Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
J Biol Chem ; 297(2): 100997, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34302808

RESUMO

Long noncoding RNAs (lncRNAs) have been reported to drive key cancer pathways but the functions of majority of lncRNAs are unknown making a case for comprehensive functional evaluation of lncRNAs. With an aim to identify lncRNAs dysregulated in human cancers, we analyzed the cancer patient database of lung adenocarcinoma (LUAD), which revealed an upregulated lncRNA, LINC02381 (renamed HOXC10mRNA stabilizing factor or HMS in this study), whose depletion results in proliferation defects and inhibition of colony formation of human cancer cells. In order to identify the binding targets of HMS, we screened for cis-genes and discovered that HOXC10, an oncogene, is downregulated in the absence of HMS. Depletion of HMS does not affect the HOXC10 promoter activity but inhibits the HOXC10 3'-UTR-linked luciferase reporter activity. Since lncRNAs have been known to associate with RNA-binding proteins (RBPs) to stabilize mRNA transcripts, we screened for different RBPs and discovered that HuR, an ELAV family protein, stabilizes HOXC10 mRNA. Using RNA pull-down and deletion mapping experiments, we show that HuR physically interacts with the cytosine-rich stretch of HMS and HOXC10 3'-UTR to stabilize HOXC10 mRNA. HOXC10 is overexpressed in many human cancers, and our discovery highlights that lncRNA HMS sustains the HOXC10 mRNA levels to maintain the invasive phenotypes of cancer cells.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Homeodomínio/genética , Neoplasias Pulmonares/patologia , RNA Longo não Codificante/genética , Regiões 3' não Traduzidas , Linhagem Celular Tumoral , Proliferação de Células , Biologia Computacional/métodos , Bases de Dados Genéticas , Proteínas de Homeodomínio/metabolismo , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , RNA Longo não Codificante/metabolismo , Regulação para Cima
2.
J Biol Chem ; 296: 100154, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33288677

RESUMO

Posttranscriptional regulation of gene expression plays a critical role in controlling the inflammatory response. An uncontrolled inflammatory response results in chronic inflammation, often leading to tumorigenesis. Programmed cell death 4 (PDCD4) is a proinflammatory tumor-suppressor gene which helps to prevent the transition from chronic inflammation to cancer. PDCD4 mRNA translation is regulated by an interplay between the oncogenic microRNA miR-21 and the RNA-binding protein (RBP) human antigen R (HuR) in response to lipopolysaccharide stimulation, but the role of other regulatory factors remains unknown. Here, we report that the RBP lupus antigen (La) interacts with the 3'-untranslated region of PDCD4 mRNA and prevents miR-21-mediated translation repression. While lipopolysaccharide causes nuclear-cytoplasmic translocation of HuR, it enhances cellular La expression. Remarkably, La and HuR were found to bind cooperatively to the PDCD4 mRNA and mitigate miR-21-mediated translation repression. The cooperative action of La and HuR reduced cell proliferation and enhanced apoptosis, reversing the pro-oncogenic function of miR-21. Together, these observations demonstrate a cooperative interplay between two RBPs, triggered differentially by the same stimulus, which exerts a synergistic effect on PDCD4 expression and thereby helps maintain a balance between inflammation and tumorigenesis.


Assuntos
Regiões 3' não Traduzidas , Proteínas Reguladoras de Apoptose/genética , Autoantígenos/genética , Transformação Celular Neoplásica/genética , Proteína Semelhante a ELAV 1/genética , MicroRNAs/genética , Proteínas de Ligação a RNA/genética , Ribonucleoproteínas/genética , Apoptose/efeitos dos fármacos , Apoptose/genética , Proteínas Reguladoras de Apoptose/metabolismo , Autoantígenos/metabolismo , Sequência de Bases , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/metabolismo , Transformação Celular Neoplásica/patologia , Proteína Semelhante a ELAV 1/metabolismo , Regulação da Expressão Gênica , Genes Reporter , Humanos , Lipopolissacarídeos/farmacologia , Luciferases/genética , Luciferases/metabolismo , Células MCF-7 , MicroRNAs/metabolismo , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Proteínas de Ligação a RNA/metabolismo , Ribonucleoproteínas/metabolismo , Transdução de Sinais , Antígeno SS-B
3.
J Biol Chem ; 293(51): 19624-19632, 2018 12 21.
Artigo em Inglês | MEDLINE | ID: mdl-30377250

RESUMO

The potassium voltage-gated channel subfamily H member 2 (KCNH2) gene encodes the Kv11.1 potassium channel, which conducts the rapidly activating delayed rectifier current in the heart. KCNH2 pre-mRNA undergoes alternative polyadenylation and forms a functional, full-length Kv11.1a isoform if exon 15 is polyadenylated or a nonfunctional, C-terminally truncated Kv11.1a-USO isoform if intron 9 is polyadenylated. The molecular mechanisms that regulate Kv11.1 isoform expression are poorly understood. In this study, using HEK293 cells and reporter gene expression, pulldown assays, and RNase protection assays, we identified the RNA-binding proteins Hu antigen R (HuR) and Hu antigen D (HuD) as regulators of Kv11.1 isoform expression. We show that HuR and HuD inhibit activity at the intron 9 polyadenylation site. When co-expressed with the KCNH2 gene, HuR and HuD increased levels of the Kv11.1a isoform and decreased the Kv11.1a-USO isoform in the RNase protection assays and immunoblot analyses. In patch clamp experiments, HuR and HuD significantly increased the Kv11.1 current. siRNA-mediated knockdown of HuR protein decreased levels of the Kv11.1a isoform and increased those of the Kv11.1a-USO isoform. Our findings suggest that the relative expression levels of Kv11.1 C-terminal isoforms are regulated by the RNA-binding HuR and HuD proteins.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Proteína Semelhante a ELAV 4/metabolismo , Canal de Potássio ERG1/química , Canal de Potássio ERG1/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Humanos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo
4.
Exp Cell Res ; 369(2): 218-225, 2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29807023

RESUMO

Human antigen R (HuR) is a RNA-binding protein, which binds to the AU-rich element (ARE) in the 3'-untranslated region (3'-UTR) of certain mRNA and is involved in the export and stabilization of ARE-mRNA. HuR constitutively relocates to the cytoplasm in many cancer cells, however the mechanism of intracellular HuR trafficking is poorly understood. To address this question, we examined the functional role of the cytoskeleton in HuR relocalization. We tested the effect of actin depolymerizing macrolide latrunculin A or myosin II ATPase activity inhibitor blebbistatin for HuR relocalization induced by the vasoactive hormone Angiotensin II in cancer and control normal cells. Western blot and confocal imaging data revealed that both inhibitors attenuated the cytoplasmic HuR in normal cells but no such alteration was observed in cancer cells. Concomitant with changes in intracellular HuR localization, both inhibitors markedly decreased the accumulation and half-lives of HuR target ARE-mRNAs in normal cells, whereas no change was observed in cancer cells. Furthermore, co-immunoprecipitation experiments with HuR proteins revealed clear physical interaction with ß-actin only in normal cells. The current study is the first to verify that cancer cells can implicate a microfilament independent HuR transport. We hypothesized that when cytoskeleton structure is impaired, cancer cells can acquire an alternative HuR trafficking strategy.


Assuntos
Proteína Semelhante a ELAV 1/metabolismo , Neoplasias/metabolismo , Regiões 3' não Traduzidas , Actinas/efeitos dos fármacos , Actinas/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Linhagem Celular Tumoral , Citoplasma/metabolismo , Citoesqueleto/metabolismo , Células HeLa , Células Hep G2 , Compostos Heterocíclicos de 4 ou mais Anéis/farmacologia , Humanos , Miosinas/antagonistas & inibidores , Neoplasias/genética , Ligação Proteica , Transporte Proteico/efeitos dos fármacos , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Tiazolidinas/farmacologia
5.
J Biol Chem ; 292(41): 16999-17010, 2017 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-28790173

RESUMO

Among primary brain cancers, gliomas are the most deadly and most refractory to current treatment modalities. Previous reports overwhelmingly support the role of the RNA-binding protein Hu antigen R (HuR) as a positive regulator of glioma disease progression. HuR expression is consistently elevated in tumor tissues, and a cytoplasmic localization appears essential for HuR-dependent oncogenic transformation. Here, we report HuR aggregation (multimerization) in glioma and the analysis of this tumor-specific HuR protein multimerization in clinical brain tumor samples. Using a split luciferase assay, a bioluminescence resonance energy transfer technique, and site-directed mutagenesis, we examined the domains involved in HuR multimerization. Results obtained with the combination of the split HuR luciferase assay with the bioluminescence resonance energy transfer technique suggested that multiple (at least three) HuR molecules come together during HuR multimerization in glioma cells. Using these data, we developed a model of HuR multimerization in glioma cells. We also demonstrate that exposing glioma cells to the HuR inhibitor tanshinone group compound 15,16-dihydrotanshinone-I or to the newly identified compound 5 disrupts HuR multimerization modules and reduces tumor cell survival and proliferation. In summary, our findings provide new insights into HuR multimerization in glioma and highlight possible pharmacological approaches for targeting HuR domains involved in cancer cell-specific multimerization.


Assuntos
Transformação Celular Neoplásica/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Glioma/metabolismo , Proteínas de Neoplasias/metabolismo , Agregação Patológica de Proteínas/metabolismo , Neoplasias Encefálicas , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/genética , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/genética , Transformação Celular Neoplásica/efeitos dos fármacos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Proteína Semelhante a ELAV 1/antagonistas & inibidores , Proteína Semelhante a ELAV 1/genética , Furanos , Glioma/tratamento farmacológico , Glioma/genética , Glioma/patologia , Humanos , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Fenantrenos/farmacologia , Agregação Patológica de Proteínas/tratamento farmacológico , Agregação Patológica de Proteínas/genética , Agregação Patológica de Proteínas/patologia , Domínios Proteicos , Quinonas
6.
J Biol Chem ; 292(33): 13551-13564, 2017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28637868

RESUMO

Tamoxifen-resistant (TAMR) estrogen receptor-positive (ER+) breast cancer is characterized by elevated Erb-B2 receptor tyrosine kinase 2 (ERBB2) expression. However, the underlying mechanisms responsible for the increased ERBB2 expression in the TAMR cells remain poorly understood. Herein, we reported that the ERBB2 expression is regulated at the post-transcriptional level by miR26a/b and the RNA-binding protein human antigen R (HuR), both of which associate with the 3'-UTR of the ERBB2 transcripts. We demonstrated that miR26a/b inhibits the translation of ERBB2 mRNA, whereas HuR enhances the stability of the ERBB2 mRNA. In TAMR ER+ breast cancer cells with elevated ERBB2 expression, we observed a decrease in the level of miR26a/b and an increase in the level of HuR. The forced expression of miR26a/b or the depletion of HuR decreased ERBB2 expression in the TAMR cells, resulting in the reversal of tamoxifen resistance. In contrast, the inactivation of miR26a/b or forced expression of HuR decreased tamoxifen responsiveness of the parental ER+ breast cancer cells. We further showed that the increase in HuR expression in the TAMR ER+ breast cancer cells is attributable to an increase in the HuR mRNA isoform with shortened 3'-UTR, which exhibits increased translational activity. This shortening of the HuR mRNA 3'-UTR via alternative polyadenylation (APA) was observed to be dependent on cleavage stimulation factor subunit 2 (CSTF2/CstF-64), which is up-regulated in the TAMR breast cancer cells. Taken together, we have characterized a model in which the interplay between miR26a/b and HuR post-transcriptionally up-regulates ERBB2 expression in TAMR ER+ breast cancer cells.


Assuntos
Regiões 3' não Traduzidas/efeitos dos fármacos , Neoplasias da Mama/tratamento farmacológico , Resistencia a Medicamentos Antineoplásicos , Proteína Semelhante a ELAV 1/metabolismo , MicroRNAs/metabolismo , Receptor ErbB-2/metabolismo , Tamoxifeno/farmacologia , Antineoplásicos Hormonais/farmacologia , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Fator Estimulador de Clivagem , Feminino , Humanos , MicroRNAs/antagonistas & inibidores , Mutação , Proteínas de Neoplasias/agonistas , Proteínas de Neoplasias/antagonistas & inibidores , Proteínas de Neoplasias/genética , Proteínas de Neoplasias/metabolismo , Poliadenilação/efeitos dos fármacos , Interferência de RNA , Estabilidade de RNA/efeitos dos fármacos , RNA Mensageiro/agonistas , RNA Mensageiro/antagonistas & inibidores , RNA Mensageiro/química , RNA Mensageiro/metabolismo , RNA Neoplásico/agonistas , RNA Neoplásico/antagonistas & inibidores , RNA Neoplásico/química , RNA Neoplásico/metabolismo , Proteínas de Ligação a RNA/agonistas , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Receptor ErbB-2/agonistas , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Elementos de Resposta/efeitos dos fármacos , Regulação para Cima/efeitos dos fármacos
7.
J Biol Chem ; 291(50): 25823-25836, 2016 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-27784781

RESUMO

Autotaxin (ATX) is a key enzyme that converts lysophosphatidylcholine (LPC) into lysophosphatidic acid (LPA), a lysophospholipid mediator that regulates cellular activities through its specific G protein-coupled receptors. The ATX-LPA axis plays an important role in various physiological and pathological processes, especially in inflammation and cancer development. Although the transcriptional regulation of ATX has been widely studied, the post-transcriptional regulation of ATX is largely unknown. In this study, we identified conserved adenylate-uridylate (AU)-rich elements in the ATX mRNA 3'-untranslated region (3'UTR). The RNA-binding proteins HuR and AUF1 directly bound to the ATX mRNA 3'UTR and had antagonistic functions in ATX expression. HuR enhanced ATX expression by increasing ATX mRNA stability, whereas AUF1 suppressed ATX expression by promoting ATX mRNA decay. HuR and AUF1 were involved in ATX regulation in Colo320 human colon cancer cells and the LPS-stimulated human monocytic THP-1 cells. HuR knockdown suppressed ATX expression in B16 mouse melanoma cells, leading to inhibition of cell migration. This effect was reversed by AUF1 knockdown to recover ATX expression or by the addition of LPA. These results suggest that the post-transcriptional regulation of ATX expression by HuR and AUF1 modulates cancer cell migration. In summary, we identified HuR and AUF1 as novel post-transcriptional regulators of ATX expression, thereby elucidating a novel mechanism regulating the ATX-LPA axis.


Assuntos
Regiões 3' não Traduzidas , Movimento Celular , Proteína Semelhante a ELAV 1/metabolismo , Regulação Neoplásica da Expressão Gênica , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/metabolismo , Proteínas de Neoplasias/metabolismo , Diester Fosfórico Hidrolases/biossíntese , Estabilidade de RNA , RNA Neoplásico/metabolismo , Animais , Proteína Semelhante a ELAV 1/genética , Técnicas de Silenciamento de Genes , Células HeLa , Ribonucleoproteína Nuclear Heterogênea D0 , Ribonucleoproteínas Nucleares Heterogêneas Grupo D/genética , Humanos , Camundongos , Proteínas de Neoplasias/genética , Diester Fosfórico Hidrolases/genética , RNA Neoplásico/genética
8.
J Biol Chem ; 291(4): 1643-1651, 2016 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-26601945

RESUMO

System xc(-) is a heteromeric amino acid cystine/glutamate antiporter that is constitutively expressed by cells of the CNS, where it functions in the maintenance of intracellular glutathione and extracellular glutamate levels. We recently determined that the cytokine, IL-1ß, increases the activity of system xc(-) in CNS astrocytes secondary to an up-regulation of its substrate-specific light chain, xCT, and that this occurs, in part, at the level of transcription. However, an in silico analysis of the murine xCT 3'-UTR identified numerous copies of adenine- and uridine-rich elements, raising the possibility that undefined trans-acting factors governing mRNA stability and translation may also contribute to xCT expression. Here we show that IL-1ß increases the level of mRNA encoding xCT in primary cultures of astrocytes isolated from mouse cortex in association with an increase in xCT mRNA half-life. Additionally, IL-1ß induces HuR translocation from the nucleus to the cytoplasm. RNA immunoprecipitation analysis reveals that HuR binds directly to the 3'-UTR of xCT in an IL-1ß-dependent manner. Knockdown of endogenous HuR protein abrogates the IL-1ß-mediated increase in xCT mRNA half-life, whereas overexpression of HuR in unstimulated primary mouse astrocytes doubles the half-life of constitutive xCT mRNA. This latter effect is accompanied by an increase in xCT protein levels, as well as a functional increase in system xc(-) activity. Altogether, these data support a critical role for HuR in mediating the IL-1ß-induced stabilization of astrocyte xCT mRNA.


Assuntos
Sistema y+ de Transporte de Aminoácidos/metabolismo , Astrócitos/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Regulação da Expressão Gênica , Interleucina-1beta/metabolismo , Proteínas de Ligação a RNA/metabolismo , Regiões 3' não Traduzidas , Sistema y+ de Transporte de Aminoácidos/genética , Animais , Células Cultivadas , Proteína Semelhante a ELAV 1/genética , Ácido Glutâmico/metabolismo , Interleucina-1beta/genética , Camundongos , Estabilidade de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Regulação para Cima
9.
J Biol Chem ; 291(44): 22949-22960, 2016 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-27629417

RESUMO

GILZ (glucocorticoid-induced leucine zipper) is inducible by glucocorticoids and plays a key role in their mode of action. GILZ attenuates inflammation mainly by inhibition of NF-κB and mitogen-activated protein kinase activation but does not seem to be involved in the severe side effects observed after glucocorticoid treatment. Therefore, GILZ might be a promising target for new therapeutic approaches. The present work focuses on the natural product curcumin, which has previously been reported to inhibit NF-κB. GILZ was inducible by curcumin in macrophage cell lines, primary human monocyte-derived macrophages, and murine bone marrow-derived macrophages. The up-regulation of GILZ was neither associated with glucocorticoid receptor activation nor with transcriptional induction or mRNA or protein stabilization but was a result of enhanced translation. Because the GILZ 3'-UTR contains AU-rich elements (AREs), we analyzed the role of the mRNA-binding protein HuR, which has been shown to promote the translation of ARE-containing mRNAs. Our results suggest that curcumin treatment induces HuR expression. An RNA immunoprecipitation assay confirmed that HuR can bind GILZ mRNA. In accordance, HuR overexpression led to increased GILZ protein levels but had no effect on GILZ mRNA expression. Our data employing siRNA in LPS-activated RAW264.7 macrophages show that curcumin facilitates its anti-inflammatory action by induction of GILZ in macrophages. Experiments with LPS-activated bone marrow-derived macrophages from wild-type and GILZ knock-out mice demonstrated that curcumin inhibits the activity of inflammatory regulators, such as NF-κB or ERK, and subsequent TNF-α production via GILZ. In summary, our data indicate that HuR-dependent GILZ induction contributes to the anti-inflammatory properties of curcumin.


Assuntos
Curcumina/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/imunologia , Extratos Vegetais/farmacologia , Fatores de Transcrição/genética , Animais , Linhagem Celular , Proteína Semelhante a ELAV 1/genética , Proteína Semelhante a ELAV 1/imunologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Masculino , Camundongos , Camundongos Knockout , NF-kappa B/genética , NF-kappa B/imunologia , Fatores de Transcrição/imunologia
10.
RNA Biol ; 11(10): 1250-61, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25584704

RESUMO

Human antigen R (HuR) is a 32 kDa protein with 3 RNA Recognition Motifs (RRMs), which bind to Adenylate and uridylate Rich Elements (AREs) of mRNAs. Whereas the N-terminal and central domains (RRM1 and RRM2) are essential for AREs recognition, little is known on the C-terminal RRM3 beyond its implication in HuR oligomerization and apoptotic signaling. We have developed a detergent-based strategy to produce soluble RRM3 for structural studies. We have found that it adopts the typical RRM fold, does not interact with the RRM1 and RRM2 modules, and forms dimers in solution. Our NMR measurements, combined with Molecular Dynamics simulations and Analytical Ultracentrifugation experiments, show that the protein dimerizes through a helical region that contains the conserved W261 residue. We found that HuR RRM3 binds to 5'-mer U-rich RNA stretches through the solvent exposed side of its ß-sheet, located opposite to the dimerization site. Upon mimicking phosphorylation by the S318D replacement, RRM3 mutant shows less ability to recognize RNA due to an electrostatic repulsion effect with the phosphate groups. Our study brings new insights of HuR RRM3 as a domain involved in protein oligomerization and RNA interaction, both functions regulated by 2 surfaces on opposite sides of the RRM domain.


Assuntos
Motivos de Aminoácidos/genética , Proteínas ELAV/química , Proteínas ELAV/metabolismo , Proteínas de Ligação a RNA/metabolismo , RNA/metabolismo , Sítios de Ligação , Dicroísmo Circular , Proteínas ELAV/genética , Humanos , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Simulação de Dinâmica Molecular , Ligação Proteica , Conformação Proteica , Multimerização Proteica , RNA/química , RNA/genética , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética
11.
JHEP Rep ; 3(1): 100177, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33294829

RESUMO

Long non-coding RNAs (lncRNAs) are important biological mediators that regulate numerous cellular processes. New experimental evidence suggests that lncRNAs play essential roles in liver development, normal liver physiology, fibrosis, and malignancy, including hepatocellular carcinoma and cholangiocarcinoma. In this review, we summarise our current understanding of the function of lncRNAs in the liver in both health and disease, as well as discuss approaches that could be used to target these non-coding transcripts for therapeutic purposes.

12.
Acta Pharm Sin B ; 10(8): 1414-1425, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32963940

RESUMO

HuR (human antigen R), an mRNA-binding protein responsible for poor prognosis in nearly all kinds of malignancies, is a potential anti-tumor target for drug development. While screening HuR inhibitors with a fluorescence polarization (FP) based high-throughput screening (HTS) system, the clinically used drug eltrombopag was identified. Activity of eltrombopag on molecular level was verified with FP, electrophoretic mobility shift assay (EMSA), simulation docking and surface plasmon resonance (SPR). Further, we showed that eltrombopag inhibited in vitro cell proliferation of multiple cancer cell lines and macrophages, and the in vivo anti-tumor activity was also demonstrated in a 4T1 tumor-bearing mouse model. The in vivo data showed that eltrombopag was efficient in reducing microvessels in tumor tissues. We then confirmed the HuR-dependent anti-angiogenesis effect of eltrombopag in 4T1 cells and RAW264.7 macrophages with qRT-PCR, HuR-overexpression and HuR-silencing assays, RNA stability assays, RNA immunoprecipitation and luciferase assays. Finally, we analyzed the in vitro anti-angiogenesis effect of eltrombopag on human umbilical vein endothelial cells (HUVECs) mediated by macrophages with cell scratch assay and in vitro Matrigel angiogenesis assay. With these data, we revealed the HuR-dependent anti-angiogenesis effect of eltrombopag in breast tumor, suggesting that the existing drug eltrombopag may be used as an anti-cancer drug.

13.
Neurochem Int ; 118: 82-90, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29702146

RESUMO

Control of decay of mRNA containing the adenine-uridine rich elements (AREs) is an important post-transcriptional mechanism involved in the regulation of inflammatory gene expression. Two widely recognized proteins in this machinery are HuR (human antigen R) - a protein that stabilizes ARE-containing mRNA and TTP (tristetraprolin) - a protein that shortens half-lives of ARE-containing mRNA. Although HuR and TTP regulation mechanisms have been well studied in cells of hematopoietic origin, there are no respective data in astrocytes, cells of ectodermal origin which play an important role in neuroinflammation. Therefore we evaluated the existence of TTP and HuR in primary astrocytes and characterized the features of their regulation after stimulation by the proinflammatory stimuli thrombin, ATP, and agonists of TLR4, TLR2. All proinflammatory stimuli increased levels of TTP mRNA, but not HuR mRNA. Transcripts of both HuR and TTP underwent stabilization upon lipopolysaccharide (LPS) treatment, measured with the actinomycin D protocol. This effect was abolished by treatment with SB203580, an inhibitor of р38 МАРК. Both TTP and HuR transcripts were sensitive to modulation by anisomycin and cycloheximide. LPS induced translocation of HuR protein from nucleus to cytoplasm. TTP is localized in the cytosolic fraction and localization is not sensitive to LPS treatment. Our data for the first time reveal specificity of regulation of ARE-binding proteins in astrocytes. We propose possibilities to manipulate brain inflammatory processes via post-transcription regulatory steps in astrocytes.


Assuntos
Astrócitos/metabolismo , Proteínas de Transporte/metabolismo , Proteína Semelhante a ELAV 1/metabolismo , Tristetraprolina/metabolismo , Animais , Animais Recém-Nascidos , Astrócitos/efeitos dos fármacos , Células Cultivadas , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Lipopolissacarídeos/toxicidade , Camundongos , Células RAW 264.7 , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa