Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(44): e2210258119, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36279430

RESUMO

The paleomagnetic record is an archive of Earth's geophysical history, informing reconstructions of ancient plate motions and probing the core via the geodynamo. We report a robust 3.25-billion-year-old (Ga) paleomagnetic pole from the East Pilbara Craton, Western Australia. Together with previous results from the East Pilbara between 3.34 and 3.18 Ga, this pole enables the oldest reconstruction of time-resolved lithospheric motions, documenting 160 My of both latitudinal drift and rotation at rates of at least 0.55°/My. Motions of this style, rate, and duration are difficult to reconcile with true polar wander or stagnant-lid geodynamics, arguing strongly for mobile-lid geodynamics by 3.25 Ga. Additionally, this pole includes the oldest documented geomagnetic reversal, reflecting a stably dipolar, core-generated Archean dynamo.


Assuntos
Fenômenos Geológicos , Austrália Ocidental
2.
Chem Erde ; 81(3)2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35001939

RESUMO

Stable potassium isotopes are one of the emerging non-traditional isotope systems enabled in recent years by the advance of Multi-Collector Inductively-Coupled-Plasma Mass-Spectrometry (MC-ICP-MS). In this review, we first summarize the geochemical and cosmochemical properties of K, its major reservoirs, and the analytical methods of K isotopes. Following this, we review recent literature on K isotope applications in the fields of geochemistry and cosmochemistry. Geochemically, K is a highly incompatible lithophile element, and a highly soluble, biophile element. The isotopic fractionation of K is relatively small during magmatic processes such as partial melting and fractional crystallization, whereas during low-temperature and biological processes fractionation is considerably larger. This resolvable fractionation has made K isotopes promising tracers for a variety of Earth and environmental processes, including chemical weathering, low-temperature alteration of igneous rocks, reverse weathering, and the recycling of sediments into the mantle during subduction. Sorption and interactions of aqueous K with different clay minerals during cation exchange and clay formation are likely to be of fundamental significance in generating much of the K isotope variability seen in samples from the Earth surface and samples carrying recycled surface materials from the deep Earth. The magnitude of this fractionation is process- and mineral-dependent. Comprehensive quantification of pertinent K isotope fractionation factors is currently lacking and urgently needed. Significant fractionation during biological activities, such as plant uptake, demonstrates the potential utility of K isotopes in the study of the nutrient cycle and its relation to the climate and various ecosystems, enabling new and largely unexplored avenues for future research. Of significant importance to the cosmochemistry community, K is a moderately volatile element with large variations in K/U ratio observed among chondrites and planetary materials. As this indicates different degrees of volatile depletion, it has become a fundamental chemical signature of both chondritic and planetary bodies. This volatile depletion has been attributed to various processes such as solar nebula condensation, mixing of volatile-rich and -poor reservoirs, planetary accretional volatilization via impacts, and/or magma ocean degassing. While K isotopes have the potential to distinguish these different processes, the current results are still highly debated. A good correlation between the K isotope compositions of four differentiated bodies (Earth, Mars, Moon, and Vesta) and their masses suggests a ubiquitous volatile depletion mechanism during the formation of the terrestrial planets. It is still unknown whether any of the K isotopic variation among chondrites and differentiated bodies can be attributed to inherited signatures of mass-independent isotopic anomalies.

3.
Sensors (Basel) ; 21(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34696137

RESUMO

Mineral composition can be determined using different methods such as reflectance spectroscopy and X-ray diffraction (XRD). However, in some cases, the composition of mineral maps obtained from reflectance spectroscopy with XRD shows inconsistencies in the mineral composition interpretation and the estimation of (semi-)quantitative mineral abundances. We show why these discrepancies exist and how should they be interpreted. Part of the explanation is related to the sample choice and preparation; another part is related to the fact that clay minerals are active in the short-wave infrared, whereas other elements in the composition are not. Together, this might lead to distinctly different interpretations for the same material, depending on the methods used. The main conclusion is that both methods can be useful, but care should be given to the limitations of the interpretation process. For infrared reflectance spectroscopy, the lack of an actual threshold value for the H-OH absorption feature at 1900 nm and the poorly defined Al-OH absorption feature at 2443 nm, as well as for XRD, detection limit, powder homogenizing, and the small amount of montmorillonite below 1 wt.%, was the source of discrepancies.

4.
Orig Life Evol Biosph ; 50(1-2): 15-33, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32314306

RESUMO

The early Solar System comprised a broad area of abiotically created organic compounds, including interstellar organics which were integrated into planetesimals and parent bodies of meteorites, and eventually delivered to the early Earth. In this study, we simulated interstellar complex organic compounds synthesized by proton irradiation of a gas mixture of CO, NH3, and H2O, which are known to release amino acids after acid hydrolysis on the basis of Kobayashi et al. (1999) who reported that at the first stage of chemical evolution, the main compounds formed abiotically are complex organic compounds with high molecular weights. We examined their possible hydrothermal alteration and stabilities as amino acid precursors under high temperature and pressure conditions simulating parent bodies of meteorites by using an autoclave. We reported that all samples treated at 200-300 °C predominantly released glycine and alanine, followed by α-aminobutyric acid, and serine. After heating, amino acid concentrations decreased in general; however, the recovery ratios of γ-aminobutyric acid increased with temperature. The interstellar complex organic analog could maintain as amino acid precursors after being treated at high temperature (200-300 °C) and pressure (8-14 MPa). However, the molecular structures were altered during heating to form organic compounds that are more stable and can survive in elevated hydrothermal conditions.


Assuntos
Aminoácidos/química , Fontes Hidrotermais , Substâncias Macromoleculares/química
5.
Proc Natl Acad Sci U S A ; 114(8): 1827-1831, 2017 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-28174267

RESUMO

At ocean spreading ridges, circulation of seawater through rock at elevated temperatures alters the chemical and isotopic composition of oceanic crust. Samples obtained from drilling into ocean floor and from ophiolites have demonstrated that certain isotope systems, such as 18O/16O and 87Sr/86Sr, are systematically modified in hydrothermally altered oceanic crust. Although K is known to be mobile during hydrothermal alteration, there have not yet been any K-isotope analyses of altered oceanic crustal materials. Moreover, the 41K/39K of seawater was recently found to be significantly higher than that of igneous rocks, so the addition of seawater K to oceanic crust would be expected to generate 41K/39K variations in affected rocks. Here, we report high-precision 41K/39K measurements for samples from the Bay of Islands ophiolite, and we document large variations in 41K/39K, covarying with previous determinations of 87Sr/86Sr. Our data indicate that analytically resolvable 41K/39K effects arise in oceanic crust as a result of hydrothermal alteration. This finding raises the possibility that 41K/39K can be used as an effective tracer of oceanic crust recycled into the mantle, as a diagnostic criterion by which to identify ancient fragments of oceanic crust, and as a constraint on the flux of K between oceanic crust and seawater.

6.
Proc Natl Acad Sci U S A ; 112(17): 5337-41, 2015 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-25870269

RESUMO

The oxygen isotopic composition of hydrothermally altered rocks partly originates from the interacting fluid. We use the triple oxygen isotope composition ((17)O/(16)O, (18)O/(16)O) of Proterozoic rocks to reconstruct the (18)O/(16)O ratio of ancient meteoric waters. Some of these waters have originated from snowball Earth glaciers and thus give insight into the climate and hydrology of these critical intervals in Earth history. For a Paleoproterozoic [∼2.3-2.4 gigayears ago (Ga)] snowball Earth, δ(18)O = -43 ± 3‰ is estimated for pristine meteoric waters that precipitated at low paleo-latitudes (≤35°N). Today, such low (18)O/(16)O values are only observed in central Antarctica, where long distillation trajectories in combination with low condensation temperatures promote extreme (18)O depletion. For a Neoproterozoic (∼0.6-0.7 Ga) snowball Earth, higher meltwater δ(18)O estimates of -21 ± 3‰ imply less extreme climate conditions at similar paleo-latitudes (≤35°N). Both estimates are single snapshots of ancient water samples and may not represent peak snowball Earth conditions. We demonstrate how (17)O/(16)O measurements provide information beyond traditional (18)O/(16)O measurements, even though all fractionation processes are purely mass dependent.

7.
Ore Geol Rev ; 67: 170-188, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26594080

RESUMO

In the Neoarchean (~ 2.7 Ga) contact metamorphosed charnockitic footwall of the Mesoproterosoic (1.1 Ga) South Kawishiwi intrusion of the Duluth Complex, the primary metamorphic mineral assemblage and Cu-Ni-PGE sulfide mineralization is overprinted by an actinolite + chlorite + cummingtonite + prehnite + pumpellyite + quartz + calcite hydrothermal mineral assemblage along 2-3 cm thick veins. In calcite, hosted by the hydrothermal alteration zones and in a single recrystallized quartz porphyroblast, four different fluid inclusion assemblages are documented; the composition of these fluid inclusions provide p-T conditions of the fluid flow, and helps to define the origin of the fluids and evaluate their role in the remobilization and reprecipitation of the primary metamorphic sulfide assemblage. Pure CO2 fluid inclusions were found as early inclusions in recrystallized quartz porphyroblast. These inclusions may have been trapped during the recrystallization of the quartz during the contact metamorphism of the footwall charnockite in the footwall of the SKI. The estimated trapping pressure (1.6-2.0 kbar) and temperature (810-920 °C) conditions correspond to estimates based on felsic veins in the basal zones of the South Kawishiwi intrusion. Fluid inclusion assemblages with CO2-H2O-NaCl and CH4-N2-H2O-NaCl compositions found in this study along healed microfractures in the recrystallized quartz porphyroblast establish the heterogeneous state of the fluids during entrapment. The estimated trapping pressure and temperature conditions (240-650 bar and 120-150 °C for CO2-H2O-NaCl inclusions and 315-360 bar and 145-165 °C for CH4-N2-H2O-NaCl inclusions) are significantly lower than the p-T conditions (> 700 °C and 1.6-2 kbar) during the contact metamorphism, indicating that this fluid flow might not be related to the cooling of the Duluth Complex and its contact aureole. The presence of chalcopyrite inclusions in these fluid inclusions and in the trails of these fluid inclusion assemblages confirms that at least on local scale these fluids played a role in base metal remobilization. No evidences have been observed for PGE remobilization and transport in the samples. The source of the carbonic phase in the carbonic assemblages (CO2; CH4) could be the graphite, present in the metasedimentary hornfelsed inclusions in the basal zones of the South Kawishiwi intrusion. The hydrothermal veins in the charnockite can be characterized by an actinolite + cummingtonite + chlorite + prehnite + pumpellyite + calcite (I-II) + quartz mineral assemblage. Chlorite thermometry yields temperatures around 276-308 °C during the earliest phase of the fluid flow. In the late calcite (II) phase, high salinity (21.6-28.8 NaCl + CaCl2 equiv. wt.%), low temperature (90-160 °C), primary aqueous inclusions were found. Chalcopyrite (± sphalerite ± millerite), replacing and intersecting the early hydrothermal phases, are associated to the late calcite (II) phase. The composition of the formational fluids in the Canadian Shield is comparable with the composition of the studied fluid inclusions. This suggests that the composition of the fluids did not change in the past 2 Ga and base metal remobilization by formational fluids could have taken place any time after the formation of the South Kawishiwi intrusion. Sulfur isotope studies carried out on the primary metamorphic (δ34S = 7.4-8.9‰) and the hydrothermal sulfide mineral assemblage (δ34S = 5.5-5.7‰) proves, that during the hydrothermal fluid flow the primary metamorphic ores were remobilized.

8.
Contrib Mineral Petrol ; 168(1): 1038, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-26069344

RESUMO

Kimberlite volcanism involves the emplacement of olivine-rich volcaniclastic deposits into volcanic vents or pipes. Kimberlite deposits are typically pervasively serpentinised as a result of the reaction of olivine and water within a temperature range of 130-400 °C or less. We present a model for the influx of ground water into hot kimberlite deposits coupled with progressive cooling and serpentisation. Large-pressure gradients cause influx and heating of water within the pipe with horizontal convergent flow in the host rock and along pipe margins, and upward flow within the pipe centre. Complete serpentisation is predicted for wide ranges of permeability of the host rocks and kimberlite deposits. For typical pipe dimensions, cooling times are centuries to a few millennia. Excess volume of serpentine results in filling of pore spaces, eventually inhibiting fluid flow. Fresh olivine is preserved in lithofacies with initial low porosity, and at the base of the pipe where deeper-level host rocks have low permeability, and the pipe is narrower leading to faster cooling. These predictions are consistent with fresh olivine and serpentine distribution in the Diavik A418 kimberlite pipe, (NWT, Canada) and with features of kimberlites of the Yakutian province in Russia affected by influx of ground water brines. Fast reactions and increases in the volume of solid products compared to the reactants result in self-sealing and low water-rock ratios (estimated at <0.2). Such low water-rock ratios result in only small changes in stable isotope compositions; for example, δO18 is predicted only to change slightly from mantle values. The model supports alteration of kimberlites predominantly by interactions with external non-magmatic fluids.

9.
Heliyon ; 10(1): e23334, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38148825

RESUMO

Identifying potential hydrothermal alteration areas is indeed an essential method for mineral exploration. In this research, we developed an algorithm for the delineation of alteration mineral deposits related to gold mineralization in the Bibemi region using set of criteria derived from Landsat 9 OLI data using false colour composites, band ratios, principal component analysis, spectral angle mapper, and fuzzy-logic overlay methods. The methods used showed iron-oxides, ferrous, and hydroxyl-bearing and carbonate mineral properties related to gold mineralization. The fuzzy overlay map identified regions depending on their mineralization prospective, serving as foundation for prospective mineral deposit evaluation investigation, which was produced by the merging of band ratios and PC's alteration markers labelled very good, and excellent and encompasses 0.8-0.9, 0.9-1.0 respectively. The identified regions fit gold mineralization zones based on their potential as proven by prior and field research. In addition, lineaments analysis showed the presence of three main structural direction impacting the Bibemi region (N-S, NNE-SSW, and ESE-WNW to SSE-NNW), when merged with identified rock formations permits the possible deposition of mineral deposits. The innovative aspect of this research is the integration and processing of Landsat 9 OLI and fieldwork data, which allows for the identification of potentially mineralized rock formations and defining exploration targets.

10.
Data Brief ; 52: 110047, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38287948

RESUMO

Fresh and altered rock samples were collected and analyzed during field and laboratory studies in Tchollire and Environs. This approach aimed at the delineation of hydrothermal alteration minerals which according to the geological and mining settings of Tchollire and Environs, may be associated with gold mineralizations sites. Field investigations were achieved during the dry season to ensure the representativeness and reliability of our samples whose collections were constrained by earlier remote sensing and geophysical studies as expressed in [1]. An optical microscope both in reflected and transmitted light was used for petrographic analyses of thin and polished sections of rock samples. Other rock samples were prepared for spectral measurements which were achieved using an analytical spectral device spectrometer. The data presented here are further interpreted and discussed in [1].

11.
Heliyon ; 9(9): e20227, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37809390

RESUMO

The Nyangoubé gold prospect, located in northwestern northwest of Côte d'Ivoire in Africa, is a feature of the Bagoé furrow of the Birimian of the West African Craton. This study is aimed at characterizing the geochemical and mineralogical signatures of hydrothermal alterations associated with the gold mineralization of Nyangoubé gold prospect to provide guidelines for mining exploration. Microscopic petrographic analysis and geochemical characteristics from elemental contents analyzed by X-ray fluorescence (XRF) and inductive coupled-plasma mass spectrometer (ICP-MS) were studied using alteration diagrams and by calculating mass balances and describing thin sections. The results indicate that the host rocks have been affected by silicification, carbonation, sericitization, chloritization, sulphidation and albitization. Hydrothermal alterations associated with the mineralization systems resulted in the destruction of plagioclase in the metasediments studied. The latter was replaced by sericite, chlorite, carbonates, quartz, and sulphides in varying proportions, depending on the intensity of each type of alteration linked to the formation of each mineral. The mass balance calculations show a gradual increase in the concentrations of Au, W, V, As and Pb as well as K2O, CaO, Na2O and Fe2O3 which could be vectoring parameters towards gold mineralization. The mineralogical assemblage as sericite-chlorite-pyrite, chlorite-pyrite±sericite, carbonate-sericite and chlorite-carbonate revealed by hydrothermal alteration trends in the host rocks could also help identify potential gold corridors in the area of study and its peripheries.

12.
Bull Volcanol ; 83(11): 81, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34744243

RESUMO

Krafla central volcano in Iceland has experienced numerous basaltic fissure eruptions through its history, the most recent examples being the Mývatn (1724‒1729) and Krafla Fires (1975-1984). The Mývatn Fires opened with a steam-driven eruption that produced the Víti crater. A magmatic intrusion has been inferred as the trigger perturbing the geothermal field hosting Víti, but the cause(s) of the explosive response remain uncertain. Here, we present a detailed stratigraphic reconstruction of the breccia erupted from Víti crater, characterize the lithologies involved in the explosions, reconstruct the pre-eruptive setting, fingerprint the eruption trigger and source depth, and reveal the eruption mechanisms. Our results suggest that the Víti eruption can be classified as a magmatic-hydrothermal type and that it was a complex event with three eruption phases. The injection of rhyolite below a pre-existing convecting hydrothermal system likely triggered the Víti eruption. Heating and pressurization of shallow geothermal fluid initiated disruption of a scoria cone "cap" via an initial series of small explosions involving a pre-existing altered weak zone, with ejection of fragments from at least 60-m depth. This event was superseded by larger, broader, and dominantly shallow explosions (~ 200 m depth) driven by decompression of hydrothermal fluids within highly porous, poorly compacted tuffaceous hyaloclastite. This second phase was triggered when pressurized fluids broke through the scoria cone complex "cap". At the same time, deep-rooted explosions (~ 1-km depth) began to feed the eruption with large inputs of fragmented rhyolitic juvenile and host rock from a deeper zone. Shallow explosions enlarging the crater dominated the final phase. Our results indicate that at Krafla, as in similar geological contexts, shallow and thin hyaloclastite sequences hosting hot geothermal fluids and capped by low-permeability lithologies (e.g. altered scoria cone complex and/or massive, thick lava flow sequence) are susceptible to explosive failure in the case of shallow magmatic intrusion(s). SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s00445-021-01502-y.

13.
J Geophys Res Solid Earth ; 126(8): e2021JB021976, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34595085

RESUMO

Processes for formation, cooling, and altering Earth's ocean crust are not yet completely understood due to challenges in access and sampling. Here, we use contiguous micro-imaging infrared spectroscopy to develop complete-core maps of mineral occurrence and investigate spatial patterns in the hydrothermal alteration of 1.2 km of oceanic crust recovered from Oman Drilling Project Holes GT1A, GT2A, and GT3A drilled in the Samail Ophiolite, Oman. The imaging spectrometer shortwave infrared sensor measured reflectance of light at wavelengths 1.0-2.6 µm at 250-260 µm/pixel, resulting in >1 billion independent measurements. We map distributions of nine key primary and secondary minerals/mineral groups-clinopyroxene, amphibole, calcite, chlorite, epidote, gypsum, kaolinite/montmorillonite, prehnite, and zeolite-and find differences in their spatial occurrences and pervasiveness. Accuracy of spectral mapping of occurrence is 68%-100%, established using X-ray diffraction measurements from the core description. The sheeted dikes and gabbros of upper oceanic crust Hole GT3A show more pervasive alteration and alteration dominated by chlorite, amphibole, and epidote. The foliated/layered gabbros of GT2A from intermediate crustal depths have similarly widespread chlorite but more zeolite and little amphibole and epidote. The layered gabbros of the lower oceanic crust (GT1A) have remnant pyroxene and 2X less chlorite, but alteration is extensive within and surrounding major fault zones with widespread occurrences of amphibole. The results indicate greater distribution of higher temperature alteration minerals in the upper oceanic crust relative to deeper gabbros and highlight the importance of fault zones in hydrothermal convection in the lower ocean crust.

14.
Appl Spectrosc ; 75(12): 1475-1496, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34608818

RESUMO

Raman spectroscopy of fine-grained hydrothermal alteration minerals, and phyllosilicates in particular, presents certain challenges. However, given the increasingly widespread recognition of field portable visible-near infrared-shortwave infrared (Vis-NIR-SWIR) spectroscopy as a valuable tool in the mineral exploration industry, Raman microspectroscopy has promise as an approach for developing detailed complementary information on hydrothermal alteration phases in ore-forming systems. Here we present exemplar high-quality Raman and Vis-NIR-SWIR spectra of four key hydrothermal alteration minerals (pyrophyllite, white mica, chlorite, and alunite) that are common in precious metal epithermal systems, from deposits on the island of Newfoundland, Canada. The results reported here demonstrate that Raman microspectroscopy can accurately characterize pyrophyllite, white mica, chlorite, and alunite and provide details on their compositional variation at the microscale. In particular, spectral differences in the 1000-1150 cm-1 white mica Raman band allows the distinction between low-Tschermak phases (muscovite, paragonite) and phases with higher degrees of Tschermak substitution (phengitic white mica composition). The peak position of the main chlorite Raman band shifts between 683 cm-1 for Mg-rich chlorite and 665 cm-1 for Fe-rich chlorite and can be therefore used for semiquantitative estimation of the Fe2+ content in chlorite. Furthermore, while Vis-NIR-SWIR macrospectroscopy allows the rapid identification of the overall composition of the most abundant hydrothermal alteration mineral in a given sample, Raman microspectroscopy provides an in-depth spectral and chemical characterization of individual mineral grains, preserving the spatial and paragenetic context of each mineral and allowing for the distinction of chemical variation between (and within) different mineral grains. This is particularly useful in the case of alunite, white mica, and chlorite, minerals with extensive solid solution, where microscale characterization can provide information on the alteration zonation useful for mineral exploration and provide insight into mineral deposit genesis.


Assuntos
Minerais , Análise Espectral Raman , Espectroscopia de Luz Próxima ao Infravermelho
15.
Geobiology ; 18(5): 525-543, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32542902

RESUMO

Microtextures of titanite (CaTiSiO5 ) in exceptionally preserved Archean pillow lavas have been proposed as the earliest examples of microbial ichnofossils. An origin from microbial tunneling of seafloor volcanic glass that is subsequently chloritized and the tunnels infilled by titanite has been argued to record the activities of subseafloor microbes. We investigate the evidence in pillow lavas of the 3.35 Ga Euro Basalt from the Pilbara Craton, Western Australia, to evaluate the biogenicity of the microtextures. We employ a combination of light microscopy and chlorite mineral chemical analysis by EPMA (electron probe micro-analysis) to document the environment of formation and analyze their ultrastructure using FIB-TEM (focussed ion beam combined with transmission electron microscopy) to investigate their mode of growth. Petrographic study of the original and re-collected material identified an expanded range of titanite morphotypes along with early anatase growth forming chains and aggregates of coalesced crystallites in a sub-greenschist facies assemblage. High-sensitivity mapping of FIB lamellae cut across the microtextures confirm that they are discontinuous chains of coalesced crystallites that are highly variable in cross section and contain abundant chlorite inclusions, excluding an origin from the mineralization of previously hollow microtunnels. Comparison of chlorite mineral compositions to DSDP/IODP data reveals that the Euro Basalt chlorites are similar to recent seafloor chlorites. We advance an abiotic origin for the Euro Basalt microtextures formed by spontaneous nucleation and growth of titanite and/anatase during seafloor-hydrothermal metamorphism. Our findings reveal that the Euro Basalt microtextures are not comparable to microbial ichnofossils from the recent oceanic crust, and we question the evidence for life in these Archean lavas. The metamorphic reactions that give rise to the growth of the Euro Basalt microtextures could be commonplace in Archean pillow lavas and need to be excluded when seeking traces of life in the subseafloor on the early Earth.


Assuntos
Planeta Terra , Austrália , Vidro , Minerais , Austrália Ocidental
16.
Heliyon ; 5(11): e02931, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31844772

RESUMO

Advancement of airborne hyperspectral remote sensing techniques provides subtle variations to identify minerals and to make distinctions between rock formations. These techniques clearly define barren land versus economically viable zones containing ores and minerals. As we know profitable mineral zones are commonly associated with hydrothermal alteration zones, hyperspectral remote sensing techniques have the capability to identify and distinguish between altered, weathered, and clay minerals. In this research work, airborne hyperspectral remote sensing image from AVIRIS-NG is used to identify hydrothermally altered minerals in the Jahajpur region of Bhilwara district, Rajasthan, India. The purpose of this study is the identification of the minerals through spectral features of image spectra in corroboration with field sample spectra and USGS laboratory spectra. The spectral angle mapper (SAM) and Spectral Feature Fitting (SFF) algorithms were used for the mapping of the minerals. This study was conducted to prove the capability of AVIRIS-NG hyperspectral remote sensing data to identify zones of profitable mineral deposits.

17.
R Soc Open Sci ; 5(9): 180260, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30839744

RESUMO

Fluid inclusions in hydrothermal quartz in the 2.4 Ga Ongeluk Formation, South Africa, are expected to partially retain a component of the ancient seawater. To constrain the origin of the fluid and the quartz precipitation age, we conducted Ar-Ar dating for the quartz via a stepwise crushing method. The obtained argon isotopes show two or three endmembers with one or two binary mixing lines as the crushing proceeds, suggesting that the isotopic compositions of these endmembers correspond to fluid inclusions of each generation, earlier generated smaller 40Ar- and K-rich inclusions, moderate 40Ar- and 38ArCl (neutron-induced 38Ar from Cl)-rich inclusions and later generated larger atmospheric-rich inclusions. The K-rich inclusions show significantly different 40Ar/38ArCl values compared to the 38ArCl-rich inclusions, indicating that it is difficult to constrain the quartz formation age using only fluid inclusions containing excess 40Ar. The highest obtained 40Ar/36Ar value from the fluid inclusions is consistent with an expected value of the Ongeluk plume source, suggesting that the quartz precipitation was driven by Ongeluk volcanism. Considering the fluid inclusion generations and their compositions, the hydrothermal system was composed of crustal fluid and magmatic fluid without seawater before the beginning of a small amount of seawater input to the hydrothermal system.

18.
Environ Pollut ; 194: 138-144, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25108489

RESUMO

The current study aims to understand the speciation and fate of Cu complexes in hydrothermally altered sediments from the Central Indian Ocean Basin and assess the probable impacts of deep-sea mining on speciation of Cu complexes and assess the Cu flux from this sediment to the water column in this area. This study suggests that most of the Cu was strongly associated with different binding sites in Fe-oxide phases of the hydrothermally altered sediments with stabilities higher than that of Cu-EDTA complexes. The speciation of Cu indicates that hydrothermally influenced deep-sea sediments from Central Indian Ocean Basin may not significantly contribute to the global Cu flux. However, increasing lability of Cu-sediment complexes with increasing depth of sediment may increase bioavailability and Cu flux to the global ocean during deep-sea mining.


Assuntos
Cobre/análise , Sedimentos Geológicos/química , Fontes Hidrotermais , Poluentes Químicos da Água/análise , Monitoramento Ambiental , Oceano Índico , Mineração
19.
Environ Pollut ; 184: 530-9, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24184374

RESUMO

A novel application of self-organizing map (SOM) and multivariate statistical techniques is used to model the nonlinear interaction among basin mineral-resources, mining activity, and surface-water quality. First, the SOM is trained using sparse measurements from 228 sample sites in the Animas River Basin, Colorado. The model performance is validated by comparing stochastic predictions of basin-alteration assemblages and mining activity at 104 independent sites. The SOM correctly predicts (>98%) the predominant type of basin hydrothermal alteration and presence (or absence) of mining activity. Second, application of the Davies-Bouldin criteria to k-means clustering of SOM neurons identified ten unique environmental groups. Median statistics of these groups define a nonlinear water-quality response along the spatiotemporal hydrothermal alteration-mining gradient. These results reveal that it is possible to differentiate among the continuum between inputs of background and mine-related acidity and metals, and it provides a basis for future research and empirical model development.


Assuntos
Monitoramento Ambiental/métodos , Metais/análise , Mineração , Modelos Químicos , Rios/química , Colorado , Poluentes Químicos da Água
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa