Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 64
Filtrar
1.
Mol Biol Evol ; 40(3)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36881879

RESUMO

Increasing numbers of horizontal transfer (HT) of genes and transposable elements are reported in insects. Yet the mechanisms underlying these transfers remain unknown. Here we first quantify and characterize the patterns of chromosomal integration of the polydnavirus (PDV) encoded by the Campopleginae Hyposoter didymator parasitoid wasp (HdIV) in somatic cells of parasitized fall armyworm (Spodoptera frugiperda). PDVs are domesticated viruses injected by wasps together with their eggs into their hosts in order to facilitate the development of wasp larvae. We found that six HdIV DNA circles integrate into the genome of host somatic cells. Each host haploid genome suffers between 23 and 40 integration events (IEs) on average 72 h post-parasitism. Almost all IEs are mediated by DNA double-strand breaks occurring in the host integration motif (HIM) of HdIV circles. We show that despite their independent evolutionary origins, PDV from both Campopleginae and Braconidae wasps use remarkably similar mechanisms for chromosomal integration. Next, our similarity search performed on 775 genomes reveals that PDVs of both Campopleginae and Braconidae wasps have recurrently colonized the germline of dozens of lepidopteran species through the same mechanisms they use to integrate into somatic host chromosomes during parasitism. We found evidence of HIM-mediated HT of PDV DNA circles in no less than 124 species belonging to 15 lepidopteran families. Thus, this mechanism underlies a major route of HT of genetic material from wasps to lepidopterans with likely important consequences on lepidopterans.


Assuntos
Polydnaviridae , Vespas , Animais , Polydnaviridae/genética , Vespas/genética , Larva/genética , Cromossomos
2.
Adv Exp Med Biol ; 1454: 507-539, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008274

RESUMO

Trematode infections stand out as one of the frequently overlooked tropical diseases, despite their wide global prevalence and remarkable capacity to parasitize diverse host species and tissues. Furthermore, these parasites hold significant socio-economic, medical, veterinary and agricultural implications. Over the past decades, substantial strides have been taken to bridge the information gap concerning various "omic" tools, such as proteomics and genomics, in this field. In this edition of the book, we highlight recent progress in genomics and proteomics concerning trematodes with a particular focus on the advances made in the past 5 years. Additionally, we present insights into cutting-edge technologies employed in studying trematode biology and shed light on the available resources for exploring the molecular facets of this particular group of parasitic helminths.


Assuntos
Genômica , Proteômica , Trematódeos , Infecções por Trematódeos , Animais , Humanos , Genoma Helmíntico , Genômica/métodos , Proteínas de Helminto/genética , Proteínas de Helminto/metabolismo , Interações Hospedeiro-Parasita/genética , Proteômica/métodos , Trematódeos/genética , Infecções por Trematódeos/parasitologia
3.
Adv Exp Med Biol ; 1454: 285-322, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39008269

RESUMO

Intestinal trematodes are among the most common types of parasitic worms. About 76 species belonging to 14 families have been recorded infecting humans. Infection commonly occurs when humans eat raw or undercooked foods that contain the infective metacercariae. These parasites are diverse in regard to their morphology, geographical distribution and life cycle, which make it difficult to study the parasitic diseases that they cause. Many of these intestinal trematodes have been considered as endemic parasites in the past. However, the geographical limits and the population at risk are currently expanding and changing in relation to factors such as growing international markets, improved transportation systems, new eating habits in developed countries and demographic changes. These factors make it necessary to better understand intestinal trematode infections. This chapter describes the main features of human intestinal trematodes in relation to their biology, epidemiology, host-parasite relationships, pathogenicity, clinical aspects, diagnosis, treatment and control.


Assuntos
Enteropatias Parasitárias , Trematódeos , Infecções por Trematódeos , Animais , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/parasitologia , Humanos , Enteropatias Parasitárias/parasitologia , Enteropatias Parasitárias/epidemiologia , Trematódeos/patogenicidade , Trematódeos/fisiologia , Interações Hospedeiro-Parasita , Equinostomíase/parasitologia , Equinostomíase/epidemiologia , Echinostoma/fisiologia , Echinostoma/patogenicidade
4.
Parasitol Res ; 123(7): 269, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38995426

RESUMO

Nycteribiidae encompasses a specialized group of wingless blood-sucking flies that parasitize bats worldwide. Such relationships are frequently species- or genus-specific, indicating unique eco-evolutionary processes. However, despite this significance, comprehensive studies on the relationships of these flies with their hosts, particularly in the New World, have been scarce. Here, we provide a detailed description of the parasitological patterns of nycteribiid flies infesting a population of Myotis lavali bats in the Atlantic Forest of northeastern Brazil, considering the potential influence of biotic and abiotic factors on the establishment of nycteribiids on bat hosts. From July 2014 to June 2015, we captured 165 M. lavali bats and collected 390 Basilia travassosi flies. Notably, B. travassosi displayed a high prevalence and was the exclusive fly species parasitizing M. lavali in the surveyed area. Moreover, there was a significant predominance of female flies, indicating a female-biased pattern. The distribution pattern of the flies was aggregated; most hosts exhibited minimal or no parasitism, while a minority displayed heavy infestation. Sexually active male bats exhibited greater susceptibility to parasitism compared to their inactive counterparts, possibly due to behavioral changes during the peak reproductive period. We observed a greater prevalence and abundance of flies during the rainy season, coinciding with the peak reproductive phase of the host species. No obvious correlation was observed between the parasite load and bat body mass. Our findings shed light on the intricate dynamics of nycteribiid-bat interactions and emphasize the importance of considering various factors when exploring bat-parasite associations.


Assuntos
Quirópteros , Dípteros , Interações Hospedeiro-Parasita , Animais , Quirópteros/parasitologia , Dípteros/fisiologia , Brasil , Masculino , Feminino , Prevalência , Estações do Ano
5.
Parasitology ; 150(14): 1266-1276, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072659

RESUMO

Avian haemosporidians are protozoan parasites transmitted by insect vectors that infect birds worldwide, negatively impacting avian fitness and survival. However, the majority of haemosporidian diversity remains undescribed. Quantifying this diversity is critical to determining parasite­host relationships and host-switching potentials of parasite lineages as climate change induces both host and vector range shifts. In this study, we conducted a community survey of avian haemosporidians found in breeding birds on the Davis Mountains sky islands in west Texas, USA. We determined parasite abundance and host associations and compared our results to data from nearby regions. A total of 265 birds were screened and infections were detected in 108 birds (40.8%). Most positive infections were identified as Haemoproteus (36.2%), followed by Plasmodium (6.8%) and Leucocytozoon (0.8%). A total of 71 haemosporidian lineages were detected of which 39 were previously undescribed. We found that regional similarity influenced shared lineages, as a higher number of lineages were shared with avian communities in the sky islands of New Mexico compared to south Texas, the Texas Gulf Coast and central Mexico. We found that migratory status of avian host did not influence parasite prevalence, but that host phylogeny is likely an important driver.


Assuntos
Doenças das Aves , Haemosporida , Parasitos , Plasmodium , Infecções Protozoárias em Animais , Animais , Texas/epidemiologia , Haemosporida/genética , Aves/parasitologia , Filogenia , Prevalência , Doenças das Aves/epidemiologia , Doenças das Aves/parasitologia , Infecções Protozoárias em Animais/epidemiologia
6.
Int J Mol Sci ; 24(9)2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37175870

RESUMO

Fasciola hepatica is the main causative agent of fasciolosis, a zoonotic parasitic disease of growing public health concern. F. hepatica metacercariae are ingested by the host and excyst in the intestine, thereby releasing the newly excysted juveniles (FhNEJ), which traverse the gut wall and migrate towards the biliary ducts. Since blocking F. hepatica development is challenging after crossing of the intestinal wall, targeting this first step of migration might result in increased therapeutic success. The intestinal extracellular matrix (ECM) is constituted by a network of structural proteins, including laminin (LM) and fibronectin (FN), that provide mechanical support while acting as physical barrier against intestinal pathogens. Here, we employed ELISA and immunofluorescent assays to test for the presence of LM- and FN-binding proteins on a tegument-enriched antigenic fraction of FhNEJ, and further determined their identity by two-dimensional electrophoresis coupled to mass spectrometry. Additionally, we performed enzymatic assays that revealed for the first time the capability of the juvenile-specific cathepsin L3 to degrade LM, and that LM degradation by FhNEJ proteins is further potentiated in the presence of host plasminogen. Finally, a proteomic analysis showed that the interaction with LM triggers protein changes in FhNEJ that may be relevant for parasite growth and adaptation inside the mammalian host. Altogether, our study provides valuable insights into the molecular interplay between FhNEJ and the intestinal ECM, which may lead to the identification of targetable candidates for the development of more effective control strategies against fasciolosis.


Assuntos
Fasciola hepatica , Fasciolíase , Animais , Fasciola hepatica/metabolismo , Laminina/metabolismo , Proteômica , Intestinos , Espectrometria de Massas , Fasciolíase/parasitologia , Mamíferos
7.
Parasitology ; 149(14): 1811-1814, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36226653

RESUMO

Fish (Elasmobranchia and Actinopterygii) inhabit the majority of aquatic habitats globally. They are crucial for human nutrition but they may be negatively affected by parasitic protists and metazoan parasites. Fish parasites are also an extraordinary group of animals because of their ecological and evolutionary importance and unique adaptations to parasitism. They also play a key role in ecosystem functioning. In the present special issue, 13 review and research articles on major groups of fish parasites are provided to document the current advancement in our understanding of different aspects of their biology, ecology and associations with their fish hosts. The existing gaps in our knowledge of these peculiar animals are mapped and future trends in their research outlined.


Assuntos
Doenças dos Peixes , Parasitos , Animais , Humanos , Ecossistema , Interações Hospedeiro-Parasita , Peixes/parasitologia , Evolução Biológica , Doenças dos Peixes/parasitologia
8.
Parasitol Res ; 121(8): 2253-2262, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35624383

RESUMO

Hypostomus are abundant in Brazilian rivers and streams. In the Ivaí River, the loricariids represent 20.3% of the total species of the basin. Of these 13 species belong to Hypostomus. However, to date, there are no studies on these fish parasitic fauna. Thus, this research aimed to analyze the distribution of the parasitic infracommunity of six species of Hypostomus from the Ivaí River and investigate how the infracommunity is structured in these hosts. One hundred and twenty-eight fish were analyzed, belonging to six sympatric species of Hypostomus (Hypostomus hermanni, H. cochliodon, H. albopunctatus, H. regani, Hypostomus sp.1, and Hypostomus sp.2); of these, 92.9% were parasitized with at least one taxon, totaling 1478 specimens of parasites. The parasitic fauna was composed of the ectoparasites Trinigyrus anthus, T. carvalhoi, Unilatus unilatus (monogeneans), and Placobdella spp. (hirudinea), and the endoparasites Austrodiplostomum compactum (digenean) and Procamallanus annipetterae (nematode). The parasites exhibited similar patterns of infection in all hosts, including a low number of species, low diversity, and numerical dominance of a group of parasites. However, permutational multivariate analysis of variance (PERMANOVA) showed different parasite species compositions among the hosts. Hypostomus cochliodon and H. regani had the highest parasite richness, while Hypostomus sp.1 and Hypostomus sp.2 showed low abundance and intensity of parasitic infections. However, Hypostomus sp.1 showed the highest values of evenness, although the parasite composition in both species did not differ. The results presented herein contribute to increasing the knowledge about the parasitic fauna of Hypostomus spp. from the Ivaí River by presenting new hosts and locality records.


Assuntos
Peixes-Gato , Sanguessugas , Parasitos , Trematódeos , Animais , Brasil/epidemiologia , Peixes-Gato/parasitologia , Rios/parasitologia
9.
J Nematol ; 542022.
Artigo em Inglês | MEDLINE | ID: mdl-35386746

RESUMO

The many decades during which the cultivation of Cannabis sativa (hemp) was strongly restricted by law resulted in little research on potential pathogenic nematodes of this increasingly important crop. The primary literature was searched for hemp-nematode papers, resulting in citations from 1890 through 2021. Reports were grouped into two categories: (i) nematodes as phytoparasites of hemp, and (ii) hemp and hemp products and extracts for managing nematode pests. Those genera with the most citations as phytoparasites were Meloidogyne (root-knot nematodes, 20 papers), Pratylenchus (lesion nematodes, 7) and Ditylenchus (stem nematodes, 7). Several Meloidogyne spp. were shown to reproduce on hemp and some field damage has been reported. Experiments with Heterodera humuli (hop cyst nematode) were contradictory. Twenty-three papers have been published on the effects of hemp and hemp products on plant-parasitic, animal-parasitic and microbivorous species. The effects of hemp tissue soil incorporation were studied in five papers; laboratory or glasshouse experiments with aqueous or ethanol extracts of hemp leaves accounted for most of the remainder. Many of these treatments had promising results but no evidence was found of large-scale implementation. The primary literature was also searched for chemistry of C. sativa roots. The most abundant chemicals were classified as phytosterols and triterpenoids. Cannabinoid concentration was frequently reported due to the interest in medicinal C. sativa. Literature on the impact of root-associated chemicals on plant parasitic nematodes was also searched; in cases where there were no reports, impacts on free-living or animal parasitic nematodes were discussed.

10.
Mol Ecol ; 30(12): 2724-2737, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33219570

RESUMO

Gene transcription variation is known to contribute to disease susceptibility and adaptation, but we currently know very little about how contemporary natural selection shapes transcript abundance. Here, we propose a novel analytical framework to quantify the strength and form of ongoing natural selection at the transcriptome level in a wild vertebrate. We estimated selection on transcript abundance in a cohort of a wild salmonid fish (Salmo trutta) affected by an extracellular myxozoan parasite (Tetracapsuloides bryosalmonae) through mark-recapture field sampling and the integration of RNA-sequencing with classical regression-based selection analysis. We show, based on fin transcriptomes of the host, that infection by the parasite and subsequent host survival is linked to upregulation of mitotic cell cycle process. We also detect a widespread signal of disruptive selection on transcripts linked to host immune defence, host-pathogen interactions, cellular repair and maintenance. Our results provide insights into how selection can be measured at the transcriptome level to dissect the molecular mechanisms of contemporary evolution driven by climate change and emerging anthropogenic threats. We anticipate that the approach described here will enable critical information on the molecular processes and targets of natural selection to be obtained in real time.


Assuntos
Doenças dos Peixes , Nefropatias , Myxozoa , Animais , Seleção Genética , Truta
11.
Parasitology ; 148(13): 1697-1705, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-35060466

RESUMO

Anoplotaenia dasyuri Beddard, 1911 (Cestoda), from the Tasmanian devil, Sarcophilus harrisii (Boitard, 1842), is a taxonomic enigma, where a combination of morphological features, host type and geographical location have prevented it from being placed within a family and it is considered incertae sedis, despite its accepted validity. We performed a phylogenetic analysis of three A. dasyuri specimens collected from three Tasmanian devils using 18S and 28S rRNA sequences. Anoplotaenia dasyuri was found to have closest affinity with the family Paruterinidae, especially the genus Cladotaenia Cohn, 1901. The postulated theory of transfer of an ancestor of Anoplotaenia Beddard, 1911 transferring to the Tasmanian devil from an unrelated carnivorous host, such as an accipitriform or other carnivorous bird, is discussed and supported.


Assuntos
Carnívoros , Cestoides , Marsupiais , Animais , Cestoides/genética , Filogenia
12.
J Fish Dis ; 44(6): 689-699, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33428789

RESUMO

Global climate change is altering the abundance and spread of various parasites, which has important consequences not only for host-parasite interactions but also for the relationships between different host species. Here, we focus on the myxozoan endoparasite Tetracapsuloides bryosalmonae that causes temperature-dependent proliferative kidney disease (PKD) in salmonids. We characterized the temporal changes in the parasite load and the severity of PKD signs (renal hyperplasia, haematocrit) in two sympatric populations of wild brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). We found that both the parasite load and disease signs vary considerably between individuals, species, rivers and sampling periods. We showed that Atlantic salmon was able to slow down the initial parasite proliferation rate and subsequently tolerate high parasite burden without obvious disease signs. In contrast, the initial parasite proliferation rate was much higher in brown trout, which was followed by the development of severe PKD signs. Thus, the speed of parasite proliferation, rather than the absolute number of the parasites in the host kidney, may play an important role in interspecific variation in PKD susceptibility. To conclude, this study illustrates the usefulness of temporal perspective for understanding host defence mechanisms and climate change-mediated impacts in the wild.


Assuntos
Mudança Climática , Doenças dos Peixes/parasitologia , Nefropatias/veterinária , Myxozoa/fisiologia , Doenças Parasitárias em Animais/parasitologia , Salmo salar , Truta , Animais , Nefropatias/parasitologia , Simpatria , Fatores de Tempo
13.
BMC Evol Biol ; 20(1): 149, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33176694

RESUMO

BACKGROUND: Although the processes of co-evolution between parasites and their hosts are well known, evidence of co-speciation remains scarce. Microsporidian intracellular parasites, due to intimate relationships with their hosts and mixed mode of transmission (horizontal but also vertical, from mother to offspring), may represent an interesting biological model for investigating co-speciation. Amphipod crustaceans, especially gammarids, are regular hosts of microsporidian parasites, in particular the Dictyocoela spp., which have so far been found limited to these amphipods and are known to use a vertical mode of transmission. The amphipod genus Gammarus has a diversification history spanning the last 50-60 Mya and an extensive cryptic diversity in most of the nominal species. Here, we investigated the degree of co-diversification between Dictyocoela and Gammarus balcanicus, an amphipod with high degrees of ancient cryptic diversification and lineage endemism, by examining the genetic diversity of these parasites over the entire geographic range of the host. We hypothesised that the strong host diversification and vertical transmission of Dictyocoela would promote co-diversification. RESULTS: Using the parasite SSU rDNA as a molecular marker, analyzing 2225 host specimens from 88 sites covering whole host range, we found 31 haplogroups of Dictyocoela, 30 of which were novel, belonging to four Dictyocoela species already known to infect other Gammarus spp. The relationships between Dictyocoela and gammarids is therefore ancient, with the speciation in parasites preceding those of the hosts. Each novel haplogroup was nevertheless specific to G. balcanicus, leaving the possibility for subsequent co-diversification process during host diversification. A Procrustean Approach to Co-phylogeny (PACo) analysis revealed that diversification of Dictyocoela was not random with respect to that of the host. We found high degrees of congruence between the diversification of G. balcanicus and that of Dictyocoela roeselum and D. muelleri. However, we also found some incongruences between host and Dictyocoela phylogenies, e.g. in D. duebenum, probably due to host shifts between different G. balcanicus cryptic lineages. CONCLUSION: The evolutionary history of Dictyocoela and Gammarus balcanicus represents an example of an overall host-parasite co-diversification, including cases of host shifts.


Assuntos
Anfípodes , Coevolução Biológica , Microsporídios , Anfípodes/genética , Anfípodes/parasitologia , Animais , Feminino , Interações Hospedeiro-Parasita , Masculino , Microsporídios/genética , Filogenia
14.
J Helminthol ; 94: e126, 2020 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-32077391

RESUMO

This study describes two new species, Trinigyrus anthus n. sp. and Trinigyrus carvalhoi n. sp., from gills of Hypostomus spp. from the Upper Paraná River basin, Brazil. Trinigyrus peregrinus is redescribed based on examination of its holotype, paratypes and new material of specimens parasitizing Pterygoplichthys ambrosettii, also from the Upper Paraná River basin, Brazil. New morphological features were included in the diagnosis of the genus, such as the presence of a sclerotized border on the anchor base, and a weakly sclerotized fringe on the base of the male copulatory organ (MCO). Trinigyrus anthus n. sp. differs from other congeners by the shape of the MCO, presenting an enlarged base with sclerotized fringes resembling flower petals. Trinigyrus carvalhoi n. sp. and T. peregrinus are similar but can be differentiated from each other mainly by the sclerotization of the vagina (absent in the new species), and the morphology of the MCO (C-shaped versus one counterclockwise circle, respectively). For the first time, gene sequences of Trinigyrus spp. from Brazil were obtained (partial ribosomal 28S and mitochondrial cytochrome c oxidase I (mtCOI)). The genetic divergences among the new species and T. peregrinus varied from 2 to 3% (6‒18 pb) based on sequences of 28S ribosomal DNA (rDNA), and 6-7% (83‒92 pb) using mtCOI. Phylogenetic analyses based on partial 28S rDNA revealed that Trinigyrus, Heteropriapulus and Unilatus formed a monophyletic and well-supported clade of monogeneans from Neotropical freshwater loricariids, suggesting a closer relationship among these dactylogyrids and their hosts.


Assuntos
Peixes-Gato/parasitologia , Doenças dos Peixes/parasitologia , Trematódeos/classificação , Infecções por Trematódeos/veterinária , Animais , Brasil , DNA Ribossômico/genética , Complexo IV da Cadeia de Transporte de Elétrons/genética , Feminino , Água Doce/parasitologia , Brânquias/parasitologia , Masculino , Filogenia , RNA Ribossômico 28S/genética , Rios/parasitologia , Trematódeos/anatomia & histologia , Trematódeos/isolamento & purificação
15.
Adv Exp Med Biol ; 1154: 411-436, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31297769

RESUMO

Trematode infections are among the most neglected tropical diseases despite their worldwide distribution and extraordinary ability to parasitise many different host species and host tissues. Furthermore, these parasites are of great socioeconomic, medical, veterinary and agricultural importance. During the last 10 years, there have been increasing efforts to overcome the lack of information on different "omic" resources such as proteomics and genomics. Herein, we focus on the recent advances in genomics and proteomics from trematodes of human importance, including liver, blood, intestinal and lung flukes. We also provide information on the latest technologies applied to study the biology of trematodes as well as on the resources available for the study of the molecular aspects of this group of helminths.


Assuntos
Genoma Helmíntico , Genômica , Proteômica , Trematódeos , Infecções por Trematódeos , Animais , Genoma Helmíntico/genética , Genômica/tendências , Humanos , Parasitologia/tendências , Proteômica/tendências , Trematódeos/classificação , Trematódeos/genética , Infecções por Trematódeos/parasitologia
16.
J Nematol ; 49(1): 103-113, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28512382

RESUMO

The present study reports the occurrence of the genus Belonolaimus in the state of Sinaloa, Mexico, associated with native plants (i.e., Ziziphus amole and Stenocereus alamosensis) in a natural coastal ecosystem. Both morphological and molecular approaches were employed to characterize the Sinaloa population. Notwithstanding of some morphological and morphometric variation between Belonolaimus from Sinaloa and other valid species, the characterization indicates that this population might belong to the Belonolaimus longicaudatus species complex. Molecular analyses based on the 28S gene and ITS1-5.8S-ITS2 regions of the ribosomal RNA (rRNA) identified four major clades within Belonolaimus; however, none of the species including B. longicaudatus, B. gracilis, and B. euthychilus were supported as monophyletic; yet monophyly is argued to be a basic requirement of species status. Sequence divergence among different Belonolaimus populations and species varied according to the rRNA dataset (i.e., ITS1-5.8S-ITS2 > 28S > 18S) used, thus showing the importance of using genes with different rates of evolution to estimate species relationships. The fact that Belonolaimus has not been found in other cultivated (including on suitable hosts) areas in Sinaloa and that this population is relatively distant from the common B. longicaudatus groups (i.e., clades A and B) suggests that its appearance was not due to a recent introduction associated with the local agriculture.

17.
J Invertebr Pathol ; 139: 50-55, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27418147

RESUMO

A qPCR assay specific for zoospores of Catenaria uncinata, a fungal parasite in eggs of the midge Glyptotendipes lobiferus, was developed and used in parallel with traditional microscopic methods in a season-long study of a C. uncinata/G. lobiferus association in a local pond. Twenty-six consecutive weekly collections of egg masses were screened with a microscope to obtain percentages of infection and mortality in organogenetic egg masses and weekly water samples were processed by absolute quantification using qPCR to obtain estimates of zoospore density. Overall, 36.0% of G. lobiferus egg masses were infected to varying degrees and 11.2% of eggs were killed by C. uncinata. Continuous infection of egg masses occurred during a 6-wk period in May-June and a 7-wk period in September-October. Infection by C. uncinata was absent during a 10-week interval between periods of infection. Abrupt declines in zoospore density occurred during both infection periods and occurred only when water temperatures met or exceeded the viability threshold for zoospores (⩾31.0°C). The episodic death of zoospores during weeks in which egg infection and mortality levels were continuous likely resulted from distribution of zoospores throughout the water column and a temperature gradient in which zoospores sampled near the surface were subjected to lethal temperatures while non-sampled zoospores at lower depths were provided low temperature sanctuary. The hiatus of infection during the 10-week interval was likely due to lethal temperatures throughout the water column as average water temperatures exceeded 31.0°C over the period. A positive correlation between weekly zoospore densities obtained from qPCR and levels of infection/mortality in egg masses obtained from counts with a microscope supports the use of the qPCR assay alone in future studies that can rapidly and accurately determine parasite presence, prevalence and geographical range.


Assuntos
Blastocladiomycota , Chironomidae/parasitologia , Interações Hospedeiro-Parasita/fisiologia , Micoses/veterinária , Animais , Microclima , Óvulo/parasitologia , Prevalência
18.
Int J Parasitol ; 54(2): 65-88, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37838302

RESUMO

Coral-associated fauna predominantly consists of invertebrates and constitutes an important component of coral reef biodiversity. The symbionts depend on their hosts for food, shelter and substrate. They may act as parasites by feeding on their hosts, by overgowing their polyps, or by excavating their skeletons. Because some of these species partly reside inside their hosts, they may be cryptic and can easily be overlooked in biodiversity surveys. Since no quantitative overview is available about these inter-specific relationships, this present study adresses variation in host ranges and specificity across four large coral-associated taxa and between the Atlantic and Indo-Pacific oceans. These taxa are: coral barnacles (Pyrgomatidae, n = 95), coral gall crabs (Cryptochiridae, n = 54), tubeworms (Serpulidae, n = 31), and date mussels (Lithophaginae, n = 23). A total of 335 host coral species was recorded. An index of host specificity (STD) was calculated per symbiont species, based on distinctness in taxonomic host range levels (species, genus, family, etc.). Mean indices were statistically compared among the four associated taxa and the two oceanic coral reef regions. Barnacles were the most host-specific, tubeworms the least. Indo-Pacific associates were approximately 10 times richer in species and two times more host-specific than their Atlantic counterparts. Coral families varied in the number of associates, with some hosting none. This variation could be linked to host traits (coral growth form, maximum host size) and is most probably also a result of the evolutionary history of the interspecific relationships.


Assuntos
Antozoários , Recifes de Corais , Animais , Biodiversidade , Evolução Biológica , Especificidade de Hospedeiro
19.
Int J Parasitol Parasites Wildl ; 25: 100979, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-39297147

RESUMO

The phenomenon of cuckoos' brood parasitism is well known and can be investigated using applied mathematical techniques. Among adaptive features of this phenomenon are certain egg parameters that ensure their shortened incubation period (I) and thus the successful survival of their offspring. In particular, the volume of a cuckoo egg is not less than, or exceeds, that of the host species, which should, in theory, increase I. Also, cuckoo eggs have thicker shell than that of nest hosts. Here, we analyzed the available geometric dimensions of eggs in 447 species and found an inverse correlation (-0.585, p < 0.05) between I and the shell thickness-to-egg surface area ratio (T/S). A mathematical relationship was derived to calculate I depending on T/S. This premise was confirmed by comparative calculations using egg images of two parasitic species, common (Cuculus canorus) and plaintive cuckoo (Cacomantis merulinus) and their hosts: great reed warbler (Acrocephalus arundinaceus), European robin (Erithacus rubecula), rufescent prinia (Prinia rufescens), and common tailorbird (Orthotomus sutorius). An average calculated I value for cuckoo eggs was one day less than that for host eggs. Our findings unravel additional details of how cuckoos adapt to brood parasitism and specific host-parasite relationships.

20.
Microorganisms ; 11(1)2023 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-36677444

RESUMO

Metchnikovellids (Microsporidia: Metchnikovellida) are poorly studied hyperparasitic microsporidia that live in gregarines inhabiting the intestines of marine invertebrates, mostly polychaetes. Our recent studies showed that diversity of metchnikovellids might be significantly higher than previously thought, even within a single host. Four species of metchnikovellids were found in the gregarines inhabiting the gut of the polychaete Pygospio elegans from littoral populations of the White and Barents Seas: the eugregarine Polyrhabdina pygospionis is the host for Metchnikovella incurvata and M. spiralis, while the archigregarine Selenidium pygospionis is the host for M. dogieli and M. dobrovolskiji. The most common species in the White Sea is M. incurvata, while M. dobrovolskiji prevails in the Barents Sea. Gregarines within a single worm could be infected with different metchnikovellid species. However, co-infection of one and the same gregarine with several species of metchnikovellids has never been observed. The difference in prevalence and intensity of metchnikovellid invasion apparently depends on the features of the life cycle and on the development strategies of individual species.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa