Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
1.
Environ Res ; 252(Pt 2): 118838, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38570124

RESUMO

Herein, Ce-doped CoFe layered double hydroxide (LDH), noted as CoCeFe ternary LDH, was prepared using the co-precipitation route. Prosperous synthesis of CoFe LDH and successful partial replacement of iron cations with cerium cations in CoCeFe ternary LDH were confirmed by X-ray diffraction patterns, energy-dispersive X-ray spectroscopy, and elemental dot-mapping images. Nanosheet morphology was recognized for both CoFe LDH and CoCeFe ternary LDH from scanning electron microscopy and transmission electron microscopy micrographs. In the following, a dispersive solid phase extraction (DSPE) method was developed using the synthesized CoCeFe ternary LDH as a sorbent for extracting perfluorooctanesulfonic acid (PFOS) from wastewater samples. For the selective analysis of PFOS, high-performance liquid chromatography-tandem mass spectroscopy (HPLC-MS/MS) in multiple reaction monitoring mode was used. Analytical parameters such as the limit of detection equal to 0.02 µg/L, with a linear range of 0.05-300 µg/L, the limit of quantification equal to 0.05 µg/L, and an enrichment factor equal to 23.3 were achieved for PFOS at the optimized condition (sorbent: 5 mg of CoCeFe ternary LDH, eluent type and volume: 150 µL mobile phase, pH: 3, adsorption time: 3 min, and desorption time: 5 min). The developed strategy for the analysis of PFOS was tested in real wastewater samples, including copper mine and petrochemical wastewater. The amount of analytes in real samples was calculated using the standard addition method, and good relative recovery in the range of 86%-105% was obtained. The main novelty of this research is the application of CoCeFe ternary LDH to extract the PFOS from wastewater using the DSPE method for determination by HPLC-MS/MS.


Assuntos
Ácidos Alcanossulfônicos , Cério , Cobalto , Fluorocarbonos , Hidróxidos , Ferro , Espectrometria de Massas em Tandem , Poluentes Químicos da Água , Ácidos Alcanossulfônicos/análise , Ácidos Alcanossulfônicos/química , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas em Tandem/métodos , Fluorocarbonos/análise , Fluorocarbonos/química , Hidróxidos/química , Cobalto/análise , Cobalto/química , Poluentes Químicos da Água/análise , Poluentes Químicos da Água/química , Cério/química , Ferro/química , Ferro/análise , Extração em Fase Sólida/métodos , Águas Residuárias/química , Águas Residuárias/análise , Espectrometria de Massa com Cromatografia Líquida
2.
Environ Res ; 238(Pt 2): 117171, 2023 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-37734578

RESUMO

Layered double hydroxides (LDHs) are well-known and important class of hydrotalcite-type anionic clays (HTs) materials that are cost-effective with additional advantages of facile synthesis, composition, tenability, and reusability. These convincing characteristics are liable for their applications in various fields related to energy, environment, catalysis, biomedical, and biotechnology. HTs/LDHs are generally synthesized from low cost abundantly available chemical precursors through the aqueous synthetic pathways under mild reaction conditions. These materials can be termed green materials based on their non-toxic nature, availability of precursors, facile and low-cost production using aqueous medium conditions with less hazardous effluents. Diverse and fascinating characteristics have been attributed to HTs/LDHs like anion exchange ability, surface basicity, biocompatibility, controlled release of the anion specific area, porosity, easy surface modification, and pH dependent biodegradability. Hence, HTs/LDHs and their modified and/or functionalized nanohybrids/nanocomposites are reported as the potential drug delivery carriers with a capability to stabilize the susceptible bioactive molecules, may enhance the solubility of poorly soluble drugs along with controlled drug/bioactive molecule release and delivery. These clay and bioactive hybrid materials have good biocompatibility, less cytotoxicity, and better site-targeting with improved cellular uptake than that of free parent biomolecules. These lamellar solids of micro/nanostructure are compatible, host-guest materials and able to fabricate with drugs/cosmeceutical/bio- or synthetic polymers without any change in their molecular structure and reactivity along with improvement in their stabilities. Other important features are facile synthesis, basicity, high stability with easy storage, and efficient administration with low bio-toxicity. This study enlightens the applications of HTs/LDHs along with their hybrids/composites in the field of drug/cosmeceutical/gene delivery systems of natural/synthetic biomolecules.


Assuntos
Cosmecêuticos , Nanocompostos , Medicamentos Sintéticos , Hidróxidos/química , Água
3.
Int J Mol Sci ; 24(19)2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37834306

RESUMO

Catalytic conversion of biomass-derived ethanol into n-butanol through Guerbet coupling reaction has become one of the key reactions in biomass valorization, thus attracting significant attention recently. Herein, a series of supported Cu catalysts derived from Ni-based hydrotalcite (HT) were prepared and performed in the continuous catalytic conversion of ethanol into butanol. Among the prepared catalysts, Cu/NiAlOx shows the best performance in terms of butanol selectivity and catalyst stability, with a sustained ethanol conversion of ~35% and butanol selectivity of 25% in a time-on-stream (TOS) of 110 h at 280 °C. While for the Cu/NiFeOx and Cu/NiCoOx, obvious catalyst deactivation and/or low butanol selectivity were obtained. Extensive characterization studies of the fresh and spent catalysts, i.e., X-ray diffraction (XRD), Transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and Hydrogen temperature-programmed reduction (H2-TPR), reveal that the catalysts' deactivation is mainly caused by the support deconstruction during catalysis, which is highly dependent on the reducibility. Additionally, an appropriate acid-base property is pivotal for enhancing the product selectivity, which is beneficial for the key process of aldol-condensation to produce butanol.


Assuntos
1-Butanol , Butanóis , Etanol/química , Catálise
4.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446126

RESUMO

Clays are considered great nanoadsorbents for many materials, including textile dyes. The use of these materials for cleaning textile wastewater is well known; however, it is not at all common to find applications for the hybrid materials formed from the clay and dye. In this work, a dye-loaded clay material was used to make new dye baths and colour a polyester textile substrate. The same hybrid could be used several times as it did not use all the adsorbed dye in a single dyeing. The hybrid obtained from hydrotalcite (nanoclay) and the dispersed red 1 dye was analysed by measuring the colour obtained, carrying out an X-ray diffraction analysis that provided information after each desorption-dyeing process, and using infrared spectroscopy to analyse the specific bands of each characteristic group. Both analyses showed that the amount of dye present in the hybrid decreases. Thermogravimetry (TGA), surface area and porosity measurements (BET), and X-ray photoelectron spectroscopy (XPS) tests were conducted. Chemical stability was assessed by subjecting the hybrid to the actions of different reagents. In addition, colour fastness tests were carried out after dyeing and washing the polyester test tubes to check for the correct fixing of the dye to the fibre. These fastness results showed that the dyeing was carried out correctly and as if it was a conventional dyeing process.


Assuntos
Corantes , Têxteis , Corantes/química , Argila , Poliésteres
5.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614251

RESUMO

Textile effluents are among the most polluting industrial effluents in the world. Textile finishing processes, especially dyeing, discharge large quantities of waste that is difficult to treat, such as dyes. By recovering this material from the water, in addition to cleaning and the possibility of reusing the water, there is the opportunity to reuse this waste as a raw material for dyeing different textile substrates. One of the lines of reuse is the use of hybrid nanoclays obtained from the adsorption of dyes, which allow dye baths to be made for textile substrates. This study analyses how, through the use of the nanoadsorbent hydrotalcite, dyes classified by their charge as anionic, cationic and non-ionic can be adsorbed and recovered for successful reuse in new dye baths. The obtained hybrids were characterised by X-ray diffraction and infrared spectroscopy. In addition, the colour was analysed by spectrophotometer in the UV-VIS range. The dyes made on cotton, polyester and acrylic fabrics are subjected to different colour degradation tests to assess their viability as final products, using reflection spectroscopy to measure the colour attribute before and after the tests, showing results consistent with those of a conventional dye.


Assuntos
Corantes , Indústria Têxtil , Corantes/química , Espectrofotometria Infravermelho , Água
6.
Molecules ; 28(15)2023 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-37570654

RESUMO

The catalytic upgrading of ethanol into butanol through the Guerbet coupling reaction has received increasing attention recently due to the sufficient supply of bioethanol and the versatile applications of butanol. In this work, four different supported Cu catalysts, i.e., Cu/Al2O3, Cu/NiO, Cu/Ni3AlOx, and Cu/Ni1AlOx (Ni2+/Al3+ molar ratios of 3 and 1), were applied to investigate the catalytic performances for ethanol conversion. From the results, Ni-containing catalysts exhibit better reactivity; Al-containing catalysts exhibit better stability; but in terms of ethanol conversion, butanol selectivity, and catalyst stability, a corporative effect between Ni-Al catalytic systems can be clearly observed. Combined characterizations such as XRD, TEM, XPS, H2-TPR, and CO2/NH3-TPD were applied to analyze the properties of different catalysts. Based on the results, Cu species provide the active sites for ethanol dehydrogenation/hydrogenation, and the support derived from Ni-Al-LDH supplies appropriate acid-base sites for the aldol condensation, contributing to the high butanol selectivity. In addition, catalysts with strong reducibility (i.e., Cu/NiO) may be easily deconstructed during catalysis, leading to fast deactivation of the catalysts in the Guerbet coupling process.

7.
Molecules ; 28(12)2023 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-37375272

RESUMO

Layered double hydroxides with the hydrotalcite-like structure, containing Mg2+, Al3+, and Fe3+ (with different Al/Fe ratios) in the layers, have been synthesized and fully characterized, as have the mixed oxides formed upon their calcination at 500 °C. Both series of solids (original and calcined ones) have been tested for methylene blue adsorption. In the case of the Fe-containing sample, oxidation of methylene blue takes place simultaneously with adsorption. For the calcined samples, their reconstruction to the hydrotalcite-like structure plays an important role in their adsorption ability.

8.
Molecules ; 28(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38067649

RESUMO

Layered double oxides are widely employed in catalyzing the aldol condensation for producing biofuels, but its selectivity and stability need to be further improved. Herein, a novel MCM-41-supported Mg-Al-layered double oxide (LDO/MCM-41) was prepared via the in situ integration of a sol-gel process and coprecipitation, followed by calcination. This composite was first employed to catalyze the self-condensation of cyclopentanone for producing high-density cycloalkane precursors. LDO/MCM-41 possessed large specific surface area, uniform pore size distribution, abundant medium basic sites and Bronsted acid sites. Compared with the bulk LDO, LDO/MCM-41 exhibited a higher selectivity for C10 and C15 oxygenates at 150 °C (93.4% vs. 84.6%). The selectivity for C15 was especially enhanced on LDO/MCM-41, which was three times greater than that on LDO. The stability test showed that naked LDO with stronger basic strength had a rapid initial activity, while it suffered an obvious deactivation due to its poor carbon balance. LDO/MCM-41 with lower basic strength had an enhanced stability even with a lower initial activity. Under the optimum conditions (50% LDO loading, 170 °C, 7 h), the cyclopentanone conversion on LDO/MCM-41 reached 77.8%, with a 60% yield of C10 and 15.2% yield of C15.

9.
Molecules ; 28(4)2023 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-36838508

RESUMO

The water-gas shift (WGS) reaction is an important process in the hydrogen industry, and its catalysts are of vital importance for this process. However, it is still a great challenge to develop catalysts with both high activity and high stability. Herein, a series of high-purity Cu-Mn-Al hydrotalcites with high Cu content have been prepared, and the WGS performance of the Cu-Mn-Al catalysts derived from these hydrotalcites have been studied. The results show that the Cu-Mn-Al catalysts have both outstanding catalytic activity and excellent stability. The optimized Cu-Mn-Al catalyst has displayed a superior reaction rate of 42.6 µmolCO-1⋅gcat-1⋅s-1, while the CO conversion was as high as 96.1% simultaneously. The outstanding catalytic activities of the Cu-Mn-Al catalysts could be ascribed to the enriched interfaces between Cu-containing particles and manganese oxide particles, and/or abundant oxygen vacancies. The excellent catalytic stability of the Cu-Mn-Al catalysts may be benefitting from the low valence state of the manganese of manganese oxides, because the low valence manganese oxides have good anti-sintering properties and can stabilize oxygen vacancies. This study provides an example for the construction of high-performance catalysts by using two-dimensional hydrotalcite materials as precursors.


Assuntos
Oxigênio , Água , Manganês , Oxirredução , Temperatura , Óxidos
10.
Molecules ; 28(11)2023 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-37299018

RESUMO

Bamboo scrimber is widely used in interior decoration, architecture, and many other fields. However, it has caused huge security risks due to its inherent flammability and easy-to-produce toxic volatiles after combustion. In this work, the bamboo scrimber with superior flame retardant and smoke suppression properties was produced via the coupling of phosphocalcium-aluminum hydrotalcite (PCaAl-LDHs) with bamboo bundles. The results demonstrated that the flame-retardant bamboo scrimber (FRBS) heat release rate (HRR) and total heat release (THR) were, respectively, reduced by 34.46% and 15.86% compared with that of untreated bamboo scrimber. At the same time, the unique multi-layer structure of PCaAl-LDHs effectively slowed down the release rate of flue gas by extending its escape path. Cone calorimetry showed that the total smoke emissions (TSR) and specific extinction area (SEA) of FRBS were, respectively, reduced by 65.97% and 85.96% when the concentration of the flame retardant was 2%, which greatly developed the fire safety of the bamboo scrimber. This method not only improves the fire safety of bamboo scrimber but can also be expected to broaden its use scenarios.


Assuntos
Retardadores de Chama , Nanoestruturas , Alumínio , Calorimetria , Fumaça , Sasa
11.
Molecules ; 28(4)2023 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-36838899

RESUMO

Twenty-two novel longifolene-derived diphenyl ether-carboxylic acid compounds 7a-7v were synthesized from renewable biomass resources longifolene, and their structures were confirmed by FT-IR, 1H NMR, 13C NMR, and HRMS. The preliminary evaluation of in vitro antifungal activity displayed that compound 7b presented inhibition rates of 85.9%, 82.7%, 82.7%, and 81.4% against Alternaria solani, Cercospora arachidicola, Rhizoctonia solani, and Physalospora piricola, respectively, and compound 7l possessed inhibition rates of 80.7%, 80.4%, and 80.3% against R. solani, C. arachidicola, P. piricola, respectively, exhibiting excellent and broad-spectrum antifungal activities. Besides, compounds 7f and 7a showed significant antifungal activities with inhibition rates of 81.2% and 80.7% against A.solani, respectively. Meanwhile, a reasonable and effective 3D-QSAR mode (r2 = 0.996, q2 = 0.572) has been established by the CoMFA method. Furthermore, the drug-loading complexes 7b/MgAl-LDH were prepared and characterized. Their pH-responsive controlled-release behavior was investigated as well. As a result, complex 7b/MgAl-LDH-2 exhibited excellent controlled-releasing performance in the water/ethanol (10:1, v:v) and under a pH of 5.7.


Assuntos
Antifúngicos , Relação Quantitativa Estrutura-Atividade , Antifúngicos/farmacologia , Preparações de Ação Retardada , Ácidos Carboxílicos , Éter , Espectroscopia de Infravermelho com Transformada de Fourier , Etil-Éteres , Éteres Fenílicos , Relação Estrutura-Atividade
12.
Molecules ; 28(10)2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-37241834

RESUMO

To improve the flame retardancy of bamboo scrimber, flame-retardant CaAl-PO4-LDHs were synthesized via the coprecipitation method using PO43- as the anion of an intercalated calcium-aluminum hydrotalcite in this work. The fine CaAl-PO4-LDHs were characterized via X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), cold field scanning electron microscopy (SEM), energy-dispersive X-ray (EDX) and thermogravimetry (TG). Different concentrations (1% and 2%) of CaAl-PO4-LDHs were used as flame retardants for the bamboo scrimber, and the flame retardancy of the bamboo scrimber was characterized via cone calorimetry. The results showed that CaAl-PO4-LDHs with excellent structures were successfully synthesized via the coprecipitation method in 6 h and at 120 °C. Compared with the bamboo scrimber without the flame retardant treatment, the peak heat release rate (HRR) of the bamboo scrimber treated with 1% and 2% concentrations of flame-retardant CaAl-PO4-LDHs decreased by 16.62% and 34.46%, the time taken to reach the exothermic peak was delayed by 103 s and 204 s and the Time to Ignition (TTI) was increased by 30% and 40%, respectively. Furthermore, the residual carbon of the bamboo scrimber did not change significantly, increasing by 0.8% and 2.08%, respectively. CO production decreased by 18.87% and 26.42%, respectively, and CO2 production decreased by 11.11% and 14.46%, respectively. The combined results show that the CaAl-PO4-LDHs synthesized in this work significantly improved the flame retardancy of bamboo scrimber. This work exhibited the great potential of the CaAl-PO4-LDHs, which were successfully synthesized via the coprecipitation method and applied as a flame retardant to improve the fire safety of bamboo scrimber.

13.
J Synchrotron Radiat ; 29(Pt 1): 89-102, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985426

RESUMO

Portland cement based grouts used for radioactive waste immobilization contain high replacement levels of supplementary cementitious materials, including blast-furnace slag and fly ash. The minerals formed upon hydration of these cements may have capacity for binding actinide elements present in radioactive waste. In this work, the minerals ettringite (Ca6Al2(SO4)3(OH)12·26H2O) and hydrotalcite (Mg6Al2(OH)16CO3·4H2O) were selected to investigate the importance of minor cement hydrate phases in sequestering and immobilizing UVI from radioactive waste streams. U LIII-edge X-ray absorption spectroscopy (XAS) was used to probe the UVI coordination environment in contact with these minerals. For the first time, solid-state 27Al magic angle spinning nuclear magnetic resonance (MAS-NMR) spectroscopy was applied to probe the Al coordination environment in these UVI-contacted minerals and make inferences on the UVI coordination, in conjunction with the X-ray spectroscopy analyses. The U LIII-edge XAS analysis of the UVI-contacted ettringite phases found them to be similar (>∼70%) to the uranyl oxyhydroxides present in a mixed becquerelite/metaschoepite mineral. Fitting of the EXAFS region, in combination with 27Al NMR analysis, indicated that a disordered Ca- or Al-bearing UVI secondary phase also formed. For the UVI-contacted hydrotalcite phases, the XAS and 27Al NMR data were interpreted as being similar to uranyl carbonate, that was likely Mg-containing.

14.
Mikrochim Acta ; 189(11): 411, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-36214929

RESUMO

Ag-Ag2O-decorated multiwall carbon nanotube/NiCoAl-hydrotalcite (CNT/LDH-Ag) composites were designed and synthesized for nitrite quantification. The materials were characterized by various techniques, and their electrochemical NO2- detection performances investigated using amperometric and differential pulse voltammetry (DPV) techniques. The Ag-Ag2O nanoparticles (NPs) were anchored on the surface of the CNT/LDH-Ag composites. At a suitable amount of the Ag-Ag2O loading, the Ag-Ag2O NPs with small particle size were distributed evenly on the CNT/LDH surface, increasing the surface area of the composites. The optimal CNT/LDH-Ag3 composite exhibited a high electrochemical activity for NO2- oxidation in pH 7.0. Furthermore, the optimal CNT/LDH-Ag3 composite was fabricated for trace NO2- quantification. The proposed sensor displayed a high sensitivity (0.0960 µA·µM-1·cm-2) and fast response (< 3 s) toward NO2- in a wide linear range from 0.250 µmol·L-1 to 4.00 mmol·L-1 with a low detection limit of 0.0590 µmol·L-1(S/N = 3). The sensor provided an outstanding analytical performance with a desirable recovery (95.3 ~ 107%, RSD < 1.05%) in real sample. As a result, the proposed sensor can be used for the real-time quantification of trace NO2- in the biological, food, and environmental fields.


Assuntos
Nanotubos de Carbono , Hidróxido de Alumínio , Técnicas Eletroquímicas/métodos , Hidróxido de Magnésio , Nanotubos de Carbono/química , Nitritos , Dióxido de Nitrogênio
15.
Int J Mol Sci ; 23(17)2022 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-36077071

RESUMO

Concerns about the health of the planet have grown dramatically, and the dyeing sector of the textile industry is one of the most polluting of all industries. Nanoclays can clean dyeing wastewater using their adsorption capacities. In this study, as a new finding, it was possible to analyze and quantify the amount of metal ions substituted by anionic dyes when adsorbed, and to determine the optimal amount of nanoclay to be used to adsorb all the dye. The tests demonstrated the specific amount of nanoclay that must be used and how to optimize the subsequent processes of separation and processing of the nanoclay. Hydrotalcite was used as the adsorbent material. Direct dyes were used in this research. X-ray diffraction (XRD) patterns allowed the shape recovery of the hydrotalcite to be checked and confirmed the adsorption of the dyes. An FTIR analysis was used to check the presence of characteristic groups of the dyes in the resulting hybrids. The thermogravimetric (TGA) tests corroborated the dye adsorption and the thermal fastness improvement. Total solar reflectance (TSR) showed increased radiation protection for UV-VIS-NIR. Through the work carried out, it has been possible to establish the maximum adsorption point of hydrotalcite.


Assuntos
Hidróxido de Magnésio , Poluentes Químicos da Água , Adsorção , Hidróxido de Alumínio , Corantes , Têxteis
16.
J Environ Manage ; 321: 115861, 2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-36050136

RESUMO

Hydrogen sulfide (H2S) is known to have wide ranging toxicities not only as a gas but also as dissolved forms in aquatic environments. The diversity of aquatic organisms can be severely affected by hydrogen sulfide at very low concentrations, indicating the urgent necessity to develop an efficient method for removal of hydrogen sulfide in water. In this study, the removal capacity for hydrogen sulfide of our originally developed hydrotalcite-like compound composed of magnesium and iron (MF-HT) was investigated and its potential application for reduction of toxicity to aquatic organisms was evaluated. The MF-HT experimentally showed a high adsorption capacity of 146.5 mg/g with a fast adsorption equilibrium time of 45 min, both of which are top-class compared with those of other adsorbents previously reported. In fact, removal of hydrogen sulfide (1.2-152.5 mg/L) at an average rate of >97.6% was achieved in groundwater samples (n = 16) by the MF-HT within 60 min. The toxicities of groundwater, indicated by inhibition rate for microalgae (primary producers) and immobilization rate for crustaceans (secondary consumers), were reduced by 96.1% and 82.5% in 2-fold and 4-fold diluted groundwater, respectively, after treatment with the MF-HT for 60 min. These results indicate that MF-HT has an excellent safety record for aquatic organisms. After clarifying the adsorption mechanism, excellent reusability of MF-HT was also confirmed after regeneration using 1 M Na2CO3 solution. Considering the efficacy, speed, safety and cost of MF-HT, it could be a novel promising material for solving the problem of hydrogen sulfide pollution in the hydrosphere.


Assuntos
Sulfeto de Hidrogênio , Hidróxido de Alumínio , Organismos Aquáticos , Hidróxido de Magnésio
17.
Molecules ; 27(19)2022 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-36235039

RESUMO

An unprecedented route for mitigating the inhibitory effect of lactic acid (LA) on milk fermentation was achieved through lactate adsorption on hydrotalcite (Ht) from simulated lactate extracts. During its regeneration by ozonation, Ht displayed catalytic activity that appeared to increase by addition of montmorillonite (Mt). Changes in the pH, Zeta potential and catalyst particle size during LA ozonation were found to strongly influence LA-LA, LA-catalyst and catalyst-catalyst interactions. The latter determine lactate protonation-deprotonation and clay dispersion in aqueous media. The activity of Mt appears to involve hydrophobic adsorption of non-dissociated LA molecules on silica-rich areas at low pH, and Lewis acid-base and electrostatic interactions at higher pH than the pKa. Hydrotalcite promotes both hydrophobic interaction and anion exchange. Hydrotalcite-smectite mixture was found to enhance clay dispersion and catalytic activity. This research allowed demonstrating that natural clay minerals can act both as adsorbents for LA extract from fermentation broths and as catalysts for adsorbent regeneration. The results obtained herein provide valuable and useful findings for envisaging seed-free milk clotting in dairy technologies.


Assuntos
Bentonita , Ozônio , Adsorção , Hidróxido de Alumínio , Animais , Bentonita/química , Catálise , Argila/química , Fermentação , Ácido Láctico , Ácidos de Lewis , Hidróxido de Magnésio , Leite , Minerais
18.
J Environ Sci (China) ; 116: 79-89, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35219427

RESUMO

A series of nitrogen-doped CoAlO (N-CoAlO) were constructed by a hydrothermal route combined with a controllable NH3 treatment strategy. The effects of NH3 treatment on the physico-chemical properties and oxidation activities of N-CoAlO catalysts were investigated. In comparison to CoAlO, a smallest content decrease in surface Co3+ (serving as active sites) while a largest increased amount of surface Co2+ (contributing to oxygen species) are obtained over N-CoAlO/4h among the N-CoAlO catalysts. Meanwhile, a maximum N doping is found over N-CoAlO/4h. As a result, N-CoAlO/4h (under NH3 treatment at 400°C for 4 hr) with rich oxygen vacancies shows optimal catalytic activity, with a T90 (the temperature required to reach a 90% conversion of propane) at 266°C. The more oxygen vacancies are caused by the co-operative effects of N doping and suitable reduction of Co3+ for N-CoAlO/4h, leading to an enhanced oxygen mobility, which in turn promotes C3H8 total oxidation activity dominated by Langmuir-Hinshelwood mechanism. Moreover, in situ diffuse reflectance infrared Fourier transform spectroscopy (DRIFTs) analysis shows that N doping facilities the decomposition of intermediate species (propylene and formate) into CO2 over the catalyst surface of N-CoAlO/4h more easily. Our reported design in this work will provide a promising way to develop abundant oxygen vacancies of Co-based catalysts derived from hydrotalcites by a simple NH3 treatment.


Assuntos
Óxidos , Propano , Hidróxido de Alumínio , Carvão Mineral , Hidróxido de Magnésio , Óxidos/química , Oxigênio/análise , Temperatura
19.
Mikrochim Acta ; 188(9): 308, 2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34453216

RESUMO

The ternary NiCoAl hydrotalcite (NiCoAl-LDH) was combined with carboxylic multi-walled carbon nanotube (MWCNT) to fabricate a novel electrochemical sensor for simultaneously determining the co-existing trace phenolic substances. The morphology, structure, and electrochemical behavior of the as-prepared materials were characterized by various techniques. Benefitting from the great conductivity of MWCNT and high electrocatalytic activity of NiCoAl-LDH for phenolic substances, the advanced MWCNT/NiCoAl-LDH sensor presented a fast response, high sensitivity, excellent stability, and satisfactory replicability. The sensor offered good linear responses in the ranges1.50~600 µM to hydroquinone (HQ), 5.00~1.03 × 103 µM to catechol (CC), and 6.00 × 10-2~250 µM to bisphenol A (BPA). The detection limits of HQ, CC, and BPA were 0.4, 0.8, and 6. × 10-3 µM (S/N = 3), respectively. In environmental water, the sensor achieved satisfactory recoveries for the simultaneous detection of HQ (98.6~101%), CC (98.0~101%), and BPA (97.5~101%), with relative standard deviations less than 4.4%.

20.
Int J Mol Sci ; 22(16)2021 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-34445372

RESUMO

The synthesis of ester compounds is one of the most important chemical processes. In this work, Zn-Mg-Al mixed oxides with different Zn2+/Mg2+ molar ratios were prepared via co-precipitation method and supported gold nanoclusters to study the direct oxidative esterification of aldehyde and alcohol in the presence of molecular oxygen. Various characterization techniques such as N2-physical adsorption, X-ray diffraction (XRD), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS) and CO2 temperature programmed desorption (TPD) were utilized to analyze the structural and electronic properties. Based on the results, the presence of small amounts of Zn2+ ions (~5 wt.%) provoked a remarkable modification of the binary Mg-Al system, which enhanced the interaction between gold with the support and reduced the particle size of gold. For oxidative esterification reaction, the Au25/Zn0.05MgAl-400 catalyst showed the best performance, with the highest turnover frequency (TOF) of 1933 h-1. The active center was believed to be located at the interface between metallic gold with the support, where basic sites contribute a lot to transformation of the substrate.


Assuntos
Aldeídos/química , Hidróxido de Alumínio/química , Ouro/química , Hidróxido de Magnésio/química , Óxidos/química , Esterificação , Nanopartículas Metálicas , Microscopia Eletrônica de Transmissão , Oxirredução , Estresse Oxidativo , Tamanho da Partícula , Difração de Raios X , Zinco
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa