RESUMO
Respiratory syncytial virus (RSV) infection is a major cause of severe lower respiratory tract infection and death in young infants and the elderly. With no effective prophylactic treatment available, current vaccine candidates aim to elicit neutralizing antibodies. However, binding and neutralization have poorly predicted protection in the past, and accumulating data across epidemiologic cohorts and animal models collectively point to a role for additional antibody Fc-effector functions. To begin to define the humoral correlates of immunity against RSV, here we profiled an adenovirus 26 RSV-preF vaccine-induced humoral immune response in a group of healthy adults that were ultimately challenged with RSV. Protection from infection was linked to opsonophagocytic functions, driven by IgA and differentially glycosylated RSV-specific IgG profiles, marking a functional humoral immune signature of protection against RSV. Furthermore, Fc-modified monoclonal antibodies able to selectively recruit effector functions demonstrated significant antiviral control in a murine model of RSV.
Assuntos
Infecções por Vírus Respiratório Sincicial , Vírus Sincicial Respiratório Humano , Camundongos , Animais , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Anticorpos Neutralizantes , Anticorpos Antivirais , Imunoglobulina G , Fragmentos Fc das Imunoglobulinas , Proteínas Virais de FusãoRESUMO
Nearly half of the world's population is at risk of malaria, a disease caused by the protozoan parasite Plasmodium, which is estimated to cause more than 240,000,000 infections and kill more than 600,000 people annually. The emergence of Plasmodia resistant to chemoprophylactic treatment highlights the urgency to develop more effective vaccines. In this regard, whole sporozoite vaccination approaches in murine models and human challenge studies have provided substantial insight into the immune correlates of protection from malaria. From these studies, CD8+ T cells have come to the forefront, being identified as critical for vaccine-mediated liver-stage immunity that can prevent the establishment of the symptomatic blood stages and subsequent transmission of infection. However, the unique biological characteristics required for CD8+ T cell protection from liver-stage malaria dictate that more work must be done to design effective vaccines. In this review, we will highlight a subset of studies that reveal basic aspects of memory CD8+ T cell-mediated protection from liver-stage malaria infection.
Assuntos
Vacinas Antimaláricas , Malária , Plasmodium , Camundongos , Humanos , Animais , Memória Imunológica , Fígado , Linfócitos T CD8-PositivosRESUMO
Tools to evaluate and accelerate tuberculosis (TB) vaccine development are needed to advance global TB control strategies. Validated human infection studies for TB have the potential to facilitate breakthroughs in understanding disease pathogenesis, identify correlates of protection, develop diagnostic tools, and accelerate and de-risk vaccine and drug development. However, key challenges remain for realizing the clinical utility of these models, which require further discussion and alignment among key stakeholders. In March 2023, the Wellcome Trust and the International AIDS Vaccine Initiative convened international experts involved in developing both TB and bacillus Calmette-Guérin (BCG) human infection studies (including mucosal and intradermal challenge routes) to discuss the status of each of the models and the key enablers to move the field forward. This report provides a summary of the presentations and discussion from the meeting. Discussions identified key issues, including demonstrating model validity, to provide confidence for vaccine developers, which may be addressed through demonstration of known vaccine effects (eg, BCG vaccination in specific populations), and by comparing results from field efficacy and human infection studies. The workshop underscored the importance of establishing safe and acceptable studies in high-burden settings, and the need to validate >1 model to allow for different scientific questions to be addressed as well as to provide confidence to vaccine developers and regulators around use of human infection study data in vaccine development and licensure pathways.
Assuntos
Vacinas contra a Tuberculose , Tuberculose , Humanos , Tuberculose/prevenção & controle , Tuberculose/imunologia , Vacinas contra a Tuberculose/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Desenvolvimento de Vacinas , Vacina BCG/imunologia , Vacina BCG/administração & dosagem , Mycobacterium tuberculosis/imunologia , AnimaisRESUMO
Bordetella pertussis, a slow-growing Gram-negative coccobacillus and the causative agent of whooping cough, is one of the leading causes of vaccine-preventable death and morbidity globally. A state of asymptomatic human carriage has not yet been demonstrated by population studies but is likely to be an important reservoir for community transmission of infection. Such a carriage state may be a target for future vaccine strategies. This chapter presents a short summary of the characteristics of B. pertussis, which should be taken into account when developing a human challenge model and any future experimental medicine interventions. Three studies involving deliberate infection with B. pertussis have been described to date. The first of these was a scientifically and ethically unacceptable paediatric challenge study involving four children in 1930. The second was an investigation of a putative live vaccine using a genetically modified and attenuated strain of B. pertussis. Finally, a systematically constructed human challenge model using a wild-type, potentially pathogenic strain has been established. The latter study has demonstrated that deliberate induction of asymptomatic colonisation in humans is safe and immunogenic, with colonised participants exhibiting seroconversion to pertussis antigens. It has also shown nasal wash to be a more sensitive method of detecting the presence of B. pertussis than either pernasal swab or throat swab, and that B. pertussis carriage can be cleared effectively with Azithromycin. The development of this wild-type B. pertussis human challenge model will allow the investigation of host-pathogen and facilitate future vaccine development.
RESUMO
Many aspects of Controlled Human Infection Models (CHIMs, also known as human challenge studies and human infection studies) have been discussed extensively, including Good Manufacturing Practice (GMP) production of the challenge agent, CHIM ethics, environmental safety in CHIM, recruitment, community engagement, advertising and incentives, pre-existing immunity, and clinical, immunological, and microbiological endpoints. The fourth CHIM meeting focused on regulation of CHIM studies, bringing together scientists and regulators from high-, middle-, and low-income countries, to discuss barriers and hurdles in CHIM regulation. Valuable initiatives for regulation of CHIMs have already been undertaken but further capacity building remains essential. The Wellcome Considerations document is a good starting point for further discussions.
RESUMO
Controlled Human Infectious Model studies (CHIM) involve deliberately exposing volunteers to pathogens. To discuss ethical issues related to CHIM, the European Vaccine Initiative and the International Alliance for Biological Standardization organised the workshop "Ethical Approval for CHIM Clinical Trial Protocols", which took place on May 30-31, 2023, in Brussels, Belgium. The event allowed CHIM researchers, regulators, ethics committee (EC) members, and ethicists to examine the ethical criteria for CHIM and the role(s) of CHIM in pharmaceutical development. The discussions led to several recommendations, including continued assurance that routine ethical requirements are met, assurance that participants are well-informed, and that preparation of study documents must be both ethically and scientifically sound from an early stage. Study applications must clearly state the rationale for the challenge compared to alternative study designs. ECs need to have clear guidance and procedures for evaluating social value and assessing third-party risks. Among other things, public trust in research requires minimisation of harm to healthy volunteers and third-party risk. Other important considerations include appropriate stakeholder engagement, public education, and access to health care for participants after the study.
Assuntos
Desenvolvimento de Medicamentos , Projetos de Pesquisa , Humanos , Voluntários SaudáveisRESUMO
Earlier meetings laid the foundations for Controlled Human Infection Models (CHIMs), also known as human challenge studies and human infection studies, including Good Manufacturing Practice (GMP) production of the challenge agent, CHIM ethics, environmental safety in CHIM, recruitment, community engagement, advertising and incentives, pre-existing immunity, and clinical, immunological, and microbiological endpoints. The fourth CHIM meeting focused on CHIM studies being conducted in endemic countries. Over the last ten years we have seen a vast expansion of the number of countries in Africa performing CHIM studies, as well as a growing number of different challenge organisms being used. Community and public engagement with assiduous ethical and regulatory oversight has been central to successful introductions and should be continued, in more community-led or community-driven models. Valuable initiatives for regulation of CHIMs have been undertaken but further capacity building remains essential.
RESUMO
Rationale: Pneumococcal pneumonia remains a global health problem. Pneumococcal colonization increases local and systemic protective immunity, suggesting that nasal administration of live attenuated Streptococcus pneumoniae (Spn) strains could help prevent infections. Objectives: We used a controlled human infection model to investigate whether nasopharyngeal colonization with attenuated S. pneumoniae strains protected against recolonization with wild-type (WT) Spn (SpnWT). Methods: Healthy adults aged 18-50 years were randomized (1:1:1:1) for nasal administration twice (at a 2-wk interval) with saline solution, WT Spn6B (BHN418), or one of two genetically modified Spn6B strains, SpnA1 (Δfhs/piaA) or SpnA3 (ΔproABC/piaA) (Stage I). After 6 months, participants were challenged with SpnWT to assess protection against the homologous serotype (Stage II). Measurements and Main Results: 125 participants completed both study stages per intention to treat. No serious adverse events were reported. In Stage I, colonization rates were similar among groups: SpnWT, 58.1% (18 of 31); SpnA1, 60% (18 of 30); and SpnA3, 59.4% (19 of 32). Anti-Spn nasal IgG levels after colonization were similar in all groups, whereas serum IgG responses were higher in the SpnWT and SpnA1 groups than in the SpnA3 group. In colonized individuals, increases in IgG responses were identified against 197 Spn protein antigens and serotype 6 capsular polysaccharide using a pangenome array. Participants given SpnWT or SpnA1 in Stage I were partially protected against homologous challenge with SpnWT (29% and 30% recolonization rates, respectively) at stage II, whereas those exposed to SpnA3 achieved a recolonization rate similar to that in the control group (50% vs. 47%, respectively). Conclusions: Nasal colonization with genetically modified live attenuated Spn was safe and induced protection against recolonization, suggesting that nasal administration of live attenuated Spn could be an effective strategy for preventing pneumococcal infections. Clinical trial registered with the ISRCTN registry (ISRCTN22467293).
Assuntos
Infecções Pneumocócicas , Streptococcus pneumoniae , Adulto , Humanos , Virulência , Nariz , Infecções Pneumocócicas/prevenção & controle , Imunização , Anticorpos Antibacterianos , Imunoglobulina G , Vacinas Pneumocócicas/uso terapêuticoRESUMO
The increasing recent interest in human challenge studies or controlled human infection model studies for accelerating vaccine development has been driven by the recognition of the unique ability of these studies to contribute to the understanding of response to infection and the performance of vaccines. With streamlining of ethical processes, conduct and supervision and the availability of new investigative tools from immunophenotyping to glycobiology, the potential to derive valuable data to inform vaccine testing and development has never been greater. However, issues of availability and standardization of challenge strains, conduct of studies in disease endemic locations and the iteration between clinical and laboratory studies still need to be addressed to gain maximal value for vaccine development.
Assuntos
Infecções/imunologia , Vacinas/imunologia , Ensaios Clínicos como Assunto , Humanos , Pesquisa , VacinaçãoRESUMO
The timelines for developing vaccines against infectious diseases are lengthy, and often vaccines that reach the stage of large phase 3 field trials fail to provide the desired level of protective efficacy. The application of controlled human challenge models of infection and disease at the appropriate stages of development could accelerate development of candidate vaccines and, in fact, has done so successfully in some limited cases. Human challenge models could potentially be used to gather critical information on pathogenesis, inform strain selection for vaccines, explore cross-protective immunity, identify immune correlates of protection and mechanisms of protection induced by infection or evoked by candidate vaccines, guide decisions on appropriate trial endpoints, and evaluate vaccine efficacy. We prepared this report to motivate fellow scientists to exploit the potential capacity of controlled human challenge experiments to advance vaccine development. In this review, we considered available challenge models for 17 infectious diseases in the context of the public health importance of each disease, the diversity and pathogenesis of the causative organisms, the vaccine candidates under development, and each model's capacity to evaluate them and identify correlates of protective immunity. Our broad assessment indicated that human challenge models have not yet reached their full potential to support the development of vaccines against infectious diseases. On the basis of our review, however, we believe that describing an ideal challenge model is possible, as is further developing existing and future challenge models.
Assuntos
Modelos Biológicos , Desenvolvimento de Vacinas , Ensaios Clínicos Fase III como Assunto , Controle de Doenças Transmissíveis , Humanos , VacinasRESUMO
Compared with wounded skin, ascorbic acid is enriched in pustules of humans experimentally infected with Haemophilus ducreyi. Compared with the broth-grown inocula, transcription of the H. ducreyi ulaABCD operon, which encodes genes for ascorbic acid uptake, is increased in pustules. We hypothesized that ascorbic acid uptake plays a role in H. ducreyi virulence. Five volunteers were infected with both H. ducreyi strain 35000HP and its isogenic ulaABCD deletion mutant at multiple sites; the papule and pustule formation rates of the mutant and parent strains were similar. Thus, ascorbic acid uptake is not essential for H. ducreyi virulence in humans.
Assuntos
Cancroide , Haemophilus ducreyi , Humanos , Haemophilus ducreyi/genética , Virulência , Cancroide/genética , Ácido Ascórbico , ÓperonRESUMO
BACKGROUND: Respiratory syncytial virus (RSV) causes significant disease burden in older adults. MVA-BN-RSV is a novel poxvirus-vectored vaccine encoding internal and external RSV proteins. METHODS: In a phase 2a randomized double-blind, placebo-controlled trial, healthy participants aged 18 to 50 years received MVA-BN-RSV or placebo, then were challenged 4 weeks later with RSV-A Memphis 37b. Viral load was assessed from nasal washes. RSV symptoms were collected. Antibody titers and cellular markers were assessed before and after vaccination and challenge. RESULTS: After receiving MVA-BN-RSV or placebo, 31 and 32 participants, respectively, were challenged. Viral load areas under the curve from nasal washes were lower (P = .017) for MVA-BN-RSV (median = 0.00) than placebo (median = 49.05). Total symptom scores also were lower (median = 2.50 and 27.00, respectively; P = .004). Vaccine efficacy against symptomatic, laboratory-confirmed or culture-confirmed infection was 79.3% to 88.5% (P = .022 and .013). Serum immunoglobulin A and G titers increased approximately 4-fold after MVA-BN-RSV vaccination. Interferon-γ-producing cells increased 4- to 6-fold after MVA-BN-RSV in response to stimulation with the encoded RSV internal antigens. Injection site pain occurred more frequently with MVA-BN-RSV. No serious adverse events were attributed to vaccination. CONCLUSIONS: MVA-BN-RSV vaccination resulted in lower viral load and symptom scores, fewer confirmed infections, and induced humoral and cellular responses. CLINICAL TRIALS REGISTRATION: NCT04752644.
Assuntos
Infecções por Vírus Respiratório Sincicial , Vacinas contra Vírus Sincicial Respiratório , Vírus Sincicial Respiratório Humano , Vacina Antivariólica , Idoso , Humanos , Anticorpos Antivirais , Antígenos Virais , Infecções por Vírus Respiratório Sincicial/prevenção & controle , Vaccinia virusRESUMO
Enteric fever, caused by oral infection with typhoidal Salmonella serovars, presents as a non-specific febrile illness preceded by an incubation period of 5 days or more. The enteric fever human challenge model provides a unique opportunity to investigate the innate immune response during this incubation period, and how this response is altered by vaccination with the Vi polysaccharide or conjugate vaccine. We find that on the same day as ingestion of typhoidal Salmonella, there is already evidence of an immune response, with 199 genes upregulated in the peripheral blood transcriptome 12 hours post-challenge (false discovery rate <0.05). Gene sets relating to neutrophils, monocytes, and innate immunity were over-represented (false discovery rate <0.05). Estimating cell proportions from gene expression data suggested a possible increase in activated monocytes 12 hours post-challenge (P = 0.036, paired Wilcoxon signed-rank test). Furthermore, plasma TNF-α rose following exposure (P = 0.011, paired Wilcoxon signed-rank test). There were no significant differences in gene expression (false discovery rate <0.05) in the 12 hours response between those who did and did not subsequently develop clinical or blood culture confirmed enteric fever or between vaccination groups. Together, these results demonstrate early perturbation of the peripheral blood transcriptome after enteric fever challenge and provide initial insight into early mechanisms of protection.
Assuntos
Febre Tifoide , Vacinas Tíficas-Paratíficas , Humanos , Febre Tifoide/prevenção & controle , Salmonella typhi/genética , Vacinas Atenuadas , VacinaçãoRESUMO
Haemophilus ducreyi is a causative agent of cutaneous ulcers in children who live in the tropics and of the genital ulcer disease chancroid in sexually active persons. In the anaerobic environment of abscesses and ulcers, anaerobic respiration and mixed acid fermentation (MAF) can be used to provide cellular energy. In Escherichia coli, MAF produces formate, acetate, lactate, succinate, and ethanol; however, MAF has not been studied in H. ducreyi. In human challenge experiments with H. ducreyi 35000HP, transcripts of the formate transporter FocA and pyruvate formate lyase (PflB) were upregulated in pustules compared to the inocula. We made single and double mutants of focA and pflB in 35000HP. Growth of 35000HPΔfocA was similar to 35000HP, but 35000HPΔpflB and 35000HPΔfocA-pflB had growth defects during both aerobic and anaerobic growth. Mutants lacking pflB did not secrete formate into the media. However, formate was secreted into the media by 35000HPΔfocA, indicating that H. ducreyi has alternative formate transporters. The pH of the media during anaerobic growth decreased for 35000HP and 35000HPΔfocA, but not for 35000HPΔpflB or 35000HPΔfocA-pflB, indicating that pflB is the main contributor to media acidification during anaerobic growth. We tested whether formate production and transport were required for virulence in seven human volunteers in a mutant versus parent trial between 35000HPΔfocA-pflB and 35000HP. The pustule formation rate was similar for 35000HP (42.9%)- and 35000HPΔfocA-pflB (62%)-inoculated sites. Although formate production occurs during in vitro growth and focA-pflB transcripts are upregulated during human infection, focA and pflB are not required for virulence in humans.
Assuntos
Proteínas de Escherichia coli , Haemophilus ducreyi , Criança , Humanos , Haemophilus ducreyi/genética , Virulência , Úlcera , Voluntários Saudáveis , Formiatos , Escherichia coli , Proteínas de Membrana TransportadorasRESUMO
BACKGROUND: Few studies have assessed participant safety in human challenge trials (HCTs). Key questions regarding HCTs include how risky such trials have been, how often adverse events (AEs) and serious adverse events (SAEs) occur, and whether risk mitigation measures have been effective. METHODS: A systematic search of PubMed and PubMed Central for articles reporting on results of HCTs published between 1980 and 2021 was performed and completed by 7 October 2021. RESULTS: Of 2838 articles screened, 276 were reviewed in full. A total of 15 046 challenged participants were described in 308 studies that met inclusion criteria; 286 (92.9%) of these studies reported mitigation measures used to minimize risk to the challenge population. Among 187 studies that reported on SAEs, 0.2% of participants experienced at least 1 challenge-related SAE. Among 94 studies that graded AEs by severity, challenge-related AEs graded "severe" were reported by between 5.6% and 15.8% of participants. AE data were provided as a range to account for unclear reporting. Eighty percent of studies published after 2010 were registered in a trials database. CONCLUSIONS: HCTs are increasingly common and used for an expanding list of diseases. Although AEs occur, severe AEs and SAEs are rare. Reporting has improved over time, though not all papers provide a comprehensive report of relevant health impacts. We found very few severe symptoms or SAEs in studies that reported them, but many HCTs did not report relevant safety data. This study was preregistered on PROSPERO as CRD42021247218.
RESUMO
Despite considerable momentum in the development of RSV vaccines and therapeutics, there remain substantial barriers to the development and licensing of effective agents, particularly in high-risk populations. The unique immunobiology of RSV and lack of clear protective immunological correlates has held back RSV vaccine development, which, therefore, depends on large and costly clinical trials to demonstrate efficacy. Studies involving the deliberate infection of human volunteers offer an intermediate step between pre-clinical and large-scale studies of natural infection. Human challenge has been used to demonstrate the potential efficacy of vaccines and antivirals while improving our understanding of the protective immunity against RSV infection. Early RSV human infection challenge studies determined the role of routes of administration and size of inoculum on the disease. However, inherent limitations, the use of highly attenuated/laboratory-adapted RSV strains and the continued evolutionary adaptation of RSV limits extrapolation of results to present-day vaccine testing. With advances in technology, it is now possible to perform more detailed investigations of human mucosal immunity against RSV in experimentally infected adults and, more recently, older adults to optimise the design of vaccines and novel therapies. These studies identified defects in RSV-induced humoral and CD8+ T cell immunity that may partly explain susceptibility to recurrent RSV infection. We discuss the insights from human infection challenge models, ethical and logistical considerations, potential benefits, and role in streamlining and accelerating novel antivirals and vaccines against RSV. Finally, we consider how human challenges might be extended to include relevant at-risk populations.
RESUMO
The world's first coronavirus disease 2019 human challenge trial using the D614G strain of severe acute respiratory syndrome 2 (SARS-CoV-2) is underway in the United Kingdom. The Wellcome Trust is funding challenge stock preparation of the Beta and Delta variant for a follow-up human challenge trial, and researchers at hVIVO are considering conducting these trials. However, little has been written thus far about the ethical justifiability of human challenge trials with SARS-CoV-2 variants of concern. We explore 2 specific characteristics of some variants that may initially be thought to make such trials unethical and conclude that SARS-CoV-2 variant challenge trials can remain ethical.
Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , Ética em Pesquisa , SARS-CoV-2/genética , Vacinas contra COVID-19/efeitos adversos , Vacinas contra COVID-19/imunologia , Ética , Humanos , Reino Unido , VacinasRESUMO
BACKGROUND: Genogroup II noroviruses are the most common cause of acute infectious gastroenteritis. We evaluated the use of a new GII.2 inoculum in a human challenge. METHODS: Forty-four healthy adults (36 secretor-positive and 8 secretor-negative for histo-blood group antigens) were challenged with ascending doses of a new safety-tested Snow Mountain virus (SMV) GII.2 norovirus inoculum (1.2â ×â 104 to 1.2â ×â 107 genome equivalent copies [GEC]; nâ =â 38) or placebo (nâ =â 6). Illness was defined as diarrhea and/or vomiting postchallenge in subjects with evidence of infection (defined as GII.2 norovirus RNA detection in stool and/or anti-SMV immunoglobulin G [IgG] seroconversion). RESULTS: The highest dose was associated with SMV infection in 90%, and illness in 70% of subjects with 10 of 12 secretor-positive (83%) and 4 of 8 secretor-negative (50%) becoming ill. There was no association between prechallenge anti-SMV serum IgG concentration, carbohydrate-binding blockade antibody, or salivary immunoglobulin A and infection. The median infectious dose (ID50) was 5.1â ×â 105 GEC. CONCLUSIONS: High rates of infection and illness were observed in both secretor-positive and secretor-negative subjects in this challenge study. However, a high dose will be required to achieve the target of 75% illness to make this an efficient model for evaluating potential norovirus vaccines and therapeutics. CLINICAL TRIALS REGISTRATION: NCT02473224.
Assuntos
Infecções por Caliciviridae , Gastroenterite , Norovirus , Adulto , Humanos , Norovirus/genética , Diarreia , Genótipo , Imunoglobulina GRESUMO
Helicobacter pylori (H. pylori) is an important human pathogen etiologically associated with peptic ulcers and gastric cancer. The infection is present in approximately one-half of the world's population. Population-based H. pylori eradiation has confirmed that cure or prevention of the infection produces a marked reduction in gastric cancer and peptic ulcer disease. Antimicrobial therapy has become increasingly ineffective, and complexity and costs of antimicrobial therapy for infected individuals residing in and, immigrating from, the developing world combined with the cost of treatment for cancer make vaccine development a cost-effective alternative. Challenge studies allowed making a "go-no go" decision regarding vaccine effectiveness. We provide detailed protocols regarding challenge strain selection and administration as well as guidance regarding the clinical and laboratory tests used to confirm and monitor experimental infection. Experience shows that reliance of noninvasive methods led to the erroneous conclusion that some subjects were not infected. The current data suggests that histologic assessment of gastric mucosal biopsies may be one of the most sensitive and specific means of assessment of the presence of experimental infection as well as of successful H. pylori eradication. We recommend detailed recommendations for acquiring, processing, embedding, sectioning, and examining the gastric biopsies.
RESUMO
Nontyphoidal Salmonella (NTS) is responsible for a major global burden of disease and economic loss, particularly in low- and middle-income countries. It is designated a priority pathogen by the WHO for vaccine development and, with new impetus from vaccine developers, the establishment of an NTS controlled human infection model (CHIM) is timely and valuable. The broadly dichotomous clinical presentations of diarrhoea and invasive disease, commonly bacteraemia, present significant challenges to the development of an NTS CHIM. Nevertheless, if successful, such a CHIM will be invaluable for understanding the pathogenesis of NTS disease, identifying correlates of protection and advancing candidate vaccines towards licensure. This article describes the background case for a CHIM for NTS, the role of such a CHIM and outlines a potential approach to its development.