Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Sensors (Basel) ; 22(11)2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35684855

RESUMO

In this paper, a novel model predictive control (MPC) method based on the population normal probability division genetic algorithm and ant colony optimization (GA-ACO) method is proposed to optimally solve the problem of standard MPC with constraints that generally cannot yield global optimal solutions when using quadratic programming (QP). Combined with dynamic sliding mode control (SMC), this model is applied to the dynamic trajectory tracking control of autonomous underwater vehicles (AUVs). First, the computational fluid dynamics (CFD) simulation platform ANSYS Fluent is used to solve for the main hydrodynamic coefficients required to establish the AUV dynamic model. Then, the novel model predictive controller is used to obtain the desired velocity command of the AUV. To reduce the influence of external interference and realize accurate velocity tracking, dynamic SMC is used to obtain the control input command. In addition, stability analysis based on the Lyapunov method proves the asymptotic stability of the controller. Finally, the trajectory tracking performance of the AUV in an underwater, three-dimensional environment is verified by using the MATLAB/Simulink simulation platform. The results verify the effectiveness and robustness of the proposed control method.

2.
J Exp Biol ; 224(21)2021 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-34553753

RESUMO

Penguins are adapted to underwater life and have excellent swimming abilities. Although previous motion analyses revealed their basic swimming characteristics, the details of the 3D wing kinematics, wing deformation and thrust generation mechanism of penguins are still largely unknown. In this study, we recorded the forward and horizontal swimming of gentoo penguins (Pygoscelis papua) at an aquarium with multiple underwater action cameras and then performed a 3D motion analysis. We also conducted a series of water tunnel experiments with a 3D printed rigid wing to obtain lift and drag coefficients in the gliding configuration. Using these coefficients, the thrust force during flapping was calculated in a quasi-steady manner, where the following two wing models were considered: (1) an 'original' wing model reconstructed from 3D motion analysis including bending deformation and (2) a 'flat' wing model obtained by flattening the original wing model. The resultant body trajectory showed that the penguin accelerated forward during both upstroke and downstroke. The motion analysis of the two wing models revealed that considerable bending occurred in the original wing, which reduced its angle of attack during the upstroke in particular. Consequently, the calculated stroke-averaged thrust was larger for the original wing than for the flat wing during the upstroke. In addition, the propulsive efficiency for the original wing was estimated to be 1.8 times higher than that for the flat wing. Our results unveil a detailed mechanism of lift-based propulsion in penguins and underscore the importance of wing bending.


Assuntos
Spheniscidae , Animais , Fenômenos Biomecânicos , Voo Animal , Hidrodinâmica , Modelos Biológicos , Natação , Asas de Animais
3.
Environ Res ; 197: 111029, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33744267

RESUMO

Sulfur autotrophic denitrification (SAD) process, as an alternative to heterotrophic denitrification (HD) filter, receives growing interest in polishing the effluent from secondary sewage treatment. Although individual studies have indicated several advantages of SAD over HD, rare study has compared these two systems under identical condition and by using real secondary effluent. In this study, two small pilot scale filters (SAD and HD) were designed with identical configuration and operated parallelly by feeding the real secondary effluent from a WWTP. The results showed SAD filter can be started up without the addition of soluble electron donor, although the time (14 days) was about 3 times longer than that of HD filter. The nitrate removal rate of SAD filter at HRT of 1.4 h was measured as 0.268 ± 0.047 kg N/(m3∙d). Similar value was observed in HD filter with supplementing 90 mg/L COD. The COD concentration of effluent always kept lower than that of influent in SAD filter but not in HD filter. In addition, SAD filter could maintain a stable denitrification performance without backwash for 15 days, while decline of nitrate removal rate was observed in HD filter just 2 days after stopping the backwash. This different behavior was further confirmed as the SAD filter had a better hydraulic flow pattern. Analysis according to high-throughput 16S rRNA gene-based Illumina MiSeq sequencing clearly showed the microbial community evolution and differentiation among the samples of seed sludge, SAD and HD filters. Finally, the economic assessment was carried out, showing the operation cost of SAD filter was over 50% lower than that of HD filter.


Assuntos
Desnitrificação , Hidrodinâmica , Reatores Biológicos , Nitratos , Nitrogênio , RNA Ribossômico 16S/genética , Enxofre
4.
Sensors (Basel) ; 19(2)2019 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-30634717

RESUMO

Thrusters are the bottom actuators of the amphibious spherical robot, and play an important role in the motion control of these robots. To realize accurate motion control, a thrust model for a new water-jet thruster based on hydrodynamic analyses is proposed in this paper. First, the hydrodynamic characteristics of the new thruster were numerically analyzed using computational fluid dynamics (CFD) commercial software CFX. The moving reference frame (MRF) technique was utilized to simulate propeller rotation. In particular, the hydrodynamics of the thruster were studied not only in the axial flow but also in oblique flow. Then, the basic framework of the thrust model was built according to hydromechanics theory. Parameters in the basic framework were identified through the results of the hydrodynamic simulation. Finally, a series of relevant experiments were conducted to verify the accuracy of the thrust model. These proved that the thrust model-based simulation results agreed well with the experimental results. The maximum error between the experimental results and simulation results was only 7%, which indicates that the thrust model is precise enough to be utilized in the motion control of amphibious spherical robots.

5.
ISA Trans ; 2024 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-39048484

RESUMO

Hydrodynamics analysis and control are very significant for the seabed operations, particularly for the intelligent manipulation process of streamlined intervention autonomous underwater vehicles (I-AUVs). The computation fluid dynamics simulations and verification were conducted in the consideration with water channel domain, mesh insensitivity, support straight bar connector, free surface and other boundary conditions. The variation trend of hydrodynamic coefficients in the process of manipulation is obtained, by simulations of streamlined I-AUV manipulation under dynamic manipulation state. To further realize underwater floating manipulation, a novel controller with an integral termed nonlinear sliding mode surface and disturbance observer has been developed. The disturbance observer can make quantity analysis on the interaction forces between I-AUV and the environment from hydrodynamic analysis. Simulations and experiments have verified the controller performance.

6.
Biomimetics (Basel) ; 8(4)2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37622985

RESUMO

Locomotion control of synergistical interaction between fins has been one of the key problems in the field of robotic fish research owing to its contribution to improving and enhancing swimming performance. In this paper, the coordinated locomotion control of the boxfish-like robot with pectoral and caudal fins is studied, and the effects of different control parameters on the propulsion performance are quantitatively analyzed by using hydrodynamic experiments. First, an untethered boxfish-like robot with two pectoral fins and one caudal fin was designed. Second, a central pattern generator (CPG)-based controller is used to coordinate the motions of the pectoral and caudal fins to realize the bionic locomotion of the boxfish-like robot. Finally, extensive hydrodynamic experiments are conducted to explore the effects of different CPG parameters on the propulsion performance under the synergistic interaction of pectoral and caudal fins. Results show that the amplitude and frequency significantly affect the propulsion performance, and the propulsion ability is the best when the frequency is 1 Hz. Different phase lags and offset angles between twisting and flapping of the pectoral fin can generate positive and reverse forces, which realize the forward, backward, and pitching swimming by adjusting these parameters. This paper reveals for the first time the effects of different CPG parameters on the propulsion performance in the case of the synergistic interaction between the pectoral fins and the caudal fin using hydrodynamic experimental methods, which sheds light on the optimization of the design and control parameters of the robotic fish.

7.
Water Res ; 239: 120057, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37167855

RESUMO

Real-time information on flooding extent, severity, and duration is necessary for effective metropolitan flood emergency management. Existing pluvial flood analysis methods are unable to simulate real-time regional flooding processes under spatiotemporally varying rainstorms. This paper presents a deep learning-enabled super-resolution hydrodynamic flood analysis method to simulate the real-time pluvial flooding process over a large area under spatiotemporally varying rainstorms. Compared with existing flood downscaling techniques, which are limited to flow depth, the proposed method produces high-resolution flow depth and velocity predictions, providing more comprehensive information for flood emergency management. The proposed method adopts a coarse-grid hydrodynamic model to generate a low-resolution flood map time series, which is subsequently converted to high-resolution flood maps by a deep learning model. The deep learning model can be trained using a limited number of assumed rainfall scenarios, which greatly reduces data preparation effort. The proposed method is applied to a complex terrain of 352 km2 in Hong Kong that covers both mountainous and urban areas. Results show that the proposed method simulates the spatiotemporal variations of flood depth and velocity with root mean square errors as low as 0.082 m and 0.088 m/s, respectively, and correlation coefficients of 0.962 and 0.921, respectively. The computation time for a 48-h rainfall event in the study area is less than 30 s, which is 2690 times faster than the direct fine-grid hydrodynamic analysis. The deep learning-enabled super-resolution hydrodynamic flood analysis method provides a promising computational tool for emergency flood risk management.


Assuntos
Aprendizado Profundo , Inundações , Hidrodinâmica , Modelos Teóricos , Hong Kong
8.
Micromachines (Basel) ; 13(1)2021 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-35056190

RESUMO

Underwater target acquisition and identification performed by manipulators having broad application prospects and value in the field of marine development. Conventional manipulators are too heavy to be used for small target objects and unsuitable for shallow sea working. In this paper, a bio-inspired Father-Son Underwater Robot System (FURS) is designed for underwater target object image acquisition and identification. Our spherical underwater robot (SUR), as the father underwater robot of the FURS, has the ability of strong dynamic balance and good maneuverability, can realize approach the target area quickly, and then cruise and surround the target object. A coiling mechanism was installed on SUR for the recycling and release of the son underwater robot. A Salamandra-inspired son underwater robot is used as the manipulator of the FURS, which is connected to the spherical underwater robot by a tether. The son underwater robot has multiple degrees of freedom and realizes both swimming and walking movement modes. The son underwater robot can move to underwater target objects. The vision system is installed to enable the FURS to acquire the image information of the target object with the aid of the camera, and also to identify the target object. Finally, verification experiments are conducted in an indoor water tank and outdoor swimming pool conditions to verify the effectiveness of the proposed in this paper.

9.
Environ Sci Pollut Res Int ; 24(25): 20122-20133, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28374198

RESUMO

In this study, the optimum design of the entrance of a fishpond laterally to the main flow of an open channel was investigated numerically and experimentally. The flow characteristic measurements were realized with the PIV (particle image velocimetry) method. The mathematical simulations were based on the development of a two dimensional -mean in depthhydrodynamic model and a quasi three dimensional sediment transport model which includes processes of advection, diffusion, and settling of conservative suspended matter. The study was completed with the comparison of the final results of the mathematical models with the findings of the physical model revealing the hydrodynamic interaction and coupling between the main flow of the channel and the lateral reservoir-fishpond and leading to the optimum technical design of the system.


Assuntos
Aquicultura/métodos , Abrigo para Animais/normas , Hidrodinâmica , Modelos Teóricos , Reologia , Animais , Simulação por Computador , Difusão , Sedimentos Geológicos , Movimentos da Água
10.
Methods Enzymol ; 562: 1-26, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26412645

RESUMO

We describe important advances in analytical ultracentrifugation (AUC) hardware, which add new information to the hydrodynamic information observed in traditional AUC instruments. In contrast to the Beckman-Coulter XLA UV/visible detector, multiwavelength (MWL) detection is able to collect sedimentation data not just for one wavelength, but for a large wavelength range in a single experiment. The additional dimension increases the data density by orders of magnitude, significantly improving the statistics of the measurement and adding important information to the experiment since an additional dimension of spectral characterization is now available to complement the hydrodynamic information. The new detector avoids tedious repeats of experiments at different wavelengths and opens up new avenues for the solution-based investigation of complex mixtures. In this chapter, we describe the capabilities, characteristics, and applications of the new detector design with biopolymers as the focus of study. We show data from two different MWL detectors and discuss strengths and weaknesses of differences in the hardware and different data acquisition modes. Also, difficulties with fiber optic applications in the UV are discussed. Data quality is compared across platforms.


Assuntos
Hemoglobinas/isolamento & purificação , Soroalbumina Bovina/isolamento & purificação , Animais , DNA/química , DNA/isolamento & purificação , Hemoglobinas/química , Humanos , Soroalbumina Bovina/química , Razão Sinal-Ruído , Espectrofotometria Ultravioleta/instrumentação , Espectrofotometria Ultravioleta/métodos , Ultracentrifugação/instrumentação , Ultracentrifugação/métodos
11.
Methods Enzymol ; 562: 27-47, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26412646

RESUMO

We describe important advances in methodologies for the analysis of multiwavelength data. In contrast to the Beckman-Coulter XL-A/I ultraviolet-visible light detector, multiwavelength detection is able to simultaneously collect sedimentation data for a large wavelength range in a single experiment. The additional dimension increases the data density by orders of magnitude, posing new challenges for data analysis and management. The additional data not only improve the statistics of the measurement but also provide new information for spectral characterization, which complements the hydrodynamic information. New data analysis and management approaches were integrated into the UltraScan software to address these challenges. In this chapter, we describe the enhancements and benefits realized by multiwavelength analysis and compare the results to those obtained from the traditional single-wavelength detector. We illustrate the advances offered by the new instruments by comparing results from mixtures that contain different ratios of protein and DNA samples, representing analytes with distinct spectral and hydrodynamic properties. For the first time, we demonstrate that the spectral dimension not only adds valuable detail, but when spectral properties are known, individual components with distinct spectral properties measured in a mixture by the multiwavelength system can be clearly separated and decomposed into traditional datasets for each of the spectrally distinct components, even when their sedimentation coefficients are virtually identical.


Assuntos
Proteínas/isolamento & purificação , Interpretação Estatística de Dados , Hidrodinâmica , Proteínas/química , Soluções , Análise Espectral
12.
Bioresour Technol ; 176: 292-5, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25465794

RESUMO

A cylindrical Upflow Fixed Bed Reactor (UFB-BER) with granular activated carbon, steel mesh electrodes and anaerobic microorganisms, was constructed for analyzing how hydrodynamic parameters affect the reactions involved during wastewater treatment processes for azo dye degradation. Dye removal percentage was not compromised by decreasing HRTm (99-90% upon changing HRTm from 4 to 1h in single pass mode). Using the residence time distribution method for hydrodynamic characterization, it was found that a higher dispersion in the reactor occurs for HRTm=1h, than for HRTm=4h. A kinetic analysis suggests that this dispersion effect could be associated to a higher specific reaction rate dependent on the azo dye concentration.


Assuntos
Compostos Azo/química , Reatores Biológicos , Águas Residuárias/química , Purificação da Água/métodos , Compostos Azo/análise , Biodegradação Ambiental , Hidrodinâmica , Cinética
13.
Biotechnol Biofuels ; 8: 225, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26702300

RESUMO

BACKGROUND: Mass transfer plays an important role in determining the efficiency of the biofuel conversion. However, adverse effect of shear stress from traditional agitation inhibits the cell growth and production of biofuels. How to enhance the mass transfer with less adverse effect is considered as one of the important bioengineering issues. RESULTS: In this study, a novel agitation type, named periodic-peristole was applied to butanol fermentation with Clostridium acetobutylicum ATCC 824. Meanwhile, the enhancement mechanism was studied. Initially, the fermentation performance of periodic-peristole agitation was compared with the traditional Rushton impeller and stationary cultivation. Result showed that the biomass, butanol and total solvent in periodic-peristole group (PPG) was enhanced to 1.92-, 2.06-, and 2.4-fold of those in the traditional Rushton impeller group (TIG), as well as 1.64-, 1.19- and 1.41-fold of those in the stationary group (SG). Subsequently, to get in-depth insight into enhancement mechanism, hydromechanics analysis and metabolic flux analysis (MFA) were carried out. The periodic-peristole agitation exhibits significant difference on velocity distribution, shear force, and mixing efficiency from the traditional Rushton impeller agitation. And the shear force in PPG is only 74 % of that in TIG. According to MFA result, fructose 6-phosphate, pyruvate, acetyl-CoA, oxaloacetate and α-ketoglutarate were determined the key nodes of cells in response to hydrodynamic mechanical stress. Based on such key information, rational enhancement strategies were proposed and butanol production was further improved. CONCLUSION: The agitation associated with three issues which resulted in significant changes in cell metabolic behaviors: first, a rebalanced redox status; second, the energy (ATP) acquirement and consumption; third, the tolerance mechanism of the cell for survival of solvent. Periodic-peristole agitation provides an answer to address a long-standing problem of biofuel engineering. Key information derived from current study deepens the understanding of agitation, which can guide the designment of new bioreactors and development of enhancement strategies for biofuel refinery.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa