Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 325
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Biochem ; 85: 715-42, 2016 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-27050154

RESUMO

Molecular chaperones control the cellular folding, assembly, unfolding, disassembly, translocation, activation, inactivation, disaggregation, and degradation of proteins. In 1989, groundbreaking experiments demonstrated that a purified chaperone can bind and prevent the aggregation of artificially unfolded polypeptides and use ATP to dissociate and convert them into native proteins. A decade later, other chaperones were shown to use ATP hydrolysis to unfold and solubilize stable protein aggregates, leading to their native refolding. Presently, the main conserved chaperone families Hsp70, Hsp104, Hsp90, Hsp60, and small heat-shock proteins (sHsps) apparently act as unfolding nanomachines capable of converting functional alternatively folded or toxic misfolded polypeptides into harmless protease-degradable or biologically active native proteins. Being unfoldases, the chaperones can proofread three-dimensional protein structures and thus control protein quality in the cell. Understanding the mechanisms of the cellular unfoldases is central to the design of new therapies against aging, degenerative protein conformational diseases, and specific cancers.


Assuntos
Chaperonina 60/química , Proteínas de Choque Térmico HSP110/química , Proteínas de Choque Térmico HSP70/química , Proteínas de Choque Térmico Pequenas/química , Proteínas Mitocondriais/química , Desdobramento de Proteína , Trifosfato de Adenosina/química , Trifosfato de Adenosina/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Escherichia coli/química , Escherichia coli/metabolismo , Expressão Gênica , Proteínas de Choque Térmico HSP110/genética , Proteínas de Choque Térmico HSP110/metabolismo , Proteínas de Choque Térmico HSP70/genética , Proteínas de Choque Térmico HSP70/metabolismo , Proteínas de Choque Térmico Pequenas/genética , Proteínas de Choque Térmico Pequenas/metabolismo , Humanos , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Modelos Moleculares , Agregados Proteicos , Dobramento de Proteína , Estrutura Quaternária de Proteína , Rhodospirillum rubrum/química , Rhodospirillum rubrum/metabolismo
2.
J Virol ; 97(3): e0143322, 2023 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-36916989

RESUMO

Cathelicidin antimicrobial peptides (mouse, CRAMP; human, LL-37) have broad-spectrum antiviral activities against enveloped viruses, but their mechanisms of action against nonenveloped viruses remain to be elucidated. Coxsackievirus B3 (CVB3), a member of nonenveloped virus belonging to the Enterovirus genus of Picornaviridae, is an important pathogen of viral myocarditis and dilated cardiomyopathy. Here, we observed that cardiac CRAMP expression was significantly upregulated in mice after CVB3 infection. The administration of CRAMP or LL-37 markedly suppressed CVB3 infection in mice, and CRAMP deficiency increased the susceptibility of mice to CVB3. CRAMP and LL-37 inhibited CVB3 replication in primary cardiomyocytes. However, they did not inactivate CVB3 particles and did not regulate the response of cardiomyocytes against CVB3 infection. Intriguingly, they inhibited CVB3 transmission through the exosome, but not virus receptor. In detail, CRAMP and LL-37 directly induced the lysis of exosomes by interfering with exosomal heat shock protein 60 (HSP60) and then blocked the diffusion of exosomes to recipient cells and inhibited the establishment of productive infection by exosomes. In addition, the interaction of CRAMP and LL-37 with HSP60 simultaneously inhibited HSP60-induced apoptosis in cardiomyocytes and reduced HSP60-enhanced CVB3 replication. Our findings reveal a novel mechanism of cathelicidins against viral infection and provide a new therapeutic strategy for CVB3-induced viral myocarditis. IMPORTANCE The relative mechanisms that cathelicidin antimicrobial peptides use to influence nonenveloped virus infection are unclear. We show here that cathelicidin antimicrobial peptides (CRAMP and LL-37) directly target exosomal HSP60 to destroy exosomes, which in turn block the diffusion of exosomes to recipient cardiomyocytes and reduced HSP60-induced apoptosis, thus restricting coxsackievirus B3 infection. Our results provide new insights into the mechanisms cathelicidin antimicrobial peptides use against viral infection.


Assuntos
Catelicidinas , Infecções por Coxsackievirus , Exossomos , Miócitos Cardíacos , Animais , Humanos , Camundongos , Apoptose/efeitos dos fármacos , Catelicidinas/administração & dosagem , Chaperonina 60/antagonistas & inibidores , Infecções por Coxsackievirus/tratamento farmacológico , Enterovirus Humano B/fisiologia , Exossomos/efeitos dos fármacos , Miocardite , Miócitos Cardíacos/efeitos dos fármacos , Replicação Viral
3.
Environ Res ; 252(Pt 1): 118793, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38552828

RESUMO

Glomalin-related soil protein (GRSP) is a significant component in the sequestration of heavy metal in soils, but its mechanisms for metal adsorption are poorly known. This study combined spectroscopic data with molecular docking simulations to reveal metal adsorption onto GRSP's surface functional groups at the molecular level. The EXAFS combined with FTIR and XPS analyses indicated that the adsorption of Cd(II), Sr(II), and Ni(II) by GRSP occurred mainly through the coordination of -OH and -COOH groups with the metal. The -COOH and -OH groups bound to the metal as electron donors and the electron density of the oxygen atom decreased, suggesting that electrostatic attraction might be involved in the adsorption process. Two-dimensional correlation spectroscopy revealed that preferential adsorption occurred on GRSP for the metal in sequential order of -COOH groups followed by -OH groups. The presence of the Ni-C shell in the Ni EXAFS spectrum suggested that Ni formed organometallic complexes with the GRSP surface. However, Sr-C and Cd-C were absent in the second shell of the Sr and Cd spectra, which was attributed to the adsorption of Sr and Cd ions with large hydration ion radius by GRSP to form outer-sphere complexes. Through molecular docking simulations, negatively charged residues such as ASP151 and ASP472 in GRSP were found to provide electrostatic attraction and ligand combination for the metal adsorption, which was consistent with the spectroscopic analyses. Overall, these findings provided new insights into the interaction mechanisms between GRSP and metals, which will help deepen our understanding of the ecological functions of GRSP in metal sequestration.


Assuntos
Simulação de Acoplamento Molecular , Níquel , Níquel/química , Adsorção , Cádmio/química , Sedimentos Geológicos/química , Proteínas Fúngicas/química , Metais Pesados/química , Áreas Alagadas , Poluentes do Solo/química , Glicoproteínas
4.
Mol Ther ; 31(5): 1346-1364, 2023 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-36635966

RESUMO

Acute lung injury (ALI) is still associated with high mortality. Growing evidence suggests that Club Cell Protein 16 (CC16) plays a protective role against ALI. However, the doses of recombinant CC16 (rCC16) used in preclinical studies are supraphysiological for clinical applications. Extracellular vesicles (EVs) are nanovesicles endogenously generated by mammalian cells. Our study demonstrated that CC16 is released via small EVs and EV-encapsulated CC16 (sEV-CC16) and has anti-inflammatory activities, which protect mice from lipopolysaccharide (LPS) or bacteria-induced ALI. Additionally, sEV-CC16 can activate the DNA damage repair signaling pathways. Consistent with this activity, we observed more severe DNA damage in lungs from Cc16 knockout (KO) than wild-type (WT) mice. Mechanistically, we elucidated that CC16 suppresses nuclear factor κB (NF-κB) signaling activation by binding to heat shock protein 60 (HSP60). We concluded that sEV-CC16 could be a potential therapeutic agent for ALI by inhibiting the inflammatory and DNA damage responses by reducing NF-κB signaling.


Assuntos
Lesão Pulmonar Aguda , NF-kappa B , Camundongos , Animais , NF-kappa B/metabolismo , Pulmão/metabolismo , Lesão Pulmonar Aguda/tratamento farmacológico , Transdução de Sinais , Anti-Inflamatórios/farmacologia , Lipopolissacarídeos/farmacologia , Mamíferos
5.
BMC Vet Res ; 20(1): 51, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341558

RESUMO

BACKGROUND: Respiratory tract diseases cause significant economic loss in beef cattle. This study aimed to determine whether the application of hyperimmune serum (HS) containing antibodies against selected antigens of Gram-negative bacteria would improve the health and growth of different breeds of beef calves kept on three farms. Two recombinant protein antigens (Histophilus somni rHsp60 and rOMP40) were used to immunize four cows to produce HS. Eighty seven beef calves (Charolaise n = 36, Limousine n = 34, and crossbreed n = 17) were included into study. One hundred milliliters of serum were administered subcutaneously to 43 beef calves (Charolaise n = 18, Limousine n = 17, and crossbreed n = 8) twice, between 1 and 5 and 21-28 days of life. Calves were examined three times, and blood samples were taken to evaluate immunoglobulin M, G1, and G2, fibrinogen, serum amyloid A, and haptoglobin concentrations and reactivity of these Ig classes of antibodies against H. somni rHsp60 and rOMP40. Average daily weight gain during the first month and until weaning was calculated. RESULTS: HS showed higher (p ≤ 0.05) reactivity in calf sera against H. somni rHsp60 and OMP40 in IgG1 and IgG2. In experimental calves, compared to control calves, the reactivity of IgG1 against rOMP40 in the second sampling was higher in Limousine calves (p ≤ 0.001) and in the other two herds (p ≤ 0.05). Serum IgG2 antibody activity against H. somni rHsp60 in the second sampling was higher in experimental calves than in control calves in charolaise (p ≤ 0.05) and limousine (p ≤ 0.001) herds. The reactivity of IgG2 against rOMP40 in the second sampling of experimental calves was higher in herds with Charolaise and Limousine calves (p ≤ 0.001) and in crossbred calves (p ≤ 0.05). In the third sampling, serum IgG1 antibody reactivity against rOMP40 in Limousine calves was higher (p ≤ 0.05) in the experimental group. Among the other evaluated parameters, only SAA in the second sampling in the herd with Charolaise calves and heart rate in the herd with Limousine calves were significantly higher in the control calves (p ≤ 0.05). CONCLUSION: The application of HS to calves in all herds had an impact on specific reactivity in IgG1 and IgG2 classes against H. somni rOMP40 and rHsp60, antigens which were used for serum production.


Assuntos
Doenças dos Bovinos , Pasteurellaceae , Feminino , Bovinos , Animais , Bactérias Gram-Negativas , Proteínas Recombinantes , Imunoglobulina M , Pasteurellaceae/fisiologia , Imunoglobulina G , Doenças dos Bovinos/microbiologia
6.
Subcell Biochem ; 101: 213-246, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36520309

RESUMO

Co-chaperonins function together with chaperonins to mediate ATP-dependent protein folding in a variety of cellular compartments. Chaperonins are evolutionarily conserved and form two distinct classes, namely, group I and group II chaperonins. GroEL and its co-chaperonin GroES form part of group I and are the archetypal members of this family of protein folding machines. The unique mechanism used by GroEL and GroES to drive protein folding is embedded in the complex architecture of double-ringed complexes, forming two central chambers that undergo conformational rearrangements that enable protein folding to occur. GroES forms a lid over the chamber and in doing so dislodges bound substrate into the chamber, thereby allowing non-native proteins to fold in isolation. GroES also modulates allosteric transitions of GroEL. Group II chaperonins are functionally similar to group I chaperonins but differ in structure and do not require a co-chaperonin. A significant number of bacteria and eukaryotes house multiple chaperonin and co-chaperonin proteins, many of which have acquired additional intracellular and extracellular biological functions. In some instances, co-chaperonins display contrasting functions to those of chaperonins. Human HSP60 (HSPD) continues to play a key role in the pathogenesis of many human diseases, in particular autoimmune diseases and cancer. A greater understanding of the fascinating roles of both intracellular and extracellular Hsp10 on cellular processes will accelerate the development of techniques to treat diseases associated with the chaperonin family.


Assuntos
Chaperonina 10 , Chaperoninas , Humanos , Chaperonina 10/química , Chaperoninas/química , Chaperoninas/metabolismo , Chaperonina 60/química , Dobramento de Proteína , Chaperoninas do Grupo II/metabolismo , Trifosfato de Adenosina/metabolismo
7.
Int J Neurosci ; : 1-11, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38625841

RESUMO

Amyotrophic Lateral Sclerosis (ALS) is a multifactorial neurodegenerative disorder with a significant contribution of non-cell autonomous mechanisms to motor neuronal degeneration. Amongst a plethora of molecules, fractalkine (C-X3-C motif chemokine ligand 1), and Heat Shock Protein 60 (HSP60), are key modulators of microglial activation. The contribution of these molecules in Sporadic ALS (SALS) remains unexplored. To investigate this, fractalkine levels were estimated in Cerebrospinal fluid (CSF) of SALS patients (ALS-CSF; n = 44) by Enzyme-linked Immunosorbent Assay (ELISA) and correlated with clinical parameters including disease severity and duration. CSF HSP60 levels were estimated by Western blotting (ALS-CSF; n = 19). Also, CSF levels of Chitotriosidase-1 (CHIT-1), a microglia-specific neuroinflammatory molecule, were measured and its association, if any, with fractalkine and HSP60 was investigated. Both fractalkine and HSP60 levels were significantly elevated in ALS-CSF. Similar to our earlier observation, CHIT-1 levels were also upregulated. Fractalkine showed a moderate negative correlation with the ALS-Functional Rating Scale (ALSFRS) score indicating its significant rise in mild cases which plateaued in cases with high disease severity. However, no obvious correlation was found between fractalkine, HSP60, and CHIT-1. Our study hints that high fractalkine levels in mild cases might be conferring neuroprotection by combating microglial activation and highlights its importance as a novel therapeutic target for SALS. On the other hand, significantly enhanced levels of HSP60, a pro-inflammatory molecule, hint towards its role in accentuating microgliosis, although, it doesn't act synergistically with CHIT-1. Our study suggests that fractalkine and HSP60 act independently of CHIT-1 to suppress and accentuate neuroinflammation, respectively.

8.
Int J Mol Sci ; 25(6)2024 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-38542375

RESUMO

The review describes correlations between impaired functioning of chaperones and co-chaperones in Alzheimer's disease (AD) pathogenesis. The study aims to highlight significant lines of research in this field. Chaperones like Hsp90 or Hsp70 are critical agents in regulating cell homeostasis. Due to some conditions, like aging, their activity is damaged, resulting in ß-amyloid and tau aggregation. This leads to the development of neurocognitive impairment. Dysregulation of co-chaperones is one of the causes of this condition. Disorders in the functioning of molecules like PP5, Cdc37, CacyBP/SIPTRAP1, CHIP protein, FKBP52, or STIP1 play a key role in AD pathogenesis. PP5, Cdc37, CacyBP/SIPTRAP1, and FKBP52 are Hsp90 co-chaperones. CHIP protein is a co-chaperone that switches Hsp70/Hsp90 complexes, and STIP1 binds to Hsp70. Recognition of precise processes allows for the invention of effective treatment methods. Potential drugs may either reduce tau levels or inhibit tau accumulation and aggregation. Some substances neuroprotect from Aß toxicity. Further studies on chaperones and co-chaperones are required to understand the fundamental tenets of this topic more entirely and improve the prevention and treatment of AD.


Assuntos
Doença de Alzheimer , Humanos , Doença de Alzheimer/metabolismo , Chaperonas Moleculares/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas de Choque Térmico HSP70 , Peptídeos beta-Amiloides
9.
Int J Mol Sci ; 25(10)2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38791521

RESUMO

Molecular chaperones are highly conserved across evolution and play a crucial role in preserving protein homeostasis. The 60 kDa heat shock protein (HSP60), also referred to as chaperonin 60 (Cpn60), resides within mitochondria and is involved in maintaining the organelle's proteome integrity and homeostasis. The HSP60 family, encompassing Cpn60, plays diverse roles in cellular processes, including protein folding, cell signaling, and managing high-temperature stress. In prokaryotes, HSP60 is well understood as a GroEL/GroES complex, which forms a double-ring cavity and aids in protein folding. In eukaryotes, HSP60 is implicated in numerous biological functions, like facilitating the folding of native proteins and influencing disease and development processes. Notably, research highlights its critical involvement in sustaining oxidative stress and preserving mitochondrial integrity. HSP60 perturbation results in the loss of the mitochondria integrity and activates apoptosis. Currently, numerous clinical investigations are in progress to explore targeting HSP60 both in vivo and in vitro across various disease models. These studies aim to enhance our comprehension of disease mechanisms and potentially harness HSP60 as a therapeutic target for various conditions, including cancer, inflammatory disorders, and neurodegenerative diseases. This review delves into the diverse functions of HSP60 in regulating proteo-homeostasis, oxidative stress, ROS, apoptosis, and its implications in diseases like cancer and neurodegeneration.


Assuntos
Chaperonina 60 , Mitocôndrias , Estresse Oxidativo , Chaperonina 60/metabolismo , Chaperonina 60/genética , Humanos , Animais , Mitocôndrias/metabolismo , Neoplasias/metabolismo , Neoplasias/genética , Neoplasias/patologia , Apoptose , Doenças Neurodegenerativas/metabolismo , Dobramento de Proteína , Espécies Reativas de Oxigênio/metabolismo
10.
Int J Mol Sci ; 25(12)2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38928158

RESUMO

It has been reported that Mizoribine is an immunosuppressant used to suppress rejection in renal transplantation, nephrotic syndrome, lupus nephritis, and rheumatoid arthritis. The molecular chaperone HSP60 alone induces inflammatory cytokine IL-6 and the co-chaperone HSP10 alone inhibits IL-6 induction. HSP60 and HSP10 form a complex in the presence of ATP. We analyzed the effects of Mizoribine, which is structurally similar to ATP, on the structure and physiological functions of HSP60-HSP10 using Native/PAGE and transmission electron microscopy. At low concentrations of Mizoribine, no complex formation of HSP60-HSP10 was observed, nor was the expression of IL-6 affected. On the other hand, high concentrations of Mizoribine promoted HSP60-HSP10 complex formation and consequently suppressed IL-6 expression. Here, we propose a novel mechanism of immunosuppressive action of Mizoribine.


Assuntos
Chaperonina 60 , Interleucina-6 , Ribonucleosídeos , Ribonucleosídeos/farmacologia , Interleucina-6/metabolismo , Chaperonina 60/metabolismo , Humanos , Imunossupressores/farmacologia , Animais , Camundongos
11.
Semin Cancer Biol ; 86(Pt 1): 26-35, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-34087417

RESUMO

The chaperonins CCT and Hsp60 are molecular chaperones, members of the chaperone system (CS). Chaperones are cytoprotective but if abnormal in quantity or quality they may cause diseases, the chaperonopathies. Here, recent advances in the understanding of CCT and Hsp60 in cancerology are briefly discussed, focusing on breast and brain cancers. CCT subunits, particularly CCT2, were increased in breast cancer cells and this correlated with tumor progression. Experimental induction of CCT2 increase was accompanied by an increase of CCT3, 4, and 5, providing another evidence for the interconnection between the members of the CS and the difficulties expected while manipulating one member with therapeutic purposes. Another in silico study demonstrated a direct correlation between the increase in the tumor tissue of the mRNA levels of all CCT subunits, except CCTB6, with bad prognosis. Studies with glioblastomas demonstrated an increase in the CCT subunits in the tumor tissue and in extracellular vesicles (EVs) derived from them. Expression levels of CCT1, 2, 6A, and 7 were the most increased and markers of bad prognosis, particularly CCT6A. A method for measuring Hsp60 and related miRNA in exosomes from blood of patients with glioblastomas or other brain tumors was discussed, and the results indicate that the triad Hsp60-related miRNAs-exosomes has potential regarding diagnosis and patient monitoring. All these data provide a strong foundation for future studies on the role played by chaperonins in carcinogenesis and for fully developing their theranostics applications along with exosomes.


Assuntos
Neoplasias Encefálicas , Vesículas Extracelulares , Glioblastoma , MicroRNAs , Humanos , Glioblastoma/genética , Glioblastoma/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Chaperonina com TCP-1/genética , Chaperonina com TCP-1/metabolismo , Chaperonina 60/genética , Chaperonina 60/metabolismo , Prognóstico , Neoplasias Encefálicas/metabolismo , MicroRNAs/genética
12.
Curr Issues Mol Biol ; 45(12): 9378-9389, 2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38132434

RESUMO

Heat shock proteins (HSPs), a family of proteins that support cellular proteostasis and perform a protective function under various stress conditions, such as high temperature, intoxication, inflammation, or tissue hypoxia, constitute a promising group of possible biochemical markers for obesity and cardiovascular diseases. HSP27 is involved in essential cellular processes occurring in conditions of obesity and its cardiometabolic complications; it has protective properties, and its secretion may indicate a cellular response to stress. HSP40 plays a controversial role in the pathogenesis of obesity. HSP60 is involved in various pathological processes of the cardiovascular, immune, excretory, and nervous systems and is associated with obesity and concomitant diseases. The hypersecretion of HSP60 is associated with poor prognosis; hence, this protein may become a target for further research on obesity and its cardiovascular complications. According to most studies, intracellular HSP70 is an obesity-promoting factor, whereas extracellular HSP70 exhibited inconsistent dynamics across different patient groups and diagnoses. HSPs are involved in the pathogenesis of cardiovascular pathology. However, in the context of cardiovascular and metabolic pathology, these proteins require further investigation.

13.
Cancer Cell Int ; 23(1): 272, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37974232

RESUMO

BACKGROUND: Helicobacter pylori (H. pylori) infection is a major risk factor for gastric diseases, including gastritis and gastric cancer. Heat shock protein 60 (HSP60) is a chaperone protein involved in various cellular processes and has been implicated in the immune response to bacterial infections. Extracellular vesicles (EVs) containing various protein components play important roles in cell communication. In the present study, a systematic proteomic analysis of EVs obtained from H. pylori infected cells was performed and the EV-derived HSP60 function was studied. METHODS: EVs were evaluated by nanoparticle tracking analysis, transmission electron microscopy and western blotting. The recognized protein components were quantified by label-free proteomics and subjected to bioinformatics assays. The expression of HSP60 in EVs, host cells and gastric cancers infected by H. pylori was determined by western blotting and immunohistochemical, respectively. In addition, the apoptotic regulation mechanisms of HSP60 in H. pylori infection were analyzed by western blotting and flow cytometry. RESULTS: A total of 120 important differential proteins were identified in the EVs from H. pylori-infected cells and subjected to Gene Ontology analysis. Among them, CD63, HSP-70 and TSG101 were verified via western blotting. Moreover, HSP60 expression was significantly increased in the EVs from H. pylori-infected GES-1 cells. H. pylori infection promoted an abnormal increase in HSP60 expression in GES-1 cells, AGS cells, gastric mucosa and gastric cancer. In addition, knockdown of HSP60 suppressed the apoptosis of infected cells and the expression of Bcl2, and promoted the upregulation of Bax. CONCLUSION: This study provides a comprehensive proteomic profile of EVs from H. pylori-infected cells, shedding light on the potential role of HSP60 in H. pylori infection. The findings underscore the significance of EV-derived HSP60 in the pathophysiology of H. pylori-associated diseases.

14.
Drug Resist Updat ; 65: 100888, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36332495

RESUMO

Lung cancer is the leading cause of cancer-related deaths worldwide, with non-small cell lung cancer (NSCLC) being the predominant histological subtype. Despite the emergence of targeted and immune-based therapies that have considerably improved the clinical outcomes of selected patients, the overall NSCLC survival rate remains poor. NSCLC patients experience clinical relapse mainly because of chemoresistance. One promising therapeutic approach is targeting specific molecular vulnerabilities that are associated with the metabolic reprogramming of cancer cells. This strategy relies on evidence that cancer cells rewire their metabolism to sustain their uncontrolled growth as well as invasive and metastatic properties, promoting adaptive resistance to chemo-radiotherapy. A critical component of this malignant transformation is the increased dependency on high levels of heat shock proteins (HSPs), which support the elevated protein folding demand and quality control of misfolded oncoproteins. Here, we provide an overview of the literature on metabolism reprogramming, deregulation of mitochondrion and on the role of HSPs in promoting malignancy in lung and other cancer types. A particular focus is dedicated to the role of mitochondrial HSP60 (HSPD1) in NSCLC metabolism and drug resistance for the potential development of new resistance-defying anti-HSP drugs.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Proteínas de Choque Térmico/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Mitocôndrias , Resistência a Medicamentos
15.
J Appl Toxicol ; 43(7): 1064-1072, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36751017

RESUMO

Chlorpromazine (CPZ), a first-generation antipsychotic, is widely used in treating schizophrenia and other psychiatric disorders. However, CPZ is also associated with an increased likelihood of sudden cardiac death, and the underlying mechanisms remain unclear. In our study, we aimed to determine the CPZ-induced changes in some members of the heat shock protein family in rat hearts and further explore the possible mechanisms of CPZ-induced cardiotoxicity. Twenty-four Sprague Dawley rats were randomly divided into three groups (n = 8 per group): control, low dose (33.216 mg/kg) and high dose (94.211 mg/kg). CPZ administration induced hypothermia in rats. Pathological changes, including ischaemia and hypoxia, were observed in rat hearts. Furthermore, the serum levels of cardiac Troponin T (c-TN-T) and brain natriuretic peptide (BNP) were elevated in the CPZ-exposed groups. Meanwhile, the protein and gene expression of HSP70, HSP60, HSP27 and HSP10 significantly differed between the CPZ-exposed and control groups. We conclude that acute CPZ exposure could lead to myocardial injury in rats, in which HSPs might play a crucial role. Further investigations are required to elucidate the underlying mechanisms.


Assuntos
Antipsicóticos , Clorpromazina , Ratos , Animais , Clorpromazina/toxicidade , Cardiotoxicidade , Ratos Sprague-Dawley , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Antipsicóticos/toxicidade
16.
Int J Mol Sci ; 24(15)2023 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-37569831

RESUMO

Heat shock protein 60 (Hsp60) is a member of the chaperonin family of heat shock proteins (HSPs), primarily found in the mitochondrial matrix. As a molecular chaperone, Hsp60 plays an essential role in mediating protein folding and assembly, and together with the co-chaperon Hsp10, it is thought to maintain protein homeostasis. Recently, it has been found to localize in non-canonical, extra-mitochondrial sites such as cell membranes or extracellular fluids, particularly in pathological conditions. Starting from its biological function, this review aims to provide a comprehensive understanding of the potential involvement of Hsp60 in Alzheimer's disease (AD) and Type II Diabetes Mellitus (T2DM), which are known to share impaired key pathways and molecular dysfunctions. Fragmentary data reported in the literature reveal interesting links between the altered expression level or localization of this chaperonin and several disease conditions. The present work offers an overview of the past and more recent knowledge about Hsp60 and its role in the most important cellular processes to shed light on neuronal Hsp60 as a potential common target for both pathologies. The absence of any effective cure for AD patients makes the identification of a new molecular target a promising path by which to move forward in the development of new drugs and/or repositioning of therapies already used for T2DM.

17.
Int J Mol Sci ; 24(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175554

RESUMO

Similar to its bacterial homolog GroEL, Hsp60 in oligomeric conformation is known to work as a folding machine, with the assistance of co-chaperonin Hsp10 and ATP. However, recent results have evidenced that Hsp60 can stabilize aggregation-prone molecules in the absence of Hsp10 and ATP by a different, "holding-like" mechanism. Here, we investigated the relationship between the oligomeric conformation of Hsp60 and its ability to inhibit fibrillization of the Ab40 peptide. The monomeric or tetradecameric form of the protein was isolated, and its effect on beta-amyloid aggregation was separately tested. The structural stability of the two forms of Hsp60 was also investigated using differential scanning calorimetry (DSC), light scattering, and circular dichroism. The results showed that the protein in monomeric form is less stable, but more effective against amyloid fibrillization. This greater functionality is attributed to the disordered nature of the domains involved in subunit contacts.


Assuntos
Trifosfato de Adenosina , Chaperonina 60 , Chaperonina 60/metabolismo , Trifosfato de Adenosina/metabolismo , Chaperonina 10/química , Dobramento de Proteína
18.
Int J Mol Sci ; 24(4)2023 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-36834718

RESUMO

Iron oxide nanoparticles are one of the most promising tools for theranostic applications of pancreatic cancer due to their unique physicochemical and magnetic properties making them suitable for both diagnosis and therapy. Thus, our study aimed to characterize the properties of dextran-coated iron oxide nanoparticles (DIO-NPs) of maghemite (γ-Fe2O3) type synthesized by co-precipitation and to investigate their effects (low-dose versus high-dose) on pancreatic cancer cells focusing on NP cellular uptake, MR contrast, and toxicological profile. This paper also addressed the modulation of heat shock proteins (HSPs) and p53 protein expression as well as the potential of DIO-NPs for theranostic purposes. DIO-NPs were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), dynamic light scattering analyses (DLS), and zeta potential. Pancreatic cancer cells (PANC-1 cell line) were exposed to different doses of dextran-coated É£-Fe2O3 NPs (14, 28, 42, 56 µg/mL) for up to 72 h. The results revealed that DIO-NPs with a hydrodynamic diameter of 16.3 nm produce a significant negative contrast using a 7 T MRI scanner correlated with dose-dependent cellular iron uptake and toxicity levels. We showed that DIO-NPs are biocompatible up to a concentration of 28 µg/mL (low-dose), while exposure to a concentration of 56 µg/mL (high-dose) caused a reduction in PANC-1 cell viability to 50% after 72 h by inducing reactive oxygen species (ROS) production, reduced glutathione (GSH) depletion, lipid peroxidation, enhancement of caspase-1 activity, and LDH release. An alteration in Hsp70 and Hsp90 protein expression was also observed. At low doses, these findings provide evidence that DIO-NPs could act as safe platforms in drug delivery, as well as antitumoral and imaging agents for theranostic uses in pancreatic cancer.


Assuntos
Nanopartículas , Neoplasias Pancreáticas , Humanos , Dextranos , Medicina de Precisão , Linhagem Celular , Nanopartículas Magnéticas de Óxido de Ferro , Hormônios Pancreáticos , Nanopartículas/química , Nanomedicina Teranóstica/métodos , Neoplasias Pancreáticas
19.
BMC Oral Health ; 23(1): 629, 2023 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-37661276

RESUMO

BACKGROUND: HSP60 is a heat shock proteins (HSPs) family member and help mitochondrial protein to fold correctly. Survivin is one of the inhibitors of apoptosis protein family member, which plays a significant part in cancer progression. They were capable of forming HSP60-survivin complexes and involved in the development of various tumors. METHODS: The Cancer Genome Atlas (TCGA) database demonstrated that HSP60 and survivin and their correlation on mRNA expression level with OSCC patients. Besides, expression of HSP60 and survivin proteins was studied utilizing immunohistochemistry in tissue microarrays (TMA) in OSCC and in adjacent non-cancerous squamous epithelium (Non-CCSE) tissues. RESULTS: Significantly increased levels of HSP60 and survivin in most cancers compared to normal tissue by pan-cancer analysis. HSP60 and survivin proved a significantly increased expression in OSCC samples compared to Non-CCSE both on mRNA and protein (both P < 0.05). Additionally, elevated HSP60 displayed a positive correlation with survivin in terms of mRNA and protein expression levels (all P < 0.001). Patients with OSCC who had advanced clinical stage or lymph node metastasis (LNM) showed higher HSP60 expression (P = 0.004, P = 0.006, respectively). Higher levels of the proteins HSP60 and survivin were significantly inversely correlated relationship with OSCC patients' overall survival rates in multivariate survival analysis (P = 0.018, P = 0.040). From the above results, overexpression of HSP60 and survivin protein may serve as independent biomarkers predicting poor prognosis in OSCC. CONCLUSIONS: Elevated HSP60 and survivin might be served as novel poor prognosis biomarkers for surgically resected OSCC patients.


Assuntos
Carcinoma de Células Escamosas , Neoplasias de Cabeça e Pescoço , Neoplasias Bucais , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Survivina , Prognóstico
20.
Q Rev Biophys ; 53: e4, 2020 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-32070442

RESUMO

This chronologue seeks to document the discovery and development of an understanding of oligomeric ring protein assemblies known as chaperonins that assist protein folding in the cell. It provides detail regarding genetic, physiologic, biochemical, and biophysical studies of these ATP-utilizing machines from both in vivo and in vitro observations. The chronologue is organized into various topics of physiology and mechanism, for each of which a chronologic order is generally followed. The text is liberally illustrated to provide firsthand inspection of the key pieces of experimental data that propelled this field. Because of the length and depth of this piece, the use of the outline as a guide for selected reading is encouraged, but it should also be of help in pursuing the text in direct order.


Assuntos
Trifosfato de Adenosina/química , Chaperoninas/química , Conformação Proteica , Dobramento de Proteína , Aminoácidos/química , Animais , Dióxido de Carbono/química , Citosol/metabolismo , Dimerização , Proteínas de Choque Térmico/química , Humanos , Interações Hidrofóbicas e Hidrofílicas , Cinética , Camundongos , Mitocôndrias/metabolismo , Mutação , Neurospora/metabolismo , Desnaturação Proteica , Ribonuclease Pancreático/química , Ribulose-Bifosfato Carboxilase/química , Propriedades de Superfície , Temperatura
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa