a propensity to recolonize the same host taxa, these taxa were often evolutionarily unrelated, suggesting that historical contingency and retention of previous adaptions by the parasite were more important to host switching than host phylogeny. Ultimately, our findings highlight the ability of ecological theory (i.e. 'ecological fitting') to explain host switching and host specificity within the Blastocystis species-complex.


Assuntos
Infecções por Blastocystis/parasitologia , Blastocystis/fisiologia , Macaca fascicularis/parasitologia , Doenças dos Macacos/parasitologia , Animais , Teorema de Bayes , Blastocystis/classificação , Infecções por Blastocystis/epidemiologia , Código de Barras de DNA Taxonômico , DNA de Protozoário/química , DNA de Protozoário/isolamento & purificação , Ecossistema , Fezes/parasitologia , Adaptação ao Hospedeiro , Interações Hospedeiro-Parasita , Humanos , Indonésia/epidemiologia , Modelos Lineares , Doenças dos Macacos/epidemiologia , Análise Multivariada , Filogenia , Singapura/epidemiologia , Especificidade da Espécie
12.
J Mol Evol ; 88(5): 453-462, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32385625

RESUMO

We use all the currently known 405 Papillomavirus (PV) sequences, 343 curated PV sequences from both humans and animals from the PAVE data base, to analyse the recombination dynamics of these viruses at the whole genome levels. After showing some evidence of human and non-human primate PV recombination, we report a comprehensive recombination analysis of all currently known 82 Alphapapillomaviruses (Alpha-PVs). We carried out an exploratory study and found novel recombination events between High-Risk HPV Types and Macaca fascicularis PV1 (MfPV1), Macaca Fuscata PV2 (MfuPV2) and Pan Paniscus PV1 (PpPV1) Papillomaviruses. This is the first evidence of interactions between PVs from different hosts and hence postulates the likelihood of ancient host switching among Alpha-PVs. Notwithstanding these results should be interpreted with caution because the major and minor parents indicated by RDP4 program are simply the sequences in the alignment that most closely resemble the actual parents. We found statistically significant differences between the phylogenies of the PV sequences with recombination regions and PV sequences without recombination regions using the Shimodaira-Hasegawa phylogenetic incongruence testing. We show that not more than 76MYA Alpha-PVs were in the same biological niche, a pre-requisite for recombination, and as the hosts evolved and diversified, the viruses adapted to specific host niches which eventually led to coevolution with specific hosts before speciation of primate species. Thus providing evidence that in ancient times no earlier than the Cretaceous period of the Mesozoic age, Alpha-PVs recombined and switched hosts, but whether this host switching is occurring currently is unknown. However, a clearer picture of the PVs evolutionary landscape can only be achieved with the incremental discovery of PV sequences, especially from the animal kingdom.


Assuntos
Alphapapillomavirus/classificação , Filogenia , Recombinação Genética , Alphapapillomavirus/genética , Animais , Genoma Viral , Especificidade de Hospedeiro , Primatas/virologia
13.
Mol Phylogenet Evol ; 153: 106947, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866615

RESUMO

Parasite species evolve by switching to new hosts, cospeciating with their current hosts, or speciating on their current hosts. Vector transmitted parasites are expected to speciate by host switching, but confirming this hypothesis has proved challenging. Parasite DNA can be difficult to sequence, thus well resolved parasite phylogenies that are needed to distinguish modes of parasite speciation are often lacking. Here, we studied speciation in vector transmitted avian haemosporidian parasites in the genus Haemoproteus and their warbler hosts (family Acrocephalidae). We overcome the difficulty of generating parasite genetic data by combining nested long-range PCR with next generation sequencing to sequence whole mitochondrial genomes from 19 parasite haplotypes confined to Acrocephalidae warblers, resulting in a well-supported parasite phylogeny. We also generated a well-supported host phylogeny using five genes from published sources. Our phylogenetic analyses confirm that these parasites have speciated by host switching. We also found that closely related host species shared parasites which themselves were not closely related. Sharing of parasites by closely related host species is not due to host geographic range overlap, but may be the result of phylogenetically conserved host immune systems.


Assuntos
Genoma Mitocondrial/genética , Haemosporida/classificação , Haemosporida/genética , Filogenia , Infecções por Protozoários/parasitologia , Aves Canoras/parasitologia , Animais , Especiação Genética , Haplótipos , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita/genética , Infecções por Protozoários/transmissão
14.
Emerg Infect Dis ; 25(11): 2156-2158, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31625847

RESUMO

Diphyllobothriosis is a reemerging zoonotic disease because of global trade and increased popularity of eating raw fish. We present molecular evidence of host switching of a human-infecting broad fish tapeworm, Dibothriocephalus latus, and use of salmonids as intermediate or paratenic hosts and thus a source of human infection in South America.


Assuntos
Difilobotríase , Doenças dos Peixes/epidemiologia , Doenças dos Peixes/parasitologia , Interações Hospedeiro-Parasita , Salmonidae/parasitologia , Zoonoses/epidemiologia , Animais , Doenças dos Peixes/diagnóstico , Humanos , América do Sul/epidemiologia
15.
New Phytol ; 224(3): 1304-1315, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31494940

RESUMO

Interactions between mutualists, competitors, and antagonists have contrasting ecological effects that, sustained over generations, can influence micro- and macroevolution. Dissimilar benefits and costs for these interactions should cause contrasting co-diversification patterns between interacting clades, with prevalent co-speciation by mutualists, association loss by competitors, and host switching by antagonists. We assessed these expectations for a local assemblage of 26 fig species (Moraceae: Ficus), 26 species of mutualistic (pollinating), and 33 species of parasitic (galling) wasps (Chalcidoidea). Using newly acquired gene sequences, we inferred the phylogenies for all three clades. We then compared the three possible pairs of phylogenies to assess phylogenetic congruence and the relative frequencies of co-speciation, association duplication, switching, and loss. The paired phylogenies of pollinators with their mutualists and competitors were significantly congruent, unlike that of figs and their parasites. The distributions of macroevolutionary events largely agreed with expectations for mutualists and antagonists. By contrast, that for competitors involved relatively frequent association switching, as expected, but also unexpectedly frequent co-speciation. The latter result likely reflects the heterogeneous nature of competition among fig wasps. These results illustrate the influence of different interspecific interactions on co-diversification, while also revealing its dependence on specific characteristics of those interactions.


Assuntos
Biodiversidade , Ficus/fisiologia , Animais , Filogenia , Polinização/fisiologia , Especificidade da Espécie , Vespas
16.
Mol Phylogenet Evol ; 127: 179-189, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29753710

RESUMO

Recent studies show that host switching is much more frequent than originally believed and constitutes an important driver in evolution of host-parasite associations. However, its frequency and ecological mechanisms at the population level have been rarely investigated. We address this issue by analyzing phylogeny and population genetics of an extensive sample, from a broad geographic area, for commonly occurring parasites of the genus Eimeria within the abundant rodent genera Apodemus, Microtus and Myodes, using two molecular markers. At the most basal level, we demonstrate polyphyletic arrangement, i.e. multiple origin, of the rodent-specific clusters within the Eimeria phylogeny, and strong genetic/phylogenetic structure within these lineages determined at least partially by specificities to different host groups. However, a novel and the most important observation is a repeated occurrence of host switches among closely related genetic lineages which may become rapidly fixed. Within the studied model, this phenomenon applies particularly to the switches between the eimerians from Apodemus flavicollis/Apodemus sylvaticus and Apodemus agrarius groups. We show that genetic differentiation and isolation between A. flavicollis/A. sylvaticus and A. agrarius faunas is a secondary recent event and does not reflect host-parasite coevolutionary history. Rather, it provides an example of rapid ecology-based differentiation in the parasite population.


Assuntos
Biodiversidade , Coccídios/fisiologia , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Murinae/parasitologia , Animais , Coccídios/classificação , Coccídios/genética , Genética Populacional , Geografia , Haplótipos/genética , Interações Hospedeiro-Parasita/genética , Filogenia , Fatores de Tempo
17.
Oecologia ; 187(2): 507-519, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29484497

RESUMO

The traits used by phytophagous insects to find and utilize their ancestral hosts can lead to host range expansions, generally to closely related hosts that share visual and chemical features with ancestral hosts. Host range expansions often result from ecological fitting, which is the process whereby organisms colonize and persist in novel environments, use novel resources, or form novel associations with other species because of the suites of traits that they carry at the time they encounter the novel environment. Our objective in this review is to discuss the potential and constraints on host switching via ecological fitting in emerald ash borer, Agrilus planipennis, an ecologically and economically important invasive wood boring beetle. Once thought of as an ash (Fraxinus spp.) tree specialist, recent studies have revealed a broader potential host range than was expected for this insect. We discuss the demonstrated host-use capabilities of this beetle, as well as the potential for and barriers to the adoption of additional hosts by this beetle. We place our observations in the context of biochemical mechanisms that mediate the interaction of these beetles with their host plants and discuss whether evolutionary host shifts are a possible outcome of the interaction of this insect with novel hosts.


Assuntos
Besouros , Fraxinus , Animais , Ecologia , Larva , Madeira
18.
Bull Entomol Res ; 108(2): 175-184, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28770687

RESUMO

Diaeretiella rapae is an aphid parasitoid with potential for use in biological control strategies. However, several recent genetic studies have challenged the long held view that it is a generalist parasitoid. We investigated its ecological specialization and ability to use resources in cultivated and uncultivated areas. Ecological specialization would reduce its ability to exploit the diversity of aphid species, particularly in uncultivated areas, and to control pest aphids. Four D. rapae strains were studied, three reared on pest aphids on Brassicaceae and one strain on a non-pest aphid on Chenopodiaceae. For each strain, we performed host-switching experiments, with a total of six aphid species, five of which D. rapae parasitizes in France. We tested cross-breeding ability between strains to detect potential reproductive isolation linked to aphid host species in D. rapae. The strain reared on non-pest aphids was able to develop on aphid species from both cultivated and uncultivated plants. The strains reared on pest aphids, however, exclusively parasitized aphid species on cultivated Brassicaceae. In addition, reproductive isolation was detected between strains from uncultivated and cultivated plants. Thus, the D. rapae populations examined here appear to be showing ecological specialization or they may even be composed of a complex of cryptic species related to the aphid hosts. The role of Chenopodium album as a reservoir for D. rapae, by providing a habitat for non-pest aphids on which it can feed, appears to be severely limited, and thus its efficiency to maintain local populations of D. rapae in the vicinity of crops is questionable.


Assuntos
Afídeos/parasitologia , Especificidade de Hospedeiro , Interações Hospedeiro-Parasita , Vespas/fisiologia , Animais , Feminino , Hibridização Genética , Masculino
19.
Parasitol Res ; 117(9): 3039-3044, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29951706

RESUMO

Three species of Microsporidia were identified from a population of the beet webworm Loxostege sticticalis at prevalence rates of 35, 4, and 3%. The most prevalent parasite (Tubulinosema sp.) was similar to Tubulinosema acridophagus (99.8% ssrDNA sequence similarity) and was also isolated from the parasitoid Lydella thompsoni (Diptera, Tachinidae) that emerged from the beet webworms. In laboratory assays, spores of this Tubulinosema sp. showed an infection rate of up to 80% for both L. sticticalis and Galleria mellonella larvae. The spores were viable after 12 months of storage in dried infected cadavers. The second most prevalent parasite was closely related to Nosema furnacalis and Nosema granulosis (98.7% similarity). Fresh spores showed a 50% infection rate under laboratory conditions. The third most abundant parasite was identified as the honeybee pathogen Nosema ceranae (100% ssrDNA and 95-100% IGS similarity). In the laboratory, fresh spores of N. ceranae isolated from beet webworm and honey bee were infective to L. sticticalis larvae at the rates of 5 and 2%, respectively.


Assuntos
Larva/microbiologia , Lepidópteros/microbiologia , Nosema , Animais , Abelhas , Nosema/classificação , Nosema/genética , Nosema/isolamento & purificação , Esporos Fúngicos/isolamento & purificação
20.
J Gen Virol ; 98(11): 2771-2785, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-28984241

RESUMO

Polyomaviruses (PyVs) are considered to be highly host-specific in different mammalian species, with no well-supported evidence for host-switching events. We examined the species diversity and host specificity of PyVs in horseshoe bats (Rhinolophus spp.), a broadly distributed and highly speciose mammalian genus. We annotated six PyV genomes, comprising four new PyV species, based on pairwise identity within the large T antigen (LTAg) coding region. Phylogenetic comparisons revealed two instances of highly related PyV species, one in each of the Alphapolyomavirus and Betapolyomavirus genera, present in different horseshoe bat host species (Rhinolophus blasii and R. simulator), suggestive of short-range host-switching events. The two pairs of Rhinolophus PyVs in different horseshoe bat host species were 99.9 and 88.8 % identical with each other over their respective LTAg coding sequences and thus constitute the same virus species. To corroborate the species identification of the bat hosts, we analysed mitochondrial cytb and a large nuclear intron dataset derived from six independent and neutrally evolving loci for bat taxa of interest. Bayesian estimates of the ages of the most recent common ancestors suggested that the near-identical and more distantly related PyV species diverged approximately 9.1E4 (5E3-2.8E5) and 9.9E6 (4E6-18E6) years before the present, respectively, in contrast to the divergence times of the bat host species: 12.4E6 (10.4E6-15.4E6). Our findings provide evidence that short-range host-switching of PyVs is possible in horseshoe bats, suggesting that PyV transmission between closely related mammalian species can occur.


Assuntos
Quirópteros , Variação Genética , Especificidade de Hospedeiro , Infecções por Polyomavirus/veterinária , Polyomavirus/classificação , Polyomavirus/isolamento & purificação , Infecções Tumorais por Vírus/veterinária , África , Animais , Antígenos Virais de Tumores/genética , Evolução Molecular , Filogenia , Polyomavirus/fisiologia , Infecções por Polyomavirus/virologia , Análise de Sequência de DNA , Homologia de Sequência , Infecções Tumorais por Vírus/virologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa