Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
1.
Biochem Biophys Res Commun ; 698: 149553, 2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38271833

RESUMO

Ever since the proposal of ferroptosis, it has been studied as a nonapoptotic cell death caused by iron ion-dependent phospholipid (PL) peroxidation. We previously showed that treatment of human hepatoma cell line HepG2 with prepared PL hydroperoxide (PLOOH) resulted in ferroptosis. However, in human sebum, the major hydroperoxide is not PLOOH but squalene hydroperoxide (SQOOH), and to our knowledge, it is not established yet whether SQOOH induces ferroptosis in the skin. In this study, we synthesized SQOOH and treated human keratinocyte HaCaT cells with SQOOH. The results showed that SQOOH induces ferroptosis in HaCaT cells in the same way that PLOOH causes ferroptosis in HepG2 cells. Some natural antioxidants (botanical extracts) could inhibit the ferroptosis in both the cell types. Consequently, future research focus would revolve around the involvement of SQOOH-induced ferroptosis in skin pathologies as well as the prevention and treatment of skin diseases through inhibition of ferroptosis by botanical extracts.


Assuntos
Ferroptose , Esqualeno , Humanos , Esqualeno/farmacologia , Esqualeno/metabolismo , Peróxido de Hidrogênio/metabolismo , Células HaCaT , Peroxidação de Lipídeos , Queratinócitos/metabolismo
2.
Int J Mol Sci ; 25(2)2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38279268

RESUMO

Nymphoides peltata has been used as a medicinal herb in traditional medicines to treat strangury, polyuria, and swelling. The phytochemical investigation of the MeOH extract of N. peltata roots led to the isolation of three iridoid glycosides and three coumarin glycoside derivatives, which were characterized as menthiafolin (1), threoninosecologanin (2), callicoside C (3), and scopolin (4), as well as two undescribed peltatamarins A (5) and B (6). The chemical structures of the undescribed compounds were determined by analyzing their 1 dimensional (D) and 2D nuclear magnetic resonance (NMR) spectra and using high-resolution (HR)-electrospray ionization mass spectroscopy (ESI-MS), along with the chemical reaction of acid hydrolysis. The wound healing activities of the isolated compounds 1-6 were evaluated using a HaCaT cell scratch test. Among the isolates, scopolin (4) and peltatamarin A (5) promoted HaCaT cell migration over scratch wounds, and compound 5 was the most effective. Furthermore, compound 5 significantly promoted cell migration without adversely affecting cell proliferation, even when treated at a high dose (100 µM). Our results demonstrate that peltatamarin A (5), isolated from N. peltata roots, has the potential for wound healing effects.


Assuntos
Glicosídeos Cardíacos , Magnoliopsida , Plantas Medicinais , Glicosídeos/farmacologia , Glicosídeos/química , Glicosídeos Iridoides/química , Cicatrização , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Cumarínicos/farmacologia
3.
Plant Foods Hum Nutr ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38985367

RESUMO

Jackfruit leaf protein hydrolysates obtained from the enzymatic hydrolysis of leaf protein concentrate with gastrointestinal enzymes have shown good techno-functional properties and high antioxidant capacity. However, molecular weight, antiproliferative activity, cytotoxicity and the ability to reduce reactive oxygen species (ROS) are still unknown. Therefore, this study aimed to evaluate the effect of jackfruit leaf protein hydrolysates obtained by enzymatic hydrolysis with pepsin and pancreatin at different hydrolysis times (30-240 min) on molecular weights, cytotoxicity, antiproliferation of cancer cells, and the reduction of reactive oxygen species in H2O2-induced HaCaT cells. The electrophoretic profile indicated that H-Pep contains peptides with molecular weights between 25 - 20 kDa. Meanwhile, H-Pan is composed of molecular weight products between 25 - 20 kDa and < 20 kDa. H-Pan and H-Pep (125-500 µg/mL) did not show significant cytotoxicity on HaCaT (human keratinocytes) and J774A.1 (murine macrophage cells). Antiproliferative activity was achieved in human cervical, ovarian, and liver cancer cells. H-Pan-240 min (1000 µg/mL) reduced the cell viability of cervical cancer cells by 23% while H-Pan-60 min significantly reduced cell viability of ovarian and liver cancer cells by 14.5 (500 µg/mL) and 17% (1000 µg/mL), respectively (P < 0.05). The protective effect against oxidative stress on H2O2-stressed HaCaT cells was obtained with H-Pep-60 min, which reduced 25% of ROS at 250 µg/mL (P < 0.05). The findings demonstrate the safe use of green biomass as a source of plant protein hydrolysates.

4.
Proteins ; 91(4): 542-554, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36424813

RESUMO

Heparin and heparan sulfate are important glycosaminoglycans that can regulate the activities of many vital proteins, especially the fibroblast growth factor (FGF) family. Because FGF7 (KGF) has an important role in tissue repair and maintaining the integrity of the mucosal barrier, recombinant human keratinocyte growth factor (rhKGF, palifermin) has been approved for the treatment of wound healing and oral cavity. Due to heparin plays an important role in the KGF signaling pathway, a more detailed study of the drug-drug interactions (DDIs) between rhKGF and heparin at the atomic level and investigating their synergistic effect on each other in terms of biology, especially in silico, is necessary for a better understanding of DDIs. In this study, DDIs between rhKGF and low-molecular weight heparin types (LMWH) were investigated. In this regard, scrutiny of the influence of the synergistic heparin types on the structure and biostability of rhKGF is accomplished using computational methods such as molecular docking and molecular dynamic simulations (MDs). Subsequently, the motion behavior of rhKGF in interaction with LMWHs was evaluated based on eigenvectors by using principal component analysis (PCA). Also, the binding free energies of rhKGF-LMWH complexes were calculated by the molecular mechanics/Poisson-Boltzmann surface area (MM-BPSA) method. The result showed that rhKGF-idraparinux (-6.9 kcal/mol) and rhKGF-heparin (-6.0 kcal/mol) complexes had significant binding affinity as well as they had a more stable binding to rhKGF than to other LMWH during 100 ns simulation. However, in order to confirm the curative effect of these drugs, clinical trials must be done.


Assuntos
Heparina de Baixo Peso Molecular , Heparina , Humanos , Simulação de Acoplamento Molecular , Fatores de Crescimento de Fibroblastos , Queratinócitos
5.
Mol Biol Rep ; 50(11): 9691-9698, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37658930

RESUMO

INTRODUCTION: During skin aging, the extracellular matrix (ECM) concomitantly breaks down. Out of the various protein components that comprise ECM, collagen is the most abundant one. Matrix metalloproteinase-1 (MMP-1) is a major collagenase that can degrade collagen. Therefore, the inhibition of MMP-1 may be critical for skin aging prevention. CX4945 is an inhibitor of casein kinase 2 and shows anticancer effects on various types of cancer cells. METHODS AND RESULTS: In this report, we investigated the MMP-1-inhibiting effect of CX4945 in HaCaT human keratinocyte cells. We performed zymography assays, Western blot analysis and immunoprecipitation assay to investigate the anti-MMP-1 effects of CX4945. CX4945 was found to inhibit collagen degradation via attenuation of the MMP-1 secretion out of HaCaT cells. This activity of CX4945 may be mediated by the induction of MMP-1 ubiquitylation via c-Jun N-terminal kinase (JNK) signaling. In wound healing cell migration assay, CX4945 also showed suppressive effect on the migration of HaCaT cells. This finding was closely related to the attenuation of CREB transcription factor via the downregulation of ERK mitogen-activated protein kinase as observed in Western blot analysis. CONCLUSION: Our report suggests that the inhibitory effects of CX4945 on MMP-1 in epidermal cells may offer a basis for further studying its therapeutic potential as an anti-wrinkle agent.


Assuntos
Caseína Quinase II , Metaloproteinase 1 da Matriz , Humanos , Caseína Quinase II/metabolismo , Metaloproteinase 1 da Matriz/metabolismo , Células HaCaT/metabolismo , Queratinócitos/metabolismo , Colágeno/metabolismo
6.
Int J Mol Sci ; 24(10)2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37239891

RESUMO

The epidermis is one of the largest tissues in the human body, serving as a protective barrier. The basal layer of the epidermis, which consists of epithelial stem cells and transient amplifying progenitors, represents its proliferative compartment. As keratinocytes migrate from the basal layer to the skin surface, they exit the cell cycle and initiate terminal differentiation, ultimately generating the suprabasal epidermal layers. A deeper understanding of the molecular mechanisms and pathways driving keratinocytes' organization and regeneration is essential for successful therapeutic approaches. Single-cell techniques are valuable tools for studying molecular heterogeneity. The high-resolution characterization obtained with these technologies has identified disease-specific drivers and new therapeutic targets, further promoting the advancement of personalized therapies. This review summarizes the latest findings on the transcriptomic and epigenetic profiling of human epidermal cells, analyzed from human biopsy or after in vitro cultivation, focusing on physiological, wound healing, and inflammatory skin conditions.


Assuntos
Epiderme , Dermatopatias , Humanos , Epiderme/metabolismo , Queratinócitos/metabolismo , Células Epidérmicas , Cicatrização/genética , Dermatopatias/metabolismo , Diferenciação Celular/genética
7.
Int J Mol Sci ; 24(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37511501

RESUMO

The Wnt/ß-catenin signaling pathway plays important roles in the multi-phases of wound healing: homeostasis, inflammation, proliferative, and remodeling phases. However, there are no clinically available therapeutic agents targeting the Wnt/ß-catenin pathway. In this study, we tested the effect of 5, 6-dichloroindirubin-3'-methoxime (KY19382), a small molecule that activates the Wnt/ß-catenin pathway via interference with the function of the negative feedback regulator CXXC5, on cutaneous wound healing. KY19382 significantly enhanced cell migration of human keratinocytes and dermal fibroblasts with increased levels of ß-catenin, phalloidin, Keratin 14, proliferating cell nuclear antigen (PCNA), Collagen I, and alpha-smooth muscle actin (α-SMA) by activating the Wnt/ß-catenin signaling pathway without causing significant cytotoxicity. In addition, levels of Collagen I, Keratin 14, PCNA, and stem cell markers were significantly increased by KY19382 in a cutaneous murine wound healing model. Moreover, KY19382 treatment accelerated re-epithelialization and neo-epidermis formation with collagen deposition and stem cell activation at an early stage of cutaneous wound healing. Overall, KY19382 accelerates wound healing via activating the Wnt/ß-catenin pathway, and may have the potential to be used for the development of a new wound healing agent.


Assuntos
Via de Sinalização Wnt , beta Catenina , Camundongos , Humanos , Animais , Via de Sinalização Wnt/fisiologia , beta Catenina/metabolismo , Queratina-14/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Proteínas Wnt/metabolismo , Cicatrização , Colágeno/farmacologia , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição
8.
Eur Surg Res ; 63(4): 269-277, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35926477

RESUMO

INTRODUCTION: The high mortality of patients with extensive deep burns is mainly attributed to the extensive burn wound and the scarce autologous skin left for wound repair. The purpose of this study was to explore how to effectively use the limited remaining autologous skin to repair the extensive deep wound. METHODS: Human keratinocytes harvested from the foreskin were cultured and transfected with epidermal growth factors (EGFs) by an adenovirus vector (Ad-EGF). The expression and the biological activity of EGF in both the normal human keratinocytes and the EGF gene-modified human keratinocytes were quantified by ELISA assay and CCK-8 assay, respectively. The differentiated phenotype of epidermal cells was detected by immunofluorescence staining via CK10, CK14, and CK19 expressions. Rats were subjected to a full-thickness skin loss (3.3 cm × 3.0 cm) on the dorsum, which was repaired with the EGF gene-modified human keratinocyte suspension and autologous microskin and covered with the allogeneic skin. The wound healing was quantified, and the expression of EGF mRNA was measured by RT-PCR. RESULTS: The EGF gene-modified human keratinocytes highly expressed EGF. CK10, CK14, and CK19 as keratinocyte differentiation markers were increased in the EGF gene-modified human keratinocytes. Wound healing was accelerated remarkably by the combination of autologous microskin grafting and EGF gene-modified human keratinocytes in vivo, and a very high EGF mRNA expression was observed in EGF gene-modified human keratinocytes groups on days 7 and 14 compared with other groups. DISCUSSION/CONCLUSION: The EGF gene-modified human keratinocyte suspension may serve as promising seed cells which can effectively secrete EGF to accelerate wound repair in combination with autologous microskin grafting and reduce the autologous skin requirement for wound repair.


Assuntos
Transplante de Pele , Cicatrização , Ratos , Humanos , Animais , Fator de Crescimento Epidérmico , Transplante Autólogo , Queratinócitos , Pele
9.
Molecules ; 27(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36296727

RESUMO

The activation of the Wnt/ß-catenin signaling pathway plays a key role in the wound-healing process through tissue regeneration. The extract of Euodia daniellii Hemsl. (E. daniellii), a member of the Rutaceae family, activates the Wnt/ß-catenin signaling pathway. However, the function of E. daniellii in wound healing has not yet been elucidated. We performed a migration assay to determine the wound-healing effect of E. daniellii extract in vitro using human keratinocytes and dermal fibroblast. In addition, a mouse acute wound model was used to investigate the cutaneous wound-healing effect of E. daniellii extract in vivo and confirm the potential mechanism. E. daniellii extract enhanced the migration of human keratinocytes and dermal fibroblasts via the activation of the Wnt/ß-catenin pathway. Moreover, the E. daniellii extract increased the levels of keratin 14, PCNA, collagen I, and α-SMA, with nuclei accumulation of ß-catenin in vitro. E. daniellii extract also efficiently accelerated re-epithelialization and stimulated wound healing in vivo. Furthermore, we confirmed that hesperidin, one of the components of E. daniellii, efficiently accelerated the migration of human keratinocytes and dermal fibroblasts, as well as wound healing in vivo via the activation of the Wnt/ß-catenin pathway. Overall, E. daniellii extract and its active component, hesperidin, have potential to be used as therapeutic agents for wound healing.


Assuntos
Evodia , Hesperidina , Camundongos , Animais , Humanos , Via de Sinalização Wnt , beta Catenina/metabolismo , Queratina-14/metabolismo , Hesperidina/farmacologia , Evodia/metabolismo , Antígeno Nuclear de Célula em Proliferação/metabolismo , Cicatrização , Colágeno/metabolismo , Fibroblastos/metabolismo
10.
J Appl Microbiol ; 130(5): 1730-1744, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33078530

RESUMO

AIM: Nano-biotechnologically synthesizing silver nanoparticles via canthaxanthin pigment extracted from Dietzia maris AURCCBT01 and assessing their cytotoxic therapeutic potential against human keratinocyte cell line (HaCaT) were the key objectives of this study. METHODS AND RESULTS: The pigment extracted from D. maris AURCCBT01 was identified as canthaxanthin using UV-VIS spectroscopy, FTIR, NMR (1 H NMR and 13 C NMR) and MS. Canthaxanthin, treated with silver nitrate solution, produced canthaxanthin-mediated silver nanoparticles and they were characterized by UV-VIS spectroscopy, FTIR, XRD, FESEM-EDX and TEM-SAED techniques. UV-VIS spectroscopy pointed out an absorption band at 420 nm, relating to the surface plasmon resonance of silver nanoparticles. FTIR findings suggested that the diverse functional groups of canthaxanthin bio-molecules played a significant task in capping the silver nanoparticles. XRD analysis exhibited 40·20 nm for the crystal size of nanoparticles. FESEM and TEM exhibited that the biosynthesized silver nanoparticles were spherical in shape with crystalline nature and the particle size was 40-50 nm. Moreover, the cytotoxicity assessment of the synthesized nanoparticles in HaCaT revealed significant cytotoxicity in the cultured cells with an IC50 value of 43 µg ml-1 . CONCLUSION: Stable silver nanoparticles synthesized using canthaxanthin from D. maris AURCCBT01 were found effective for application in wound healing activity. SIGNIFICANCE AND IMPACT OF THE STUDY: Biosynthesized silver nanoparticles via canthaxanthin bacterial pigment exhibited their cytotoxicity effect in HaCaT and testified their eventual therapeutic potential in the wound healing activity with no side effects in a cost effective and eco-friendly process.


Assuntos
Actinobacteria/metabolismo , Cantaxantina/isolamento & purificação , Queratinócitos/efeitos dos fármacos , Nanopartículas Metálicas/química , Nanopartículas Metálicas/toxicidade , Prata , Linhagem Celular , Química Verde , Células HaCaT , Humanos , Concentração Inibidora 50 , Nanotecnologia , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier , Cicatrização
11.
Int J Mol Sci ; 21(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32629886

RESUMO

Although sulfur-rich thermal waters have ancestrally been used in the context of dermatological conditions, a global mapping of the molecular effects exerted by H2S on human keratinocytes is still lacking. To fill this knowledge gap, we subjected cultured human keratinocytes to distinct amounts of the non-gaseous hydrogen sulfur donor NaHS. We first checked that H2S accumulated in the cytoplasm of keratinocytes under our experimental conditions andused a combination of proteomics, genomics and biochemical approaches to unravel functionally relevant H2S targets in human keratinocytes. We found that the identified targets fall into two main categories: (i) the oxidative stress response molecules superoxide dismutase 2 (SOD2), NAD(P)H quinone dehydrogenase 1 (NQO1) and culin 3 (CUL3) and (ii) the chemokines interleukin-8 (IL-8) and CXCL2. Interestingly, NaHS also stimulated the caspase-1 inflammasome pathway, leading to increased secretion of the pro-inflammatory molecule interleukin-18 (IL-18). Interestingly, the secretion of interleukin-1 beta (IL-1ß) was only modestly impacted by NaHS exposure despite a significant accumulation of IL-1ß pro-form. Finally, we observed that NaHS significantly hampered the growth of human keratinocyte progenitors and stem cells cultured under clonogenic conditions or as epidermal cell sheets. We conclude that H2S exerts specific molecular effects on normal human keratinocytes.


Assuntos
Sulfeto de Hidrogênio/farmacologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Apoptose/efeitos dos fármacos , Proteínas Culina/metabolismo , Humanos , Sulfeto de Hidrogênio/metabolismo , Inflamassomos , Inflamação/metabolismo , NAD(P)H Desidrogenase (Quinona)/metabolismo , Superóxido Dismutase/metabolismo
12.
Molecules ; 25(20)2020 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-33053781

RESUMO

The skin is the largest and a remarkably plastic organ that serves as a protective barrier against environmental stimuli and injuries throughout life. Skin injuries are serious health problems, and wound healing is a critical process to replace devitalized cellular and tissue structures. Although some endogenous opioids are known to be involved in the modulation of wound healing, it remains to be determined whether the ß-neoendorphin (ß-NEP), an endogenous opioid, has beneficial effects on wound repair in human keratinocyte. In this study, we found that ß-NEP accelerated wound repair through activation of mitogen-activated protein kinase (MAPK)/Erk1/2 signaling pathways in human keratinocytes. Moreover, the wound healing effect of ß-NEP is mainly through the acceleration of keratinocyte migration without affecting cell proliferation. Therefore, our studies reveal that ß-NEP plays an important role in the regulation of wound repair and suggest a therapeutic strategy to promote wound healing using ß-NEP.


Assuntos
Queratinócitos/efeitos dos fármacos , beta-Endorfina/farmacologia , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Humanos , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Cicatrização/efeitos dos fármacos
13.
Int J Mol Sci ; 20(17)2019 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-31480310

RESUMO

Particulate matter (PM), a widespread air pollutant, consists of a complex mixture of solid and liquid particles suspended in air. Many diseases have been linked to PM exposure, which induces an imbalance in reactive oxygen species (ROS) generated in cells, and might result in skin diseases (such as aging and atopic dermatitis). New techniques involving nanomedicine and nano-delivery systems are being rapidly developed in the medicinal field. Fullerene, a kind of nanomaterial, acts as a super radical scavenger. Lower water solubility levels limit the bio-applications of fullerene. Hence, to improve the water solubility of fullerene, while retaining its radical scavenger functions, a fullerene derivative, fullerenol C60(OH)36, was synthesized, to examine its biofunctions in PM-exposed human keratinocyte (HaCaT) cells. The PM-induced increase in ROS levels and expression of phosphorylated mitogen-activated protein kinase and Akt could be inhibited via fullerenol pre-treatment. Furthermore, the expression of inflammation-related proteins, cyclooxygenase-2, heme oxygenase-1, and prostaglandin E2 was also suppressed. Fullerenol could preserve the impaired state of skin barrier proteins (filaggrin, involucrin, repetin, and loricrin), which was attributable to PM exposure. These results suggest that fullerenol could act against PM-induced cytotoxicity via ROS scavenging and anti-inflammatory mechanisms, and the maintenance of expression of barrier proteins, and is a potential candidate compound for the treatment of skin diseases.


Assuntos
Poluição do Ar/prevenção & controle , Fulerenos/análise , Material Particulado/toxicidade , Água/química , Apoptose/efeitos dos fármacos , Linhagem Celular , Cidades , Proteínas Filagrinas , Fulerenos/química , Humanos , Inflamação/patologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/metabolismo , Queratinócitos/ultraestrutura , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Modelos Biológicos , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-akt/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Solubilidade
14.
Int J Mol Sci ; 20(14)2019 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-31340560

RESUMO

BACKGROUND: Due to current antibiotic resistance worldwide, there is an urgent need to find new alternative antibacterial approaches capable of dealing with multidrug-resistant pathogens. Most recent studies have demonstrated the antibacterial activity and non-cytotoxicity of carbon nanomaterials such as graphene oxide (GO) and carbon nanofibers (CNFs). On the other hand, light-emitting diodes (LEDs) have shown great potential in a wide range of biomedical applications. METHODS: We investigated a nanotechnological strategy consisting of GO or CNFs combined with light-emitting diod (LED) irradiation as novel nanoweapons against two clinically relevant Gram-positive multidrug-resistant pathogens: methicillin-resistant Staphylococcus aureus (MRSA) and methicillin-resistant Staphylococcus epidermidis (MRSE). The cytotoxicity of GO and CNFs was studied in the presence of human keratinocyte HaCaT cells. RESULTS: GO or CNFs exhibited no cytotoxicity and high antibacterial activity in direct contact with MRSE and MRSA cells. Furthermore, when GO or CNFs were illuminated with LED light, the MRSE and MRSA cells lost viability. The rate of decrease in colony forming units from 0 to 3 h, measured per mL, increased to 98.5 ± 1.6% and 95.8 ± 1.4% for GO and 99.5 ± 0.6% and 99.7 ± 0.2% for CNFs. CONCLUSIONS: This combined antimicrobial approach opens up many biomedical research opportunities and provides an enhanced strategy for the prevention and treatment of Gram-positive multidrug-resistant infections.


Assuntos
Antibacterianos/farmacologia , Grafite/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos da radiação , Nanoestruturas/química , Nanotubos de Carbono/química , Staphylococcus epidermidis/efeitos da radiação , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Técnicas de Cocultura , Relação Dose-Resposta à Radiação , Humanos , Queratinócitos/citologia , Queratinócitos/fisiologia , Queratinócitos/efeitos da radiação , Luz , Resistência a Meticilina/efeitos da radiação , Staphylococcus aureus Resistente à Meticilina/crescimento & desenvolvimento , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos da radiação , Nanoestruturas/ultraestrutura , Nanotubos de Carbono/ultraestrutura , Fototerapia/métodos , Staphylococcus epidermidis/crescimento & desenvolvimento
15.
J Cell Sci ; 129(5): 1003-17, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26795563

RESUMO

The role of Ras in human skin tumorigenesis induction is still ambiguous. Overexpression of oncogenic Ras causes premature senescence in cultured human cells and hyperplasia in transgenic mice. Here, we investigated whether the oncogenic insult outcome might depend on the nature of the founding keratinocyte. We demonstrate that overexpression of the constitutively active Ras-V12 induces senescence in primary human keratinocyte cultures, but that some cells escape senescence and proliferate indefinitely. Ras overexpression in transient-amplifying- or stem-cell-enriched cultures shows that p16 (encoded by CDKN2A) levels are crucial for the final result. Indeed, transient-amplifying keratinocytes expressing high levels of p16 are sensitive to Ras-V12-induced senescence, whereas cells with high proliferative potential, but that do not display p16, are resistant. The subpopulation that sustains the indefinite culture growth exhibits stem cell features. Bypass of senescence correlates with inhibition of the pRb (also known as RB1) pathway and resumption of telomerase reverse transcriptase (TERT) activity. Immortalization is also sustained by activation of the ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1) and Akt pathways. Moreover, only transduced cultures originating from cultures bearing stem cells induce tumors in nude mice. Our findings demonstrate that the Ras overexpression outcome depends on the clonogenic potential of the recipient keratinocyte and that only the stem cell compartment is competent to initiate tumorigenesis.


Assuntos
Queratinócitos/enzimologia , Proteínas Proto-Oncogênicas p21(ras)/genética , Neoplasias Cutâneas/genética , Animais , Proliferação de Células , Transformação Celular Neoplásica/genética , Senescência Celular , Técnicas de Cocultura , Humanos , Camundongos , Camundongos Nus , Células NIH 3T3 , Transplante de Neoplasias , Células-Tronco Neoplásicas/fisiologia , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Transdução de Sinais , Neoplasias Cutâneas/patologia
16.
Molecules ; 23(10)2018 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-30241285

RESUMO

Gelatin has been broadly utilized in the food, pharmaceutical, photographic, cosmetic and packaging industries, and there is also huge potential for novel applications of gelatin in the fields of biotechnology and biomedicine. In the present study, we extracted gelatin from fish processing waste, i.e., scale of tilapia, by a combined method of extrusion-pretreatment and hot water extraction. The extrusion-pretreatment process increases the extraction yield of gelatin. Three gelatins (FS2: preconditioning with double-distilled water (ddH2O) before extrusion; FS12: preconditioning with citric acid solution before extrusion; FS14: preconditioning with acetic acid solution before extrusion) were obtained and all of them enhanced cell adhesion, cell growth, and wound healing in HaCaT cells and protected HaCaT cells from H2O2-induced cellular damage. Among FS2, FS12, and FS14, FS12 exhibited the most pronounced enhancement of cell adhesion, cell growth, and wound healing in HaCaT cells, and thus it may have potential as an effective natural raw material in cell therapies for cutaneous wounds and for reducing H2O2-induced oxidative damage of cells. In additional experiments, it was found that phosphorylations of Akt and mTOR are involved in the signaling pathway activated by FS2, FS12, and FS14 in HaCaT cells.


Assuntos
Proliferação de Células/efeitos dos fármacos , Gelatina/isolamento & purificação , Queratinócitos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Gelatina/química , Gelatina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/farmacologia , Tilápia , Cicatrização/efeitos dos fármacos
17.
J Appl Toxicol ; 36(9): 1129-36, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26691653

RESUMO

In vitro testing methods for classifying sensitizers could be valuable alternatives to in vivo sensitization testing using animal models, such as the murine local lymph node assay (LLNA) and the guinea pig maximization test (GMT), but there remains a need for in vitro methods that are more accurate and simpler to distinguish skin sensitizers from non-sensitizers. Thus, the aim of our study was to establish an in vitro assay as a screening tool for detecting skin sensitizers using the human keratinocyte cell line, HaCaT. HaCaT cells were exposed to 16 relevant skin sensitizers and 6 skin non-sensitizers. The highest dose used was the dose causing 75% cell viability (CV75) that we determined by an MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. The levels of extracellular production of interleukin-1α (IL-1α) and IL-6 were measured. The sensitivity of IL-1α was 63%, specificity was 83% and accuracy was 68%. In the case of IL-6, sensitivity: 69%, specificity: 83% and accuracy: 73%. Thus, this study suggests that measuring extracellular production of pro-inflammatory cytokines IL-1α and IL-6 by human HaCaT cells may potentially classify skin sensitizers from non-sensitizers. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Interleucina-1alfa/metabolismo , Interleucina-6/metabolismo , Queratinócitos/efeitos dos fármacos , Pele/efeitos dos fármacos , Xenobióticos/toxicidade , Alternativas aos Testes com Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Dermatite Alérgica de Contato/patologia , Humanos , Interleucina-1alfa/genética , Irritantes/toxicidade , Queratinócitos/metabolismo , Ensaio Local de Linfonodo , Pele/citologia , Pele/metabolismo , Sais de Tetrazólio/metabolismo , Tiazóis/metabolismo
18.
Exp Dermatol ; 24(10): 754-60, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26013684

RESUMO

We previously showed that in cervical carcinoma cells, the TAp63ß isoform of the p63 transcription factor is negatively interfering with the carcinogenic pathways promoting anchorage-independent growth. In this study, we have defined the mechanisms underlying the effects of TAp63ß through a transcriptome analysis of human keratinocytes overexpressing this protein. TAp63ß modulated expression of 1203 genes (944 activated and 259 repressed; P-value <0.05), notably genes involved in epithelial development and keratinocyte differentiation. In comparison, while TAp63γ acts similarly to TAp63ß to transactivate a selected panel of target genes, other p63 isoforms, including ΔNp63α, which is highly expressed in keratinocytes, are inactive. Upon induction of differentiation of primary human keratinocytes, we observed endogenous expression of TAp63ß and γ isoforms, along with transcriptional activation of selected target genes. Intriguingly, our data also indicated that TAp63ß activates transcription of members of the Notch pathway, which is known to promote keratinocyte differentiation. By inhibiting and activating the Notch pathway, we revealed a subset of TAp63ß-activated genes that were co-dependent on Notch for their expression. Our work demonstrates that the shorter TAp63 isoforms (TAp63ß/γ) are specifically induced in human keratinocytes and cooperate with Notch signalling to activate transcription of late differentiation genes supporting their role as putative tumor suppressors in HPV-associated tumorigenesis.


Assuntos
Diferenciação Celular/genética , Queratinócitos/fisiologia , Receptores Notch/metabolismo , Transdução de Sinais/genética , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/metabolismo , Linhagem Celular , Técnicas de Cocultura , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Humanos , Análise de Sequência com Séries de Oligonucleotídeos , Isoformas de Proteínas , RNA/análise , Receptores Notch/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética
19.
Exp Dermatol ; 24(7): 536-42, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25828729

RESUMO

Leprosy is a chronic granulomatous disease caused by Mycobacterium leprae affecting the skin and peripheral nerves. Despite M. leprae invasion of the skin and keratinocytes importance in innate immunity, the interaction of these cells in vitro during M. leprae infection is poorly understood. Conventional and fluorescence optical microscopy, transmission electronic microscopy, flow cytometry and ELISA were used to study the in vitro interaction of M. leprae with the HaCaT human keratinocyte cell line. Keratinocytes uptake of M. leprae is described, and modulation of the surface expression of CD80 and CD209, cathelicidin expression and TNF-α and IL-1ß production of human keratinocytes are compared with dendritic cells and macrophages during M. leprae interaction. This study demonstrated that M. leprae interaction with human keratinocytes enhanced expression of cathelicidin and greatly increased TNF-α production. The highest spontaneous expression of cathelicidin was by dendritic cells which are less susceptible to M. leprae infection. In contrast, keratinocytes displayed low spontaneous cathelicidin expression and were more susceptible to M. leprae infection than dendritic cells. The results show, for the first time, an active role for keratinocytes during infection by irradiated whole cells of M. leprae and the effect of vitamin D on this process. They also suggest that therapies which target cathelicidin modulation may provide novel approaches for treatment of leprosy.


Assuntos
Queratinócitos/imunologia , Queratinócitos/microbiologia , Hanseníase/imunologia , Hanseníase/microbiologia , Mycobacterium leprae/imunologia , Mycobacterium leprae/patogenicidade , Peptídeos Catiônicos Antimicrobianos/metabolismo , Antígeno B7-1/metabolismo , Moléculas de Adesão Celular/metabolismo , Linhagem Celular , Células Dendríticas/imunologia , Células Dendríticas/microbiologia , Células Dendríticas/patologia , Humanos , Imunidade Celular , Interleucina-1beta/biossíntese , Queratinócitos/patologia , Lectinas Tipo C/metabolismo , Hanseníase/patologia , Macrófagos/imunologia , Macrófagos/microbiologia , Macrófagos/patologia , Fagocitose , Receptores de Superfície Celular/metabolismo , Fator de Necrose Tumoral alfa/biossíntese , Catelicidinas
20.
Biosci Biotechnol Biochem ; 79(8): 1384-90, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25822594

RESUMO

Nano-TiO2 has been reported to be an efficient photocatalyst, which is able to produce reactive oxygen species (ROS) under UVA irradiation. In this study, we investigated the effects of nano-TiO2 on the cytotoxicity, induction of apoptosis, and the putative pathways of its actions in HaCaT cells. We show that nano-TiO2 is a potent inducer of apoptosis and that it transduces the apoptotic signal via ROS generation, thereby inducing mitochondrial permeability transition (MPT) and activating Caspase-3 from HaCaT cells. ROS production, mitochondrial alteration, and subsequent apoptotic cell death in nano-TiO2-treated cells were blocked by the MPT pore-blocker cyclosporin A. Taken together, our data indicate that nano-TiO2 induces the ROS-mediated MPT and resultant Caspase-3 activation.


Assuntos
Sobrevivência Celular/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Titânio/administração & dosagem , Apoptose/efeitos dos fármacos , Apoptose/efeitos da radiação , Caspases Iniciadoras/biossíntese , Caspases Iniciadoras/genética , Linhagem Celular , Sobrevivência Celular/efeitos da radiação , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/efeitos da radiação , Potencial da Membrana Mitocondrial/efeitos da radiação , Espécies Reativas de Oxigênio/efeitos da radiação , Titânio/química , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa