Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.825
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
Curr Issues Mol Biol ; 46(6): 6121-6138, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38921037

RESUMO

When postmenopausal women are under stress conditions, this exacerbates mood disorders and issues with neuroimmune systems. The porcine placenta is known to relieve menopausal depression in clinical trials, but its underlying mechanisms for depression and anti-inflammatory functions remain poorly defined. The present study was designed to examine the anti-inflammatory effects of enzymatic porcine placenta hydrolysate (EPPH) on LPS-induced levels of nitric oxide (NO), prostaglandin E2 (PGE2), corticosterone (CORT), and pro-inflammatory cytokine interleukin-1 beta (IL-1ß) in RAW 264.7 macrophage cells. In addition, the neurite outgrowth of PC12 cells was evaluated to examine the effects of EPPH on neurite growth. To mimic the symptoms of women with menopause-related depression, a stressed ovariectomized (OVX) female mouse model was used to evaluate the antidepressant effects of EPPH. The female mice were randomly divided into five groups: (1) the sham-operated (Sham) group, (2) the OVX + repeated stress + saline-treated (OVX + ST) group, (3) the OVX + repeated stress + estradiol (0.2 mg/kg)-treated (positive control) group, (4) the OVX + repeated stress + EPPH (300 mg/kg)-treated (300) group, and (5) the OVX + repeated stress + EPPH (1500 mg/kg)-treated (1500) group. Female mice were OVX and repeatedly immobilization-stressed for 2 weeks (2 h/day). A tail suspension test was conducted on the 13th day, followed by the forced swimming test on the 14th day to assess the antidepressant effects of EPPH. After the behavioral tests, the levels of CORT, PGE2, and IL-1ß were evaluated. In addition, c-Fos expression in the paraventricular nucleus (PVN) was evaluated using immunohistochemistry. The concentrations of NO, PGE2, and IL-1ß stimulated by LPS were significantly reduced via the addition of EPPH to RAW 264.7 cells. EPPH significantly promoted neurite outgrowth in PC12 cells compared to that of the controls. In the tail suspension test, the duration of immobility was reduced in mice treated with EPPH 1500 compared to the OVX + ST group. The EPPH 1500 group had significantly decreased levels of c-Fos-positive neurons in the PVN and reduced levels of CORT and IL-1ß in the serum of the Sham group. These results suggested that the high dose of EPPH administration induced the antidepressant-like effect in the ovariectomized mice with repeated stress via downregulating the levels of CORT, IL-1ß, and PGE2 in the serum through reducing the expression of c-Fos in the PVN regions.

2.
FEMS Yeast Res ; 242024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-39009031

RESUMO

Lignocellulose (dry plant biomass) is an abundant cheap inedible residue of agriculture and wood industry with great potential as a feedstock for biotechnological processes. Lignocellulosic substrates can serve as valuable resources in fermentation processes, allowing the production of a wide array of chemicals, fuels, and food additives. The main obstacle for cost-effective conversion of lignocellulosic hydrolysates to target products is poor metabolism of the major pentoses, xylose and L-arabinose, which are the second and third most abundant sugars of lignocellulose after glucose. We study the oversynthesis of riboflavin in the flavinogenic yeast Candida famata and found that all major lignocellulosic sugars, including xylose and L-arabinose, support robust growth and riboflavin synthesis in the available strains of C. famata. To further increase riboflavin production from xylose and lignocellulose hydrolysate, genes XYL1 and XYL2 coding for xylose reductase and xylitol dehydrogenase were overexpressed. The resulting strains exhibited increased riboflavin production in both shake flasks and bioreactors using diluted hydrolysate, reaching 1.5 g L-1.


Assuntos
Candida , Lignina , Engenharia Metabólica , Riboflavina , Xilose , Lignina/metabolismo , Riboflavina/metabolismo , Riboflavina/biossíntese , Candida/metabolismo , Candida/genética , Xilose/metabolismo , Aldeído Redutase/metabolismo , Aldeído Redutase/genética , Fermentação , Reatores Biológicos/microbiologia , D-Xilulose Redutase/metabolismo , D-Xilulose Redutase/genética , Arabinose/metabolismo
3.
Biotechnol Bioeng ; 121(4): 1314-1324, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38178588

RESUMO

The integration of first- (1G) and second-generation (2G) ethanol production by adding sugarcane juice or molasses to lignocellulosic hydrolysates offers the possibility to overcome the problem of inhibitors (acetic acid, furfural, hydroxymethylfurfural and phenolic compounds), and add nutrients (such as salts, sugars and nitrogen sources) to the fermentation medium, allowing the production of higher ethanol titers. In this work, an 1G2G production process was developed with hemicellulosic hydrolysate (HH) from a diluted sulfuric acid pretreatment of sugarcane bagasse and sugarcane molasses. The industrial Saccharomyces cerevisiae CAT-1 was genetically modified for xylose consumption and used for co-fermentation of sucrose, fructose, glucose, and xylose. The fed-batch fermentation with high cell density that mimics an industrial fermentation was performed at bench scale fermenter, achieved high volumetric ethanol productivity of 1.59 g L-1 h-1, 0.39 g g-1 of ethanol yield, and 44.5 g L-1 ethanol titer, and shown that the yeast was able to consume all the sugars present in must simultaneously. With the results, it was possible to establish a mass balance for the global process: from pretreatment to the co-fermentation of molasses and HH, and it was possible to establish an effective integrated process (1G2G) with sugarcane molasses and HH co-fermentation employing a recombinant yeast.


Assuntos
Celulose , Polissacarídeos , Saccharum , Celulose/metabolismo , Fermentação , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Xilose , Melaço , Saccharum/metabolismo , Açúcares , Etanol
4.
Biotechnol Bioeng ; 121(2): 784-794, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37926950

RESUMO

Efficient co-utilization of mixed sugar feedstocks remains a biomanufacturing challenge, thus motivating ongoing efforts to engineer microbes for improved conversion of glucose-xylose mixtures. This study focuses on enhancing phenylalanine production by engineering Escherichia coli to efficiently co-utilize glucose and xylose. Flux balance analysis identified E4P flux as a bottleneck which could be alleviated by increasing the xylose-to-glucose flux ratio. A mutant copy of the xylose-specific activator (XylR) was then introduced into the phenylalanine-overproducing E. coli NST74, which relieved carbon catabolite repression and enabled efficient glucose-xylose co-utilization. Carbon contribution analysis through 13 C-fingerprinting showed a higher preference for xylose in the engineered strain (NST74X), suggesting superior catabolism of xylose relative to glucose. As a result, NST74X produced 1.76 g/L phenylalanine from a model glucose-xylose mixture; a threefold increase over NST74. Then, using biomass-derived sugars, NST74X produced 1.2 g/L phenylalanine, representing a 1.9-fold increase over NST74. Notably, and consistent with the carbon contribution analysis, the xylR* mutation resulted in a fourfold greater maximum rate of xylose consumption without significantly impeding the maximum rate of total sugar consumption (0.87 vs. 0.70 g/L-h). This study presents a novel strategy for enhancing phenylalanine production through the co-utilization of glucose and xylose in aerobic E. coli cultures, and highlights the potential synergistic benefits associated with using substrate mixtures over single substrates when targeting specific products.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Escherichia coli/metabolismo , Açúcares/metabolismo , Xilose/metabolismo , Biomassa , Fermentação , Glucose/metabolismo , Aminoácidos Aromáticos/metabolismo , Fenilalanina/metabolismo , Carbono/metabolismo , Fatores de Transcrição/genética , Proteínas de Escherichia coli/metabolismo
5.
Neurochem Res ; 49(6): 1603-1615, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38353895

RESUMO

We aimed to investigate whether the consumption of Egg White Hydrolysate (EWH) acts on nervous system disorders induced by exposure to Cadmium (Cd) in rats. Male Wistar rats were divided into (a) Control (Ct): H2O by gavage for 28 days + H2O (i.p. - 15th - 28th day); (b) Cadmium (Cd): H2O by gavage + CdCl2 - 1 mg/kg/day (i.p. - 15th - 28th day); (c) EWH 14d: EWH 1 g/kg/day by gavage for 14 days + H2O (i.p.- 15th - 28th day); (d) Cd + EWH cotreatment (Cd + EWHco): CdCl2 + EWH for 14 days; (e) EWH 28d: EWH for 28 days; (f) EWHpre + Cd: EWH (1st - 28th day) + CdCl2 (15th - 28th day). At the beginning and the end of treatment, neuromotor performance (Neurological Deficit Scale); motor function (Rota-Rod test); ability to move and explore (Open Field test); thermal sensitivity (Hot Plate test); and state of anxiety (Elevated Maze test) were tested. The antioxidant status in the cerebral cortex and the striatum were biochemically analyzed. Cd induces anxiety, and neuromotor, and thermal sensitivity deficits. EWH consumption prevented anxiety, neuromotor deficits, and alterations in thermal sensitivity, avoiding neuromotor deficits both when the administration was performed before or during Cd exposure. Both modes of administration reduced the levels of reactive species, and the lipid peroxidation increased by Cd and improved the striatum's antioxidant capacity. Pretreatment proved to be beneficial in preventing the reduction of SOD activity in the cortex. EWH could be used as a functional food with antioxidant properties capable of preventing neurological damage induced by Cd.


Assuntos
Cádmio , Clara de Ovo , Estresse Oxidativo , Ratos Wistar , Animais , Masculino , Estresse Oxidativo/efeitos dos fármacos , Cádmio/toxicidade , Clara de Ovo/química , Ratos , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Doenças do Sistema Nervoso/induzido quimicamente , Doenças do Sistema Nervoso/prevenção & controle , Doenças do Sistema Nervoso/tratamento farmacológico , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Fármacos Neuroprotetores/farmacologia
6.
Crit Rev Food Sci Nutr ; : 1-18, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38850027

RESUMO

Gelatin has played a great potential in food preservation because of its low price and superior film forming characteristics. This review provides a comprehensive overview of the latest research progress and application of gelatin preservation technologies (film, coating, antifreeze peptide, etc.), discussing their preservation mechanisms and efficiency through the viewpoints of quality and shelf life of animal and aquatic products as well as fruits and vegetables. It showed that bioactive and intelligent gelatin-based films exhibit antibacterial, antioxidant, water resistance and pH responsive properties, making them excellent for food preservation. In addition, pH responsive properties of films also intuitively reflect the freshness of food by color. Similarly, gelatin and its hydrolysate can be widely used in antifreeze peptides to reduce the mass loss of food during freezing and extend the shelf life of frozen food. However, extensive works are still required to extend their commercial application values.

7.
Microb Cell Fact ; 23(1): 49, 2024 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-38347493

RESUMO

Corn cob is a major waste mass-produced in corn agriculture. Corn cob hydrolysate containing xylose, arabinose, and glucose is the hydrolysis product of corn cob. Herein, a recombinant Escherichia coli strain BT-10 was constructed to transform corn cob hydrolysate into 1,2,4-butanetriol, a platform substance with diversified applications. To eliminate catabolite repression and enhance NADPH supply for alcohol dehydrogenase YqhD catalyzed 1,2,4-butanetriol generation, ptsG encoding glucose transporter EIICBGlc and pgi encoding phosphoglucose isomerase were deleted. With four heterologous enzymes including xylose dehydrogenase, xylonolactonase, xylonate dehydratase, α-ketoacid decarboxylase and endogenous YqhD, E. coli BT-10 can produce 36.63 g/L 1,2,4-butanetriol with a productivity of 1.14 g/[L·h] using xylose as substrate. When corn cob hydrolysate was used as the substrate, 43.4 g/L 1,2,4-butanetriol was generated with a productivity of 1.09 g/[L·h] and a yield of 0.9 mol/mol. With its desirable characteristics, E. coli BT-10 is a promising strain for commercial 1,2,4-butanetriol production.


Assuntos
Butanóis , Escherichia coli , Zea mays , Escherichia coli/genética , Engenharia Metabólica , Xilose , Glucose , Fermentação
8.
Br J Nutr ; 131(11): 1827-1840, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38410884

RESUMO

The purpose of this study was to investigate the effect of an egg white hydrolysate (EWH) to protect white adipose tissue damage from cardiometabolic changes induced by severe hypertension. Male Wistar rats were uninephrectomised and divided: SHAM (weekly subcutaneous vehicle (mineral oil + propylene glycol, 1:1)), SHAM + EWH (subcutaneous vehicle plus EWH via gavage, 1 g/kg per day), DOCA (deoxycorticosterone acetate diluted in vehicle subcutaneously weekly in subsequent doses of 20 mg/kg -1st week, 12 mg/kg - 2­3th week, and 6 mg/kg -4­8th week, respectively, plus 1 % NaCl and 0·2 % KCl in drinking water), and DOCA + EWH. Body weight gain, food and water intake, glucose and lipid metabolism were evaluated. Oxidative stress was assessed by biochemical assay and immunofluorescence for NOX-1, nuclear factor kappa B (NFκB), and caspase-3 in retroperitoneal white adipose tissue (rtWAT). Proinflammatory cytokines (IL-6 and 1ß), CD163+ macrophage infiltration, and immunohistochemistry for TNFα and uncoupling protein-1 were evaluated, as well as histological analysis on rtWAT. Glutathione peroxidase and reductase were also determined in plasma. EWH showed hypocholesterolemic, antioxidant, anti-inflammatory, and anti-apoptotic properties in the arterial hypertension DOCA-salt model. The results demonstrated the presence of functional changes in adipose tissue function by a decrease in macrophage infiltration and in the fluorescence intensity of NFκB, NOX-1, and caspase-3. A reduction of proinflammatory cytokines and restoration of antioxidant enzymatic activity and mitochondrial oxidative damage by reducing uncoupling protein-1 fluorescence intensity were also observed. EWH could be used as a potential alternative therapeutic strategy in the treatment of cardiometabolic complications associated with malignant secondary arterial hypertension.


Assuntos
Tecido Adiposo Branco , Acetato de Desoxicorticosterona , Clara de Ovo , Estresse Oxidativo , Ratos Wistar , Animais , Masculino , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Clara de Ovo/química , Ratos , Hipertensão/metabolismo , Hipertensão/induzido quimicamente , Hidrolisados de Proteína/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Proteína Desacopladora 1/metabolismo , Gordura Intra-Abdominal/metabolismo , Gordura Intra-Abdominal/efeitos dos fármacos
9.
Fish Shellfish Immunol ; 145: 109327, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38158167

RESUMO

This study investigated the effects of yeast hydrolysate (YH) from sugar byproducts on various parameters in Pacific white shrimp (Litopenaeus vannamei). The study found no significant differences in water quality parameters across all treatment tanks, ensuring that the observed effects were not due to environmental variations. There were no significant differences in growth parameters between the control group and groups receiving YH at different dosages. However, the group given YH at 10.0 g/kg feed exhibited a notably higher survival rate and higher expression of growth-related genes (IGF-2 and RAP-2A) in various shrimp tissues. YH was associated with enhanced immune responses, including lysozyme activity, NBT dye reduction, bactericidal activity, and phagocytic activity. Notably, the 10.0 g/kg feed group displayed the highest phagocytic index, indicating a dose-dependent immune response. Expression of immune-related genes (ALF, LYZ, ProPO, and SOD) was upregulated in various shrimp tissues. This upregulation was particularly significant in the gills, hepatopancreas, intestine, and hemocytes. While total Vibrio counts remained consistent, a reduction in green Vibrio colonies was observed in the intestine of shrimp treated with YH. YH, especially at 5.0 and 10.0 g/kg feed dosages, significantly increased survival rates and RPS values in response to AHPND infection. The findings of this study suggest that incorporating additives derived from yeast byproducts with possible prebiotic properties obtained from sugar byproducts can lead to positive results in terms of enhancing growth performance, immunity, histological improvements, and resistance to V. parahaemolyticus, the causative agent of acute hepatopancreatic necrosis disease (AHPND).


Assuntos
Microbiota , Penaeidae , Vibrio parahaemolyticus , Fermento Seco , Animais , Resistência à Doença , Saccharomyces cerevisiae , Imunidade Inata/genética , Açúcares/farmacologia , Vibrio parahaemolyticus/fisiologia
10.
Mol Biol Rep ; 51(1): 482, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578512

RESUMO

BACKGROUND: Natural bone grafts are the highly preferred materials for restoring the lost bone, while being constrained of donor availability and risk of disease transmission. As a result, tissue engineering is emerging as an efficacious and competitive technique for bone repair. Bone tissue engineering (TE) scaffolds to support bone regeneration and devoid of aforesaid limitations are being vastly explored and among these the avian eggshell membrane has drawn attention for TE owing to its low immunogenicity, similarity with the extracellular matrix, and easy availability. METHODOLOGY AND RESULTS: In this study, the development of bone ingrowth support system from avian eggshell membrane derived collagen hydrolysates (Col-h) is reported. The hydrolysate, cross-linked with glutaraldehyde, was developed into hydrogels with poly-(vinyl alcohol) (PVA) by freeze-thawing and further characterized with ATR-FTIR, XRD, FESEM. The biodegradability, swelling, mechanical, anti-microbial, and biocompatibility evaluation were performed further for the suitability in bone regeneration. The presence of amide I, amide III, and -OH functional groups at 1639 cm- 1,1264 cm- 1, and 3308 cm- 1 respectively and broad peak between 16°-21° (2θ) in XRD data reinstated the composition and form. CONCLUSIONS: The maximum ratio of Col-h/PVA that produced well defined hydrogels was 50:50. Though all the hydrogel matrices alluded towards their competitive attributes and applicability towards restorative bone repair, the hydrogel with 40:60 ratios showed better mechanical strength and cell proliferation than its counterparts. The prominent E. coli growth inhibition by the hydrogel matrices was also observed, along with excellent biocompatibility with MG-63 osteoblasts. The findings indicate strongly the promising application of avian eggshell-derived Col-h in supporting bone regeneration.


Assuntos
Casca de Ovo , Escherichia coli , Animais , Colágeno/farmacologia , Alicerces Teciduais , Engenharia Tecidual/métodos , Hidrogéis , Regeneração Óssea , Amidas
11.
Environ Res ; 241: 117626, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-37956754

RESUMO

Cost is the crucial impediment in commercializing microalgal biodiesel. Therefore, cultivating microalgae in cost-effective nutrients reduces the upstream process cost remarkably. Thus, in this study, sugar cane bagasse hydrolysate (SBH) as a lucrative carbon supplement for Chlorococcum sp. and subsequent lipid extraction via an optimized solvent system for biodiesel production was investigated. Characterization of SBH revealed the presence of various monosaccharides and other sugar derivatives such as glucose, fructose, xylose, arabinose, etc. The maximum dry cell weight of 1.7 g/L was estimated in cultures grown in 10 mL SBH. Different solvents such as diethyl ether (DEE), chloroform (CHL), ethyl acetate (ETA), hexane (HEX), methanol (MET), ethanol (ETOH), acetone (ACE) and also combination of solvents (2:1 ratio) such as DEE: MET, CHL: MET, HEX: MET, HEX: ETOH was tested for lipid extraction efficacy. Among solvents used, 12.3% and 18.4% of lipids were extracted using CHL and CHL: MET, respectively, from 10 mL SBH amended cultures. However, the biodiesel yield was found to be similar at about 70.16 % in both SBH and no SBH-added cultures. The fatty acid profile of the biodiesel shows palmitic, oleic, linoleic, linolenic, and arachidonic acid as principal fatty acids. Further, the levels of SFAs, MUFAs, and PUFAs in 10 mL SBH-added cells were 24.67, 12.89, and 34.24%, respectively. Eventually, the fuel properties of Chlorococcum sp. biodiesel, satisfying international biodiesel standards, make the biodiesel a viable diesel substitute in the future.


Assuntos
Microalgas , Saccharum , Ácidos Graxos , Solventes , Lipídeos , Biocombustíveis , Carbono , Metanol , Biomassa
12.
Environ Res ; 244: 117907, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109965

RESUMO

The world, a famished planet with an overgrowing population, requires enormous food crops. This scenario compelled the farmers to use a high quantity of synthetic fertilizers for high food crop productivity. However, prolonged usage of chemical fertilizers results in severe adverse effects on soil and water quality. On the other hand, the growing population significantly consumes large quantities of poultry meats. Eventually, this produces a mammoth amount of poultry waste, chicken feathers. Owing to the protein value of the chicken feathers, these wastes are converted into protein hydrolysate and further extend their application as biostimulants for sustained agriculture. The protein profile of chicken feather protein hydrolysate (CFPH) produced through Bacillus spp. was the maximum compared to physical and chemical protein extraction methods. Several studies proved that the application of CFPH and active Bacillus spp. culture to soil and plants results in enhanced plant growth, phytochemical constituents, crop yield, soil nutrients, fertility, microbiome and resistance against diverse abiotic and biotic stresses. Overall, "CFPH - Jack of all trades" and "Bacillus spp. - an active camouflage to the surroundings where they applied showed profound and significant benefits to the plant growth under the most adverse conditions. In addition, Bacillus spp. coheres the biofortification process in plants through the breakdown of metals into metal ions that eventually increase the nutrient value of the food crops. However, detailed information on them is missing. This can be overcome by further real-world studies on rhizoengineering through a multi-omics approach and their interaction with plants. This review has explored the best possible and efficient strategy for managing chicken feather wastes into protein-rich CFPH through Bacillus spp. bioconversion and utilizing the CFPH and Bacillus spp. as biostimulants, biofertilizers, biopesticides and biofortificants. This paper is an excellent report on organic waste management, circular economy and sustainable agriculture research frontier.


Assuntos
Bacillus , Galinhas , Animais , Fertilizantes , Biofortificação , Hidrolisados de Proteína , Agricultura , Solo , Plantas
13.
Appl Microbiol Biotechnol ; 108(1): 21, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38159116

RESUMO

Lignocellulosic material can be converted to valorized products such as fuels. Pretreatment is an essential step in conversion, which is needed to increase the digestibility of the raw material for microbial fermentation. However, pretreatment generates by-products (hydrolysate toxins) that are detrimental to microbial growth. In this study, natural Saccharomyces strains isolated from habitats in Thailand were screened for their tolerance to synthetic hydrolysate toxins (synHTs). The Saccharomyces cerevisiae natural strain BCC39850 (toxin-tolerant) was crossed with the laboratory strain CEN.PK2-1C (toxin-sensitive), and quantitative trait locus (QTL) analysis was performed on the segregants using phenotypic scores of growth (OD600) and glucose consumption. VMS1, DET1, KCS1, MRH1, YOS9, SYO1, and YDR042C were identified from QTLs as candidate genes associated with the tolerance trait. CEN.PK2-1C knockouts of the VMS1, YOS9, KCS1, and MRH1 genes exhibited significantly greater hydrolysate toxin sensitivity to growth, whereas CEN.PK2-1C knock-ins with replacement of VMS1 and MRH1 genes from the BCC39850 alleles showed significant increased ethanol production titers compared with the CEN.PK2-1C parental strain in the presence of synHTs. The discovery of VMS1, YOS9, MRH1, and KCS1 genes associated with hydrolysate toxin tolerance in S. cerevisiae indicates the roles of the endoplasmic-reticulum-associated protein degradation pathway, plasma membrane protein association, and the phosphatidylinositol signaling system in this trait. KEY POINTS: • QTL analysis was conducted using a hydrolysate toxin-tolerant S. cerevisiae natural strain • Deletion of VMS1, YOS9, MRH1, and KCS1 genes associated with hydrolysate toxin-sensitivity • Replacement of VMS1 and MRH1 with natural strain alleles increased ethanol production titers in the presence of hydrolysate toxins.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Locos de Características Quantitativas , Fenótipo , Fermentação , Etanol/metabolismo , Fosfotransferases (Aceptor do Grupo Fosfato)/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo
14.
Biotechnol Lett ; 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39085486

RESUMO

OBJECTIVES: Toxicants inhibit microbial fermentation and reduce product titres. This work investigated the glycerol production characteristics of Candida glycerinogenes in highly toxic unwashed undetoxified hydrolysate and provided new ideas for high glycerol production from hydrolysates. RESULTS: The unwashed hydrolysate contains higher concentrations of toxicants, such as furfural, acetic acid, phenols and NaCl than the washed alkali-treated bagasse hydrolysate. C. glycerinogenes fermented unwashed undetoxified hydrolysate yielded 36.1 g/L glycerol, 15.8% higher than the washed hydrolysate, suggesting that the toxicants stimulated glycerol synthesis. qRT-PCR analysis showed that toxicants of unwashed undetoxified hydrolysates greatly up-regulated the transcript levels of the genes GPD1, HXT4 and MSN4 et al. Overexpressing the above genes increased glycerol production by 27.9% to 46.1 g/L. And it was further increased by 8.8% to 50.1 g/L in a 5 L bioreactor. CONCLUSIONS: This result proves that toxicants in lignocellulosic hydrolysates can increase the titre of microbial glycerol production.

15.
Artigo em Inglês | MEDLINE | ID: mdl-39013608

RESUMO

The industrial amino acid production workhorse, Corynebacterium glutamicum naturally produces low levels of 2,3,5,6-tetramethylpyrazine (TMP), a valuable flavor, fragrance, and commodity chemical. Here, we demonstrate TMP production (∼0.8 g L-1) in C. glutamicum type strain ATCC13032 via overexpression of acetolactate synthase and/or α-acetolactate decarboxylase from Lactococcus lactis in CGXII minimal medium supplemented with 40 g L-1 glucose. This engineered strain also demonstrated growth and TMP production when the minimal medium was supplemented with up to 40% (v v-1) hydrolysates derived from ionic liquid-pretreated sorghum biomass. A key objective was to take the fully engineered strain developed in this study and interrogate medium parameters that influence the production of TMP, a critical post-strain engineering optimization. Design of experiments in a high-throughput plate format identified glucose, urea, and their ratio as significant components affecting TMP production. These two components were further optimized using response surface methodology. In the optimized CGXII medium, the engineered strain could produce up to 3.56 g L-1 TMP (4-fold enhancement in titers and 2-fold enhancement in yield, mol mol-1) from 80 g L-1 glucose and 11.9 g L-1 urea in shake flask batch cultivation. ONE-SENTENCE SUMMARY: Corynebacterium glutamicum was metabolically engineered to produce 2,3,5,6-tetramethylpyrazine followed by a design of experiments approach to optimize medium components for high-titer production.


Assuntos
Corynebacterium glutamicum , Meios de Cultura , Glucose , Engenharia Metabólica , Pirazinas , Corynebacterium glutamicum/genética , Corynebacterium glutamicum/metabolismo , Pirazinas/metabolismo , Engenharia Metabólica/métodos , Meios de Cultura/química , Glucose/metabolismo , Acetolactato Sintase/genética , Acetolactato Sintase/metabolismo , Lactococcus lactis/genética , Lactococcus lactis/metabolismo , Lactococcus lactis/enzimologia , Carboxiliases/genética , Carboxiliases/metabolismo , Ureia/metabolismo
16.
Mar Drugs ; 22(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38667768

RESUMO

Metabolic disorders are increasingly prevalent conditions that manifest pathophysiologically along a continuum. Among reported metabolic risk factors, elevated fasting serum glucose (FSG) levels have shown the most substantial increase in risk exposure. Ultimately leading to insulin resistance (IR), this condition is associated with notable deteriorations in the prognostic outlook for major diseases, including neurodegenerative diseases, cancer risk, and mortality related to cardiovascular disease. Tackling metabolic dysfunction, with a focus on prevention, is a critically important aspect for human health. In this study, an investigation into the potential antidiabetic properties of a salmon protein hydrolysate (SPH) was conducted, focusing on its potential dipeptidyl peptidase-IV (DPP-IV) inhibition and direct glucose uptake in vitro. Characterization of the SPH utilized a bioassay-guided fractionation approach to identify potent glucoregulatory peptide fractions. Low-molecular-weight (MW) fractions prepared by membrane filtration (MWCO = 3 kDa) showed significant DPP-IV inhibition (IC50 = 1.01 ± 0.12 mg/mL) and glucose uptake in vitro (p ≤ 0.0001 at 1 mg/mL). Further fractionation of the lowest MW fractions (<3 kDa) derived from the permeate resulted in three peptide subfractions. The subfraction with the lowest molecular weight demonstrated the most significant glucose uptake activity (p ≤ 0.0001), maintaining its potency even at a dilution of 1:500 (p ≤ 0.01).


Assuntos
Inibidores da Dipeptidil Peptidase IV , Glucose , Hidrolisados de Proteína , Salmo salar , Animais , Inibidores da Dipeptidil Peptidase IV/farmacologia , Inibidores da Dipeptidil Peptidase IV/isolamento & purificação , Inibidores da Dipeptidil Peptidase IV/química , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Glucose/metabolismo , Humanos , Dipeptidil Peptidase 4/metabolismo , Hipoglicemiantes/farmacologia , Hipoglicemiantes/química , Proteínas de Peixes/farmacologia
17.
Mar Drugs ; 22(1)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38248669

RESUMO

This study investigated the antioxidant, antimicrobial, and anti-atopic dermatitis (AD) effects of a novel peptide (CP) derived from a Chromis notata by-product hydrolysate. Alcalase, Flavourzyme, Neutrase, and Protamex enzymes were used to hydrolyze the C. notata by-product protein, and the 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical-scavenging activity was measured. Alcalase hydrolysate exhibited the highest ABTS radical-scavenging activity, leading to the selection of Alcalase for further purification. The CHAO-1-I fraction, with the highest ABTS activity, was isolated and further purified, resulting in the identification of the peptide CP with the amino acid sequence Ala-Gln-Val-Met-Lys-Leu-Pro-His-Arg-Met-Gln-His-Ser-Gln-Ser. CP demonstrated antimicrobial activity against Staphylococcus aureus, inhibiting its growth. In a 2,4-dinitrochlorobenzene (DNCB)-induced AD-like skin model in mice, CP significantly alleviated skin lesions, reduced epidermal and dermal thickness, and inhibited mast cell infiltration. Moreover, CP suppressed the elevated levels of interleukin-6 (IL-6) in the plasma of DNCB-induced mice. These findings highlight the potential of CP as a therapeutic agent for AD and suggest a novel application of this C. notata by-product in the fish processing industry.


Assuntos
Benzotiazóis , Dermatite Atópica , Perciformes , Ácidos Sulfônicos , Animais , Camundongos , Dermatite Atópica/tratamento farmacológico , Hidrólise , Antioxidantes/farmacologia , Dinitroclorobenzeno , Antibacterianos/farmacologia , Peptídeos/farmacologia , Subtilisinas
18.
Mar Drugs ; 22(4)2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38667796

RESUMO

Palmaria palmata is a viable source of nutrients with bioactive properties. The present study determined the potential role of post-extraction ultrasonication on some compositional features and antioxidant properties of enzymatic/alkaline extracts of P. palmata (EAEP). No significant difference was detected in terms of protein content and recovery, as well as the amino acid composition of the extracts. The nitrogen-to-protein conversion factor of 5 was found to be too high for the seaweed and EAEP. The extracts sonicated by bath for 10 min and not sonicated showed the highest and lowest total phenolic contents (p < 0.05), respectively. The highest radical scavenging and lowest metal-chelating activities were observed for the non-sonicated sample, as evidenced by IC50 values. The extract sonicated by bath for 10 min showed the most favorable in vitro antioxidant properties since its radical scavenging was not significantly different from that of the not-sonicated sample (p > 0.05). In contrast, its metal-chelating activity was significantly higher (p < 0.05). To conclude, post-extraction ultrasonication by an ultrasonic bath for 10 min is recommended to increase phenolic content and improve the antioxidant properties of EAEP.


Assuntos
Antioxidantes , Quelantes , Fenóis , Extratos Vegetais , Rodófitas , Antioxidantes/química , Antioxidantes/isolamento & purificação , Quelantes/química , Algas Comestíveis/química , Sequestradores de Radicais Livres/química , Sequestradores de Radicais Livres/isolamento & purificação , Fenóis/química , Fenóis/isolamento & purificação , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Rodófitas/química , Sonicação
19.
Mar Drugs ; 22(5)2024 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-38786592

RESUMO

Malnutrition is one of the major factors of bone and cartilage disorders. Pacific cod (Gadus macrocephalus) processing waste is a cheap and highly promising source of bioactive substances, including collagen-derived peptides and amino acids, for bone and cartilage structure stabilization. The addition of these substances to a functional drink is one of the ways to achieve their fast intestinal absorption. Collagen hydrolysate was obtained via enzymatic hydrolysis, ultrafiltration, freeze-drying, and grinding to powder. The lyophilized hydrolysate was a light gray powder with high protein content (>90%), including collagen (about 85% of total protein) and a complete set of essential and non-essential amino acids. The hydrolysate had no observed adverse effect on human mesenchymal stem cell morphology, viability, or proliferation. The hydrolysate was applicable as a protein food supply or a structure-forming food component due to the presence of collagen fiber fragments. An isotonic fitness drink (osmolality 298.1 ± 2.1 mOsm/L) containing hydrolysate and vitamin C as a cofactor in collagen biosynthesis was prepared. The addition of the hydrolysate did not adversely affect its organoleptic parameters. The production of such functional foods and drinks is one of the beneficial ways of fish processing waste utilization.


Assuntos
Osso e Ossos , Cartilagem , Colágeno , Gadiformes , Hidrolisados de Proteína , Animais , Colágeno/metabolismo , Humanos , Cartilagem/efeitos dos fármacos , Cartilagem/metabolismo , Osso e Ossos/efeitos dos fármacos , Osso e Ossos/metabolismo , Hidrolisados de Proteína/farmacologia , Hidrolisados de Proteína/química , Células-Tronco Mesenquimais/efeitos dos fármacos , Bebidas , Alimento Funcional , Hidrólise
20.
J Dairy Sci ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38825137

RESUMO

This study characterized the sleep activity, sleep mechanism, and active peptides of whey protein hydrolysates selected through behavioral analysis of fruit-flies (Drosophila melanogaster). Sleep-inducing whey protein (WP) hydrolysate was selected through fruit fly behavior analysis, and sleep activity was measured using a pentobarbital model and electroencephalographic analysis. The mechanism of action was confirmed using a γ-aminobutyric acid (GABA) receptor antagonist, and the active peptide was identified using liquid chromatography-mass spectroscopy. Whey protein hydrolysate, prepared using Alcalase and Prozyme (WP-AP), increased sleep time in a dose-dependent manner. WP-AP significantly increased not only sleep time but also slow-wave sleep and showed an insomnia-alleviating effect in a caffeine-induced insomnia mouse model. In addition, the gene and protein expression levels of GABA sub-type A (GABAA) receptors increased in the brains of mice orally administered with WP-AP. Through peptide analysis, the mixture of DIQK, VPPF peptide, and GABA contained in WP-AP was estimated to exhibit sleep activity, and due to its high content, DIQK was speculated to be the main sleep -inducing ingredient. These results indicate that WP-AP has the potential to be used as a new ingredient to improve sleep quality.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa