Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
1.
Environ Res ; 250: 118494, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38365061

RESUMO

Microplastics (MPs), the emerging pollutants appeared in water environment, have grabbed significant attention from researchers. The quantitative method of spherical MPs is the premise and key for the study of MPs in laboratory researches. However, the manual counting is time-consuming, and the existing semi-automated analysis lacked of robustness. In this study, a highly accurate quantification method for spherical MPs, called VS120-MC was proposed. VS120-MC consisted of the digital slide scanner VS120 and the MPs image processing software, MPs-Counter. The full-area scanning photography was employed to fundamentally avoid the error caused by random or partition sampling modes. To accomplish high-performance batch recognition, the Weak-Circle Elimination Algorithm (WEA) and the Variable Coefficient Threshold (VCT) was developed. Finally, lower than 0.6% recognition error rate of simulated images with different aggregated indices was achieved by MPs-Counter with fast processing speed (about 2 s/image). The smallest size for VS120-MC to detect was 1 µm. And the applicability of VS120-MC in real water body was investigated. The measured value of 1 µm spherical MPs in ultra-pure water and two kinds of polluted water after digestion showed a good linear relationship with the Manual measurements (R2 = 0.982,0.987 and 0.978, respectively). For 10 µm spherical MPs, R2 reached 0.988 for ultra-pure water and 0.984 for both of the polluted water. MPs-Counter also showed robustness when using the same set of parameters processing the images with different conditions. Overall, VS120-MC eliminated the error caused by traditional photography and realized an accurate, efficient, stable image processing tool, providing a reliable alternative for the quantification of spherical MPs.


Assuntos
Monitoramento Ambiental , Processamento de Imagem Assistida por Computador , Microplásticos , Poluentes Químicos da Água , Microplásticos/análise , Processamento de Imagem Assistida por Computador/métodos , Poluentes Químicos da Água/análise , Monitoramento Ambiental/métodos , Monitoramento Ambiental/instrumentação , Algoritmos
2.
Sensors (Basel) ; 24(15)2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39123851

RESUMO

This work presents a novel approach to enhancing iris recognition systems through a two-module approach focusing on low-level image preprocessing techniques and advanced feature extraction. The primary contributions of this paper include: (i) the development of a robust preprocessing module utilizing the Canny algorithm for edge detection and the circle-based Hough transform for precise iris extraction, and (ii) the implementation of Binary Statistical Image Features (BSIF) with domain-specific filters trained on iris-specific data for improved biometric identification. By combining these advanced image preprocessing techniques, the proposed method addresses key challenges in iris recognition, such as occlusions, varying pigmentation, and textural diversity. Experimental results on the Human-inspired Domain-specific Binarized Image Features (HDBIF) Dataset, consisting of 1892 iris images, confirm the significant enhancements achieved. Moreover, this paper offers a comprehensive and reproducible research framework by providing source codes and access to the testing database through the Notre Dame University dataset website, thereby facilitating further application and study. Future research will focus on exploring adaptive algorithms and integrating machine learning techniques to improve performance across diverse and unpredictable real-world scenarios.


Assuntos
Algoritmos , Identificação Biométrica , Processamento de Imagem Assistida por Computador , Iris , Iris/diagnóstico por imagem , Humanos , Identificação Biométrica/métodos , Processamento de Imagem Assistida por Computador/métodos , Biometria/métodos , Bases de Dados Factuais , Aprendizado de Máquina
3.
Microsc Microanal ; 29(3): 1062-1070, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37749694

RESUMO

The size of nanoparticles is a critical parameter with regard to their performance. Therefore, precise measurement of the size distribution is often required. While electron microscopy (EM) is a useful tool to image large numbers of particles at once, manual analysis of individual particles in EM images is a time-consuming and labor-intensive task. Therefore, reliable automatic detection methods have long been desired. This paper introduces a novel automatic particle analysis software package based on the circular Hough transform (CHT). Our software package includes novel features to enhance precise particle analysis capabilities. We applied the CHT algorithm in an iterative workflow, which ensures optimal detection over wide radius intervals, to deal with overlapping particles. In addition, smart intensity criteria were implemented to resolve common difficult cases that lead to false particle detection. Implementing these criteria enabled an effective and precise analysis by minimizing detection of false particles. Overall, our approach showed reliable particle analysis results by resolving common types of particle overlaps and deformation with only negligible errors.

4.
Microsc Microanal ; 29(2): 777-785, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-37749743

RESUMO

In hereditary spherocytosis (HS), genetic mutations in the cell membrane and cytoskeleton proteins cause structural defects in red blood cells (RBCs). As a result, cells are rigid and misshapen, usually with a characteristic spherical form (spherocytes), too stiff to circulate through microcirculation regions, so they are prone to undergo hemolysis and phagocytosis by splenic macrophages. Mild to severe anemia arises in HS, and other derived symptoms like splenomegaly, jaundice, and cholelithiasis. Although abnormally shaped RBCs can be identified under conventional light microscopy, HS diagnosis relies on several clinical factors and sometimes on the results of complex molecular testing. It is specially challenging when other causes of anemia coexist or after recent blood transfusions. We propose two different approaches to characterize RBCs in HS: (i) an immunofluorescence assay targeting protein band 3, which is affected in most HS cases and (ii) a three-dimensional morphology assay, with living cells, staining the membrane with fluorescent dyes. Confocal laser scanning microscopy (CLSM) was used to carry out both assays, and in order to complement the latter, a software was developed for the automated detection of spherocytes in blood samples. CLSM allowed the precise and unambiguous assessment of cell shape and protein expression.


Assuntos
Eritrócitos , Proteínas de Membrana , Microscopia Confocal , Membrana Celular , Forma Celular
5.
Sensors (Basel) ; 23(21)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37960593

RESUMO

Reliable quality control of laser welding on power batteries is an important issue due to random interference in the production process. In this paper, a quality inspection framework based on a two-branch network and conventional image processing is proposed to predict welding quality while outputting corresponding parameter information. The two-branch network consists of a segmentation network and a classification network, which alleviates the problem of large training sample size requirements for deep learning by sharing feature representations among two related tasks. Moreover, coordinate attention is introduced into feature learning modules of the network to effectively capture the subtle features of defective welds. Finally, a post-processing method based on the Hough transform is used to extract the information of the segmented weld region. Extensive experiments demonstrate that the proposed model can achieve a significant classification performance on the dataset collected on an actual production line. This study provides a valuable reference for an intelligent quality inspection system in the power battery manufacturing industry.

6.
Sensors (Basel) ; 23(8)2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-37112411

RESUMO

RoboCupJunior is a project-oriented competition for primary and secondary school students that promotes robotics, computer science and programing. Through real life scenarios, students are encouraged to engage in robotics in order to help people. One of the popular categories is Rescue Line, in which an autonomous robot has to find and rescue victims. The victim is in the shape of a silver ball that reflects light and is electrically conductive. The robot should find the victim and place it in the evacuation zone. Teams mostly detect victims (balls) using random walk or distant sensors. In this preliminary study, we explored the possibility of using a camera, Hough transform (HT) and deep learning methods for finding and locating balls with the educational mobile robot Fischertechnik with Raspberry Pi (RPi). We trained, tested and validated the performance of different algorithms (convolutional neural networks for object detection and U-NET architecture for sematic segmentation) on a handmade dataset made of images of balls in different light conditions and surroundings. RESNET50 was the most accurate, and MOBILENET_V3_LARGE_320 was the fastest object detection method, while EFFICIENTNET-B0 proved to be the most accurate, and MOBILENET_V2 was the fastest semantic segmentation method on the RPi. HT was by far the fastest method, but produced significantly worse results. These methods were then implemented on a robot and tested in a simplified environment (one silver ball with white surroundings and different light conditions) where HT had the best ratio of speed and accuracy (4.71 s, DICE 0.7989, IoU 0.6651). The results show that microcomputers without GPUs are still too weak for complicated deep learning algorithms in real-time situations, although these algorithms show much higher accuracy in complicated environment situations.

7.
Sensors (Basel) ; 23(4)2023 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-36850695

RESUMO

Frequency hopping spread spectrum (FHSS) applies widely to communication and radar systems to ensure communication information and channel signal quality by tuning frequency within a wide frequency range in a random sequence. An efficient signal processing scheme to resolve the timing and duration signature from an FHSS signal provides crucial information for signal detection and radio band management purposes. In this research, hopping time was first identified by a two-dimensional temporal correlation function (TCF). The timing information was shown at TCF phase discontinuities. To enhance and resolve the timing signature of TCF in a noisy environment, three stages of signature enhancement and morphological matching processes were applied: first, computing the TCF of the FHSS signal and enhancing discontinuities via wavelet transform; second, a dual-diagonal edge finding scheme to extract the timing pattern signature and eliminate mismatching distortion morphologically; finally, Hough transform resolved the agile frequency timing from purified line segments. A grand-scale Monte Carlo simulation of the FHSS signals with additive white Gaussian noise was carried out in the research. The results demonstrated reliable hopping time estimation obtained in SNR at 0 dB and above, with a minimal false detection rate of 1.79%, while the prior related research had an unattended false detection rate of up to 35.29% in such a noisy environment.

8.
Int J Mol Sci ; 24(5)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36901704

RESUMO

Circulating Tumor Cells (CTCs) are considered a prognostic marker in pancreatic cancer. In this study we present a new approach for counting CTCs and CTC clusters in patients with pancreatic cancer using the IsofluxTM System with the Hough transform algorithm (Hough-IsofluxTM). The Hough-IsofluxTM approach is based on the counting of an array of pixels with a nucleus and cytokeratin expression excluding the CD45 signal. Total CTCs including free and CTC clusters were evaluated in healthy donor samples mixed with pancreatic cancer cells (PCCs) and in samples from patients with pancreatic ductal adenocarcinoma (PDAC). The IsofluxTM System with manual counting was used in a blinded manner by three technicians who used Manual-IsofluxTM as a reference. The accuracy of the Hough-IsofluxTM approach for detecting PCC based on counted events was 91.00% [84.50, 93.50] with a PCC recovery rate of 80.75 ± 16.41%. A high correlation between the Hough-IsofluxTM and Manual-IsofluxTM was observed for both free CTCs and for clusters in experimental PCC (R2 = 0.993 and R2 = 0.902 respectively). However, the correlation rate was better for free CTCs than for clusters in PDAC patient samples (R2 = 0.974 and R2 = 0.790 respectively). In conclusion, the Hough-IsofluxTM approach showed high accuracy for the detection of circulating pancreatic cancer cells. A better correlation rate was observed between Hough-IsofluxTM approach and with the Manual-IsofluxTM for isolated CTCs than for clusters in PDAC patient samples.


Assuntos
Carcinoma Ductal Pancreático , Células Neoplásicas Circulantes , Neoplasias Pancreáticas , Humanos , Biomarcadores Tumorais/metabolismo , Carcinoma Ductal Pancreático/patologia , Células Neoplásicas Circulantes/patologia , Neoplasias Pancreáticas/patologia , Algoritmos , Neoplasias Pancreáticas
9.
J Microsc ; 285(2): 95-111, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34870328

RESUMO

The information of crystal structure and orientation can be provided by analysing the EBSD (electron backscatter diffraction) patterns which are obtained with the EBSD devices. The reliability and accuracy of the information relies on the location of bands and intersections of the EBSD patterns. In this study, a method is proposed to automatically obtain the locations and intersections of the EBSD patterns, that is, Kikuchi bands. The proposed method uses Radon transform and progressive probabilistic Hough transform to detect straight lines and line segments of the Kikuchi band edges, respectively. Then, Kikuchi bands can be presented by fitting the hyperbolas with the endpoints of line segments. The results can numerically describe the information of Kikuchi bands. Experimental results show that the method is robust and can detect more accurate Kikuchi bands and intersections.


In this paper, a novel method is proposed to detect the electron backscatter diffraction patterns. Electron backscatter diffraction patterns are a class images consisting of multiple parallel lines of light and dark pairs. The bands on the image can reflect the information of crystal structure and orientation. Most existing methods are complex to implement and computationally intensive in detecting edges and intersections of bands. Therefore, we designed a fast and easy-to-implement detection method with relatively good accuracy to overcome the drawbacks of existing methods. Our method is based on straight line detection and line segment detection. After matching the straight line detection results and the line segment detection results, the edges are obtained by fitting the line segment endpoints using a hyperbola, and the intersections are obtained by using centerline positioning. Experiments have shown that our method has good accuracy and can detect less perfect patterns . In addition, our method is easy to implement and and is valuable for computationally constrained cases.

10.
Nanotechnology ; 33(19)2022 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-34874318

RESUMO

The occurrence of strain is inevitable for the growth of lattice mismatched heterostructures. It affects greatly the mechanical, electrical and optical properties of nano-objects. It is also the case for nanowires which are characterized by a high surface to volume ratio. Thus, the knowledge of the strain distribution in nano-objects is critically important for their implementation into devices. This paper presents an experimental data for II-VI semiconductor system. Scanning nanobeam electron diffraction strain mapping technique for hetero-nanowires characterized by a large lattice mismatch (>6% in the case of CdTe/ZnTe) and containing segments with nano-twins has been described. The spatial resolution of about 2 nm is 10 times better than obtained in synchrotron nanobeam systems. The proposed approach allows us to overcome the difficulties related to nanowire thickness variations during the acquisition of the nano-beam electron diffraction data. In addition, the choice of optimal parameters used for the acquisition of nano-beam diffraction data for strain mapping has been discussed. The knowledge of the strain distribution enables, in our particular case, the improvement of the growth model of extremely strained axial nanowires synthetized by vapor-liquid solid growth mechanism. However, our method can be applied for the strain mapping in nanowire heterostructures grown by any other method.

11.
Sensors (Basel) ; 22(5)2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35270919

RESUMO

In the near future, LHC experiments will continue future upgrades by overcoming the technological obsolescence of the detectors and the readout capabilities. Therefore, after the conclusion of a data collection period, CERN will have to face a long shutdown to improve overall performance, by updating the experiments, and implementing more advanced technologies and infrastructures. In particular, the largest LHC experiment, i.e., ATLAS, will upgrade parts of the detector, the trigger, and the data acquisition system. In addition, the ATLAS experiment will complete the implementation of new strategies, algorithms for data handling, and transmission to the final storage apparatus. This paper presents an overview of an upgrade planned for the second half of this decade for the ATLAS experiment. In particular, we show a study of a novel pattern recognition algorithm used in the trigger system, which is a device designed to provide the information needed to select physical events from unnecessary background data. The idea is to use a well known mathematical transform, the Hough transform, as the algorithm for the detection of particle trajectories. The effectiveness of the algorithm has already been validated in the past, regardless of particle physics applications, to recognize generic shapes within images. On the contrary, here, we first propose a software emulation tool, and a subsequent hardware implementation of the Hough transform, for particle physics applications. Until now, the Hough transform has never been implemented on electronics in particle physics experiments, and since a hardware implementation would provide benefits in terms of overall Latency, we complete the studies by comparing the simulated data with a physical system implemented on a Xilinx hardware accelerator (FELIX-II card). In more detail, we have implemented a low-abstraction RTL design of the Hough transform on Xilinx UltraScale+ FPGAs as target devices for filtering applications.

12.
Sensors (Basel) ; 22(14)2022 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-35891101

RESUMO

Lane detection plays an essential role in autonomous driving. Using LiDAR data instead of RGB images makes lane detection a simple straight line, and curve fitting problem works for realtime applications even under poor weather or lighting conditions. Handling scatter distributed noisy data is a crucial step to reduce lane detection error from LiDAR data. Classic Hough Transform (HT) only allows points in a straight line to vote on the corresponding parameters, which is not suitable for data in scatter form. In this paper, a Scatter Hough algorithm is proposed for better lane detection on scatter data. Two additional operations, ρ neighbor voting and ρ neighbor vote-reduction, are introduced to HT to make points in the same curve vote and consider their neighbors' voting result as well. The evaluation of the proposed method shows that this method can adaptively fit both straight lines and curves with high accuracy, compared with benchmark and state-of-the-art methods.

13.
Sensors (Basel) ; 21(13)2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34202428

RESUMO

This paper develops novel Global Navigation Satellite System (GNSS) interference detection methods based on the Hough transform. These methods are realized by incorporating the Hough transform into three Time-Frequency distributions: Wigner-Ville distribution, pseudo -Wigner-Ville distribution and smoothed pseudo-Wigner-Ville distribution. This process results in the corresponding Wigner-Hough transform, pseudo-Wigner-Hough transform and smoothed pseudo-Wigner-Hough transform, which are used in GNSS interference detection to search for local Hough-transformed energy peak in a small limited area within the parameter space. The developed GNSS interference detection methods incorporate a novel concept of zero Hough-transformed energy distribution percentage to analyze the properties of energy concentration and cross-term suppression. The methods are tested with real GPS L1-C/A data collected in the presence of sweep interference. The test results show that the developed methods can deal with the cross-term problem with improved interference detection performance. In particular, the GNSS interference detection performance obtained with the smoothed pseudo-Wigner-Hough transform method is at least double that of the Wigner-Hough transform-based approach; the smoothed pseudo-Wigner-Hough transform-based GNSS interference detection method is improved at least 20% over the pseudo-Wigner-Hough transform-based technique in terms of the zero Hough-transformed energy percentage criteria. Therefore, the proposed smoothed pseudo-Wigner-Hough transform-based method is recommended in the interference detection for GNSS receivers, particularly in challenging electromagnetic environments.

14.
Sensors (Basel) ; 21(14)2021 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-34300388

RESUMO

Handwritten keyword spotting (KWS) is of great interest to the document image research community. In this work, we propose a learning-free keyword spotting method following query by example (QBE) setting for handwritten documents. It consists of four key processes: pre-processing, vertical zone division, feature extraction, and feature matching. The pre-processing step deals with the noise found in the word images, and the skewness of the handwritings caused by the varied writing styles of the individuals. Next, the vertical zone division splits the word image into several zones. The number of vertical zones is guided by the number of letters in the query word image. To obtain this information (i.e., number of letters in a query word image) during experimentation, we use the text encoding of the query word image. The user provides the information to the system. The feature extraction process involves the use of the Hough transform. The last step is feature matching, which first compares the features extracted from the word images and then generates a similarity score. The performance of this algorithm has been tested on three publicly available datasets: IAM, QUWI, and ICDAR KWS 2015. It is noticed that the proposed method outperforms state-of-the-art learning-free KWS methods considered here for comparison while evaluated on the present datasets. We also evaluate the performance of the present KWS model using state-of-the-art deep features and it is found that the features used in the present work perform better than the deep features extracted using InceptionV3, VGG19, and DenseNet121 models.


Assuntos
Algoritmos , Armazenamento e Recuperação da Informação , Escrita Manual , Humanos
15.
Sensors (Basel) ; 21(17)2021 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-34502711

RESUMO

The increase in flying time of unmanned aerial vehicles (UAV) is a relevant and difficult task for UAV designers. It is especially important in such tasks as monitoring, mapping, or signal retranslation. While the majority of research is concentrated on increasing the battery capacity, it is also important to utilize natural renewable energy sources, such as solar energy, thermals, etc. This article proposed a method for the automatic recognition of cumuliform clouds. Practical application of this method allows diverting of an unmanned aerial vehicle towards the identified cumuliform cloud and improving its probability of flying into a thermal flow, thus increasing the flight time of the UAV, as is performed by glider and paraglider pilots. The proposed method is based on the application of Hough transform and Canny edge detector methods, which have not been used for such a task before. For testing the proposed method a dataset of different clouds was generated and marked by experts. The achieved average accuracy of 87% on the unbalanced dataset demonstrates the practical applicability of the proposed method for detecting thermals related to cumuliform clouds. The article also provides the concept of VilniusTech developed UAV, implementing the proposed method.

16.
Sensors (Basel) ; 21(5)2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33801323

RESUMO

Since radio frequency interference (RFI) seriously degrades the performance of a global navigation satellite system (GNSS) receiver, interference detection becomes very important for GNSS receivers. In this paper, a novel rearranged wavelet-Hough transform (RWHT) method is proposed in GNSS interference detection, which is obtained by the combination of rearranged wavelet transform and Hough transform (HT). The proposed RWHT method is tested for detecting sweep interference and continuous wave (CW) interference, the major types of GNSS interfering signals generated by a GNSS jammer in a controlled test bench experiment. The performance of the proposed RWHT method is compared with the conventional techniques such as Wigner-Ville distribution (WVD) and Wigner-Hough transform (WHT). The analysis results show that the proposed RWHT method reduces the influence of cross-item problem and improves the energy aggregation property in GNSS interference detection. When compared with the WHT approach, this proposed RWHT method presents about 90.3% and 30.8% performance improvement in the initial frequency and chirp rate estimation of the GNSS sweep interfering signal, respectively. These results can be further considered to be the proof of the validity and effectiveness of the developed GNSS interference detection method using RWHT.

17.
Sensors (Basel) ; 21(2)2021 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-33440714

RESUMO

Detection of multiple lane markings on road surfaces is an important aspect of autonomous vehicles. Although a number of approaches have been proposed to detect lanes, detecting multiple lane markings, particularly across a large number of frames and under varying lighting conditions, in a consistent manner is still a challenging problem. In this paper, we propose a novel approach for detecting multiple lanes across a large number of frames and under various lighting conditions. Instead of resorting to the conventional approach of processing each frame to detect lanes, we treat the overall problem as a multitarget tracking problem across space and time using the integrated probabilistic data association filter (IPDAF) as our basis filter. We use the intensity of the pixels as an augmented feature to correctly group multiple lane markings using the Hough transform. By representing these extracted lane markings as splines, we then identify a set of control points, which becomes a set of targets to be tracked over a period of time, and thus across a large number of frames. We evaluate our approach on two different fronts, covering both model- and machine-learning-based approaches, using two different datasets, namely the Caltech and TuSimple lane detection datasets, respectively. When tested against model-based approach, the proposed approach can offer as much as 5%, 12%, and 3% improvements on the true positive, false positive, and false positives per frame rates compared to the best alternative approach, respectively. When compared against a state-of-the-art machine learning technique, particularly against a supervised learning method, the proposed approach offers 57%, 31%, 4%, and 9× improvements on the false positive, false negative, accuracy, and frame rates. Furthemore, the proposed approach retains the explainability, or in other words, the cause of actions of the proposed approach can easily be understood or explained.

18.
Philos Trans A Math Phys Eng Sci ; 378(2182): 20190587, 2020 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-32921244

RESUMO

This paper describes the detectability of eddy current testing (ECT) using directional eddy current for detection of in-plane fibre waviness in unidirectional carbon fibre reinforced plastic (CFRP) laminate. Three different types of probes, such as circular driving, symmetrical driving and uniform driving probe, were proposed, and the waviness angle was extracted from the contour map of the ECT signal by applying a Canny filter and a Hough transform. By comparing both the waviness angle estimated by ECT and that obtained by an X-ray CT image, the standard deviation (precision) and root mean square error (accuracy) were evaluated to discuss the detectability of these probes. The directional uniform driving probe shows the best detectability and can detect fibre waviness with a waviness angle of more than 2° in unidirectional CFRP. The probe shows a root mean square error of 1.90° and a standard deviation of 4.49° between the actual waviness angle and the angle estimated by ECT. This article is part of the theme issue 'Advanced electromagnetic non-destructive evaluation and smart monitoring'.

19.
Sensors (Basel) ; 20(2)2020 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-31963188

RESUMO

To achieve an automatic unloading of a reactor during the sherardizing process, it is necessary to calculate the pose and position of the reactors in an industrial environment with various amounts of luminance and floating dust. In this study, the defects of classic image processing methods and deep learning methods used for locating the reactors are first analyzed. Next, an improved You Only Look Once(YOLO) model is employed to find the region of interest of the handling hole and a handling hole corner detection method based on the image morphology and a Hough transform is presented. Finally, the position and pose of the reactors will be obtained by establishing a 3D handling hole model according to the principle of a binocular stereo system. To test the performance of the proposed method, a set of experimental systems was set up and experiments were conducted. The results indicate that the proposed location method is effective and the precision of the position recognition can be controlled to within 4.64 mm and 1.68 ° when the cameras are approximately 5 m away from the reactor, meeting the requirements.

20.
Sensors (Basel) ; 20(7)2020 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-32231075

RESUMO

The discrimination between earthquakes and explosions is a serious issue in seismic signal analysis. This paper proposes a seismic discrimination method using support vector machine (SVM), wherein the amplitudes of the P-wave and the S-wave of the seismic signals are selected as feature vectors. Furthermore, to improve the seismic discrimination performance using a heterodyne laser interferometer for seismic wave detection, the Hough transform is applied as a compensation method for the periodic nonlinearity error caused by the frequency-mixing in the laser interferometric seismometer. In the testing procedure, different kernel functions of SVM are used to discriminate between earthquakes and explosions. The outstanding performance of a laser interferometer and Hough transform method for precision seismic measurement and nonlinearity error compensation is confirmed through some experiments using a linear vibration stage. In addition, the effectiveness of the proposed discrimination method using a heterodyne laser interferometer is verified through a receiver operating characteristic curve and other performance indices obtained from practical experiments.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa