RESUMO
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that damages patients' memory and cognitive abilities. Therefore, the diagnosis of AD holds significant importance. The interactions between regions of interest (ROIs) in the brain often involve multiple areas collaborating in a nonlinear manner. Leveraging these nonlinear higher-order interaction features to their fullest potential contributes to enhancing the accuracy of AD diagnosis. To address this, a framework combining nonlinear higher-order feature extraction and three-dimensional (3D) hypergraph neural networks is proposed for computer-assisted diagnosis of AD. First, a support vector machine regression model based on the radial basis function kernel was trained on ROI data to obtain a base estimator. Then, a recursive feature elimination algorithm based on the base estimator was applied to extract nonlinear higher-order features from functional magnetic resonance imaging (fMRI) data. These features were subsequently constructed into a hypergraph, leveraging the complex interactions captured in the data. Finally, a four-dimensional (4D) spatiotemporal hypergraph convolutional neural network model was constructed based on the fMRI data for classification. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrated that the proposed framework outperformed the Hyper Graph Convolutional Network (HyperGCN) framework by 8% and traditional two-dimensional (2D) linear feature extraction methods by 12% in the AD/normal control (NC) classification task. In conclusion, this framework demonstrates an improvement in AD classification compared to mainstream deep learning methods, providing valuable evidence for computer-assisted diagnosis of AD.
Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Humanos , Doença de Alzheimer/diagnóstico por imagem , Redes Neurais de Computação , Imageamento por Ressonância Magnética/métodos , Neuroimagem/métodos , Diagnóstico por Computador , EncéfaloRESUMO
The search for potential drug-disease associations (DDA) can speed up drug development cycles, reduce costly wasted resources, and accelerate disease treatment by repurposing existing drugs that can control further disease progression. As technologies such as deep learning continue to mature, many researchers tend to use emerging technologies to predict potential DDA. The performance of DDA prediction is still challenging and there is some space for improvement due to issues such as the small number of existing associations and possible noise in the data. To better predict DDA, we propose a computational approach based on hypergraph learning with subgraph matching (HGDDA). In particular, HGDDA first extracts feature subgraph information in the validated drug-disease association network and proposes a negative sampling strategy based on similarity network to reduce the data imbalance. Second, the hypergraph Unet module is used by extracting Finally, the potential DDA is predicted by designing a hypergraph combination module to convolution and pooling the two constructed hypergraphs separately, and calculating the difference information between the subgraphs using cosine similarity for node matching. The performance of HGDDA is verified under two standard datasets by 10-fold cross-validation (10-CV), and the results outperform existing drug-disease prediction methods. In addition, to validate the overall utility of the model, the top 10 drugs for the specific disease are predicted through the case study and validated using the CTD database.
Assuntos
Algoritmos , Biologia Computacional , Bases de Dados Factuais , Biologia Computacional/métodosRESUMO
Alzheimer's disease (AD) is an irreversible neurodegenerative disorder that damages patients' memory and cognitive abilities. Therefore, the diagnosis of AD holds significant importance. The interactions between regions of interest (ROIs) in the brain often involve multiple areas collaborating in a nonlinear manner. Leveraging these nonlinear higher-order interaction features to their fullest potential contributes to enhancing the accuracy of AD diagnosis. To address this, a framework combining nonlinear higher-order feature extraction and three-dimensional (3D) hypergraph neural networks is proposed for computer-assisted diagnosis of AD. First, a support vector machine regression model based on the radial basis function kernel was trained on ROI data to obtain a base estimator. Then, a recursive feature elimination algorithm based on the base estimator was applied to extract nonlinear higher-order features from functional magnetic resonance imaging (fMRI) data. These features were subsequently constructed into a hypergraph, leveraging the complex interactions captured in the data. Finally, a four-dimensional (4D) spatiotemporal hypergraph convolutional neural network model was constructed based on the fMRI data for classification. Experimental results on the Alzheimer's Disease Neuroimaging Initiative (ADNI) database demonstrated that the proposed framework outperformed the Hyper Graph Convolutional Network (HyperGCN) framework by 8% and traditional two-dimensional (2D) linear feature extraction methods by 12% in the AD/normal control (NC) classification task. In conclusion, this framework demonstrates an improvement in AD classification compared to mainstream deep learning methods, providing valuable evidence for computer-assisted diagnosis of AD.