Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 548
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Annu Rev Pharmacol Toxicol ; 63: 541-563, 2023 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-36170658

RESUMO

Ubiquitously expressed throughout the body, ATP-sensitive potassium (KATP) channels couple cellular metabolism to electrical activity in multiple tissues; their unique assembly as four Kir6 pore-forming subunits and four sulfonylurea receptor (SUR) subunits has resulted in a large armory of selective channel opener and inhibitor drugs. The spectrum of monogenic pathologies that result from gain- or loss-of-function mutations in these channels, and the potential for therapeutic correction of these pathologies, is now clear. However, while available drugs can be effective treatments for specific pathologies, cross-reactivity with the other Kir6 or SUR subfamily members can result in drug-induced versions of each pathology and may limit therapeutic usefulness. This review discusses the background to KATP channel physiology, pathology, and pharmacology and considers the potential for more specific or effective therapeutic agents.


Assuntos
Canais de Potássio Corretores do Fluxo de Internalização , Humanos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Mutação , Trifosfato de Adenosina/metabolismo , Trifosfato de Adenosina/farmacologia
2.
Diabetologia ; 67(5): 940-951, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38366195

RESUMO

AIMS/HYPOTHESIS: The ATP-sensitive potassium (KATP) channel couples beta cell electrical activity to glucose-stimulated insulin secretion. Loss-of-function mutations in either the pore-forming (inwardly rectifying potassium channel 6.2 [Kir6.2], encoded by KCNJ11) or regulatory (sulfonylurea receptor 1, encoded by ABCC8) subunits result in congenital hyperinsulinism, whereas gain-of-function mutations cause neonatal diabetes. Here, we report a novel loss-of-function mutation (Ser118Leu) in the pore helix of Kir6.2 paradoxically associated with sulfonylurea-sensitive diabetes that presents in early adult life. METHODS: A 31-year-old woman was diagnosed with mild hyperglycaemia during an employee screen. After three pregnancies, during which she was diagnosed with gestational diabetes, the patient continued to show elevated blood glucose and was treated with glibenclamide (known as glyburide in the USA and Canada) and metformin. Genetic testing identified a heterozygous mutation (S118L) in the KCNJ11 gene. Neither parent was known to have diabetes. We investigated the functional properties and membrane trafficking of mutant and wild-type KATP channels in Xenopus oocytes and in HEK-293T cells, using patch-clamp, two-electrode voltage-clamp and surface expression assays. RESULTS: Functional analysis showed no changes in the ATP sensitivity or metabolic regulation of the mutant channel. However, the Kir6.2-S118L mutation impaired surface expression of the KATP channel by 40%, categorising this as a loss-of-function mutation. CONCLUSIONS/INTERPRETATION: Our data support the increasing evidence that individuals with mild loss-of-function KATP channel mutations may develop insulin deficiency in early adulthood and even frank diabetes in middle age. In this case, the patient may have had hyperinsulinism that escaped detection in early life. Our results support the importance of functional analysis of KATP channel mutations in cases of atypical diabetes.


Assuntos
Hiperinsulinismo Congênito , Diabetes Gestacional , Canais de Potássio Corretores do Fluxo de Internalização , Recém-Nascido , Adulto , Pessoa de Meia-Idade , Feminino , Gravidez , Humanos , Canais de Potássio Corretores do Fluxo de Internalização/genética , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Hiperinsulinismo Congênito/genética , Compostos de Sulfonilureia/uso terapêutico , Mutação/genética , Glibureto , Trifosfato de Adenosina/metabolismo
3.
Diabetologia ; 67(9): 1912-1929, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38871836

RESUMO

AIMS/HYPOTHESIS: Stem cell-derived islets (SC-islets) are being used as cell replacement therapy for insulin-dependent diabetes. Non-invasive long-term monitoring methods for SC-islet grafts, which are needed to detect misguided differentiation in vivo and to optimise their therapeutic effectiveness, are lacking. Positron emission tomography (PET) has been used to monitor transplanted primary islets. We therefore aimed to apply PET as a non-invasive monitoring method for SC-islet grafts. METHODS: We implanted different doses of human SC-islets, SC-islets derived using an older protocol or a state-of-the-art protocol and SC-islets genetically rendered hyper- or hypoactive into mouse calf muscle to yield different kinds of grafts. We followed the grafts with PET using two tracers, glucagon-like peptide 1 receptor-binding [18F]F-dibenzocyclooctyne-exendin-4 ([18F]exendin) and the dopamine precursor 6-[18F]fluoro-L-3,4-dihydroxyphenylalanine ([18F]FDOPA), for 5 months, followed by histological assessment of graft size and composition. Additionally, we implanted a kidney subcapsular cohort with different SC-islet doses to assess the connection between C-peptide and stem cell-derived beta cell (SC-beta cell) mass. RESULTS: Small but pure and large but impure grafts were derived from SC-islets. PET imaging allowed detection of SC-islet grafts even <1 mm3 in size, [18F]exendin having a better detection rate than [18F]FDOPA (69% vs 44%, <1 mm3; 96% vs 85%, >1 mm3). Graft volume quantified with [18F]exendin (r2=0.91) and [18F]FDOPA (r2=0.86) strongly correlated with actual graft volume. [18F]exendin PET delineated large cystic structures and its uptake correlated with graft SC-beta cell proportion (r2=0.68). The performance of neither tracer was affected by SC-islet graft hyper- or hypoactivity. C-peptide measurements under fasted or glucose-stimulated conditions did not correlate with SC-islet graft volume or SC-beta cell mass, with C-peptide under hypoglycaemia having a weak correlation with SC-beta cell mass (r2=0.52). CONCLUSIONS/INTERPRETATION: [18F]exendin and [18F]FDOPA PET enable non-invasive assessment of SC-islet graft size and aspects of graft composition. These methods could be leveraged for optimising SC-islet cell replacement therapy in diabetes.


Assuntos
Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Tomografia por Emissão de Pósitrons , Transplante das Ilhotas Pancreáticas/métodos , Animais , Camundongos , Humanos , Tomografia por Emissão de Pósitrons/métodos , Ilhotas Pancreáticas/metabolismo , Ilhotas Pancreáticas/citologia , Células-Tronco/citologia , Células-Tronco/metabolismo , Masculino , Diabetes Mellitus Tipo 1/cirurgia , Diabetes Mellitus Tipo 1/metabolismo , Feminino
4.
J Biol Chem ; 299(6): 104816, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37178920

RESUMO

Congenital hyperinsulinism (HI), a beta cell disorder most commonly caused by inactivating mutations of beta cell KATP channels, results in dysregulated insulin secretion and persistent hypoglycemia. Children with KATP-HI are unresponsive to diazoxide, the only FDA-approved drug for HI, and utility of octreotide, the second-line therapy, is limited because of poor efficacy, desensitization, and somatostatin receptor type 2 (SST2)-mediated side effects. Selective targeting of SST5, an SST receptor associated with potent insulin secretion suppression, presents a new avenue for HI therapy. Here, we determined that CRN02481, a highly selective nonpeptide SST5 agonist, significantly decreased basal and amino acid-stimulated insulin secretion in both Sur1-/- (a model for KATP-HI) and wild-type mouse islets. Oral administration of CRN02481 significantly increased fasting glucose and prevented fasting hypoglycemia compared to vehicle in Sur1-/- mice. During a glucose tolerance test, CRN02481 significantly increased glucose excursion in both WT and Sur1-/- mice compared to the control. CRN02481 also reduced glucose- and tolbutamide-stimulated insulin secretion from healthy, control human islets similar to the effects observed with SS14 and peptide somatostatin analogs. Moreover, CRN02481 significantly decreased glucose- and amino acid-stimulated insulin secretion in islets from two infants with KATP-HI and one with Beckwith-Weideman Syndrome-HI. Taken together, these data demonstrate that a potent and selective SST5 agonist effectively prevents fasting hypoglycemia and suppresses insulin secretion not only in a KATP-HI mouse model but also in healthy human islets and islets from HI patients.


Assuntos
Hiperinsulinismo , Receptores de Somatomedina , Animais , Criança , Humanos , Lactente , Camundongos , Trifosfato de Adenosina/metabolismo , Aminoácidos/metabolismo , Glucose/metabolismo , Hiperinsulinismo/tratamento farmacológico , Hipoglicemia/metabolismo , Insulina/metabolismo , Secreção de Insulina , Ilhotas Pancreáticas/metabolismo , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/metabolismo , Receptores de Somatomedina/agonistas
5.
J Biol Chem ; 299(8): 104986, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392854

RESUMO

Congenital hyperinsulinism of infancy (CHI) can be caused by a deficiency of the ubiquitously expressed enzyme short-chain 3-hydroxyacyl-CoA dehydrogenase (SCHAD). To test the hypothesis that SCHAD-CHI arises from a specific defect in pancreatic ß-cells, we created genetically engineered ß-cell-specific (ß-SKO) or hepatocyte-specific (L-SKO) SCHAD knockout mice. While L-SKO mice were normoglycemic, plasma glucose in ß-SKO animals was significantly reduced in the random-fed state, after overnight fasting, and following refeeding. The hypoglycemic phenotype was exacerbated when the mice were fed a diet enriched in leucine, glutamine, and alanine. Intraperitoneal injection of these three amino acids led to a rapid elevation in insulin levels in ß-SKO mice compared to controls. Consistently, treating isolated ß-SKO islets with the amino acid mixture potently enhanced insulin secretion compared to controls in a low-glucose environment. RNA sequencing of ß-SKO islets revealed reduced transcription of ß-cell identity genes and upregulation of genes involved in oxidative phosphorylation, protein metabolism, and Ca2+ handling. The ß-SKO mouse offers a useful model to interrogate the intra-islet heterogeneity of amino acid sensing given the very variable expression levels of SCHAD within different hormonal cells, with high levels in ß- and δ-cells and virtually absent α-cell expression. We conclude that the lack of SCHAD protein in ß-cells results in a hypoglycemic phenotype characterized by increased sensitivity to amino acid-stimulated insulin secretion and loss of ß-cell identity.


Assuntos
3-Hidroxiacil-CoA Desidrogenase , Aminoácidos , Hiperinsulinismo Congênito , Hipoglicemia , Secreção de Insulina , Células Secretoras de Insulina , Animais , Camundongos , Aminoácidos/metabolismo , Aminoácidos/farmacologia , Hipoglicemia/enzimologia , Hipoglicemia/genética , Insulina/metabolismo , Secreção de Insulina/efeitos dos fármacos , Camundongos Knockout , 3-Hidroxiacil-CoA Desidrogenase/deficiência , 3-Hidroxiacil-CoA Desidrogenase/genética , Células Secretoras de Insulina/enzimologia , Hiperinsulinismo Congênito/genética
6.
Clin Genet ; 105(5): 549-554, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38225536

RESUMO

Congenital hyperinsulinism (CHI; OMIM: 256450) is characterized by persistent insulin secretion despite severe hypoglycemia. The most common causes are variants in the ATP-binding cassette subfamily C member 8(ABCC8) and potassium inwardly-rectifying channel subfamily J member 11(KCNJ11) genes. These encode ATP-sensitive potassium (KATP) channel subunit sulfonylurea receptor 1 (SUR1) and inwardly rectifying potassium channel (Kir6.2) proteins. A 7-day-old male infant presented with frequent hypoglycemic episodes and was clinically diagnosed with CHI, underwent trio-whole-exome sequencing, revealing compound heterozygous ABCC8 variants (c.307C>T, p.His103Tyr; and c.3313_3315del, p.Ile1105del) were identified. In human embryonic kidney 293 (HEK293) and rat insulinoma cells (INS-1) transfected with wild-type and variant plasmids, KATP channels formed by p.His103Tyr were delivered to the plasma membrane, whereas p.Ile1105del or double variants (p.His103Tyr coupled with p.Ile1105del) failed to be transported to the plasma membrane. Compared to wild-type channels, the channels formed by the variants (p.His103Tyr; p.Ile1105del) had elevated basal [Ca2+]i, but did not respond to stimulation by glucose. Our results provide evidence that the two ABCC8 variants may be related to CHI owing to defective trafficking and dysfunction of KATP channels.


Assuntos
Hiperinsulinismo Congênito , Canais de Potássio Corretores do Fluxo de Internalização , Lactente , Animais , Ratos , Masculino , Humanos , Receptores de Sulfonilureias/genética , Receptores de Sulfonilureias/metabolismo , Canais de Potássio Corretores do Fluxo de Internalização/genética , Células HEK293 , Receptores de Droga/genética , Receptores de Droga/metabolismo , Mutação/genética , Hiperinsulinismo Congênito/genética , Trifosfato de Adenosina , Potássio/metabolismo
7.
Clin Endocrinol (Oxf) ; 100(2): 132-137, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38059644

RESUMO

OBJECTIVE: Transient hyperinsulinism (THI) is the most common form of recurrent hypoglycaemia in neonates beyond the first week of life. Although self-resolving, treatment can be required. Consensus guidelines recommend the lower end of the diazoxide 5-15 mg/kg/day range in THI to reduce the risk of adverse events. We sought to determine if doses <5 mg/kg/day of diazoxide can be effective in THI. DESIGN, PATIENTS, MEASURMENTS: Infants with THI (duration <6 months) were treated with low-dose diazoxide from October 2015 to February 2021. Dosing was based on weight at diazoxide start: 2 mg/kg/day in infants 1000-2000 g (cohort 1), 3 mg/kg/day in those 2000-3500 g (cohort 2) and 5 mg/kg/day in those >3500 g. RESULTS: A total of 73 infants with THI (77% male, 33% preterm, 52% small-for-gestational age) were commenced on diazoxide at a median age of 11 days (range 3-43) for a median duration of 4 months (0.3-6.8), with no difference between cohorts. The mean effective diazoxide dose was 3 mg/kg/day (range 1.5-10); 35% (26/73) required an increase from their starting dose, including 60% (9/15) of cohort 1. There was no association between perinatal stress risk factors or treatment-related characteristics and dose increase. Adverse events occurred in 13 patients (18%); oedema (12%) and hyponatraemia (5%) were the most common. Two infants developed suspected necrotising enterocolitis (NEC); none had pulmonary hypertension. CONCLUSION: Diazoxide doses <5 mg/kg/day are effective in THI. While the nature of the association between diazoxide and NEC was unclear, other adverse events were mild. We suggest considering starting doses as low as 2-3 mg/kg/day in THI to balance the side effect risk while maintaining euglycaemia.


Assuntos
Hiperinsulinismo Congênito , Hiperinsulinismo , Hipoglicemia , Lactente , Feminino , Recém-Nascido , Humanos , Masculino , Diazóxido/efeitos adversos , Hipoglicemia/tratamento farmacológico , Recém-Nascido Pequeno para a Idade Gestacional , Fatores de Risco , Hiperinsulinismo/tratamento farmacológico , Hiperinsulinismo Congênito/tratamento farmacológico
8.
Artigo em Inglês | MEDLINE | ID: mdl-39360602

RESUMO

CONTEXT: Congenital Hyperinsulinism (CHI) is associated with inappropriately high levels of C-peptide in the context of hypoglycemia. OBJECTIVE: We aimed to better clarify a diagnostic threshold value of C-peptide for children presenting with CHI. DESIGN: This was a retrospective case-control analysis, examining all hypoglycemia screens, undertaken between 2009 and 2019 at a quaternary paediatrics unit. Plasma C-peptide, insulin, free fatty acid (FFA) and B-hydroxybutyrate (BHOB) concentrations in children diagnosed with CHI were compared with concentrations in children diagnosed with other conditions. PATIENTS: All patients requiring hypoglycaemic screens at the quaternary children's hospital were analysed. RESULTS: Median [C-peptide] were statistically significantly different between CHI (147) and non-CHI (72) patients, p < 0.05. The Youden Index indicated that a [C-peptide] value of 291.5 pmol/L would give the greatest optimization of sensitivity (82%) and specificity (99%) for detecting CHI. Median [insulin] differed significantly between the cohorts with a level of 64 pmol/L for CHI patients compared with 0 pmol/L with non-CHI patients (p < 0.01). Median [BOHB] was 0 µmol/L in CHI patients as compared with 2378 µmol/L for non-CHI patients (p < 0.01). Median [FFA] levels were 1910 µmol/L in the non-CHI cohort, compared with 0 in the CHI cohort (p < 0.01). CONCLUSIONS: This study suggests that a C-peptide concentration greater than 291.5 pmol/L is diagnostic of CHI in children. C-peptide appears to offer the greatest utility as a biochemical diagnostic test for CHI and could be prioritised for laboratory analysis.

9.
Rev Endocr Metab Disord ; 25(5): 897-910, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39352577

RESUMO

Managing Inherited Metabolic Disorders (IMDs) at risk for hypoglycemia, such as Glycogen Storage Diseases (GSDs), Hereditary Fructose Metabolism Disorders (HFMDs) and Congenital Hyperinsulinism (CH), poses challenges in dietary treatments and blood glucose monitoring. The effectiveness of Continuous Glucose Monitoring (CGM) remains a subject of ongoing debate, with IMD guidelines maintaining caution. Therefore, a systematic evaluation is needed to understand the potential benefits of CGM during dietary interventions. A systematic literature review was conducted in PubMed according to the PICOS model and PRISMA recommendations on studies published from January 01, 2003, up to October 15, 2023 (PROSPERO CRD42024497744). The risk of bias was assessed using NIH Quality Assessment Tools. Twenty-four studies in GSDs (n = 13), CH (n = 10), and HFMDs (n = 1) were analyzed. In GSDs, Real-time CGM (Rt-CGM) was associated with metabolic benefits during nutritional interventions, proving to be an accurate system for hypoglycemia detection although with some concerns about reliability. Rt-CGM in CH, primarily involving children, also showed potential benefits for glycemic control and metabolic stability with acceptable accuracy, although its use during dietary changes was limited. Few experiences on Flash Glucose Monitoring (FGM) were reported, with some concerns about reliability. Overall, the studies analyzed presented different designs, and their quality was predominantly fair or poor. Heterogeneity and limited consensus on reliability and glycemic targets underscore the need for prospective studies and future recommendations for the use of CGM in optimizing nutritional status and providing personalized dietary education in individuals with IMDs prone to hypoglycemia.


Assuntos
Glicemia , Hipoglicemia , Humanos , Hipoglicemia/prevenção & controle , Hipoglicemia/sangue , Glicemia/análise , Glicemia/metabolismo , Automonitorização da Glicemia/métodos , Doenças Metabólicas/prevenção & controle , Doenças Metabólicas/sangue , Monitoramento Contínuo da Glicose
10.
BMC Womens Health ; 24(1): 401, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39004741

RESUMO

BACKGROUND: The relationship between the dietary insulin index (DII) and the disease's risk is unknown, despite the fact that hyperinsulinemia is presumed to contribute to osteoporosis. The insulin response of various diets determines the DII. This study aimed to investigate the connection between postmenopausal Iranian women's adherence to a diet with a higher insulinemic potential and osteoporosis. METHODS: A total of 380 postmenopausal women were included in the current case-control study. A 168-item food frequency questionnaire (FFQ) with established validity and reliability was used to evaluate individuals' daily calorie intake. The standard formula was employed to determine the dietary insulin load of each product. Subsequently, the calculation of DII was performed by dividing the dietary insulin load by the total energy consumed for each individual. In order to investigate the relationship between osteoporosis and DII, logistic regression was implemented. RESULTS: The results of the current study demonstrated a substantial inverse relationship between osteoporosis and the DII, even after accounting for confounding variables (OR = 0.927; 95% CI = 0.888-0.967). The mean scores of DII (P < 0.001) was significantly higher in control group (36.82 ± 8.98) compared to the case group (33.53 ± 6.28). CONCLUSIONS: Our findings suggest that keeping a diet high in insulin index and low in foods that are insulinogenic may improve bone mass density. Consequently, it may be essential for postmenopausal women to consume nutrients that stimulate insulin production in order to prevent osteoporosis.


Assuntos
Dieta , Insulina , Osteoporose Pós-Menopausa , Humanos , Feminino , Estudos de Casos e Controles , Irã (Geográfico)/epidemiologia , Osteoporose Pós-Menopausa/epidemiologia , Pessoa de Meia-Idade , Dieta/estatística & dados numéricos , Dieta/métodos , Idoso , Ingestão de Energia , Fatores de Risco , Inquéritos e Questionários
11.
BMC Pediatr ; 24(1): 327, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38773407

RESUMO

INTRODUCTION: Donohue syndrome (DS), also referred to as leprechaunism, is a remarkably uncommon autosomal recessive disorder that primarily affects the endocrine system. Its incidence rate is exceedingly low, with only 1 case reported per 4 million live births. The syndrome is distinguished by a series of characteristic clinical features. CASE PRESENTATION: We present a case of a twenty-month-old male with DS who experienced a range of dysmorphic and clinical features with the involvement of multiple systems. These features include skin hyperpigmentation, hypertrichosis, distinct facial features, abdominal distension, and microcephaly, with the involvement of the endocrine, renal, respiratory, and cardiac systems. CONCLUSION: The primary features of DS involve severe insulin resistance and growth abnormalities, the association with pulmonary hypertension (PHTN) has not been reported before. This finding adds more complexity to the condition. To the best of the author's knowledge, this is the first report for a patient with DS who has PHTN. Further investigation is required since the mechanisms behind the development of PHTN in DS are not entirely understood. Shedding light on this association will contribute to better management strategies and outcomes for affected patients.


Assuntos
Síndrome de Donohue , Hipertensão Pulmonar , Humanos , Masculino , Hipertensão Pulmonar/etiologia , Hipertensão Pulmonar/diagnóstico , Lactente , Síndrome de Donohue/complicações , Síndrome de Donohue/diagnóstico
12.
Int J Mol Sci ; 25(8)2024 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-38673928

RESUMO

There are two paralogs of glutamate dehydrogenase (GDH) in humans encoded by the GLUD1 and GLUD2 genes as a result of a recent retroposition during the evolution of primates. The two human GDHs possess significantly different regulation by allosteric ligands, which is not fully characterized at the structural level. Recent advances in identification of the GDH ligand binding sites provide a deeper perspective on the significance of the accumulated substitutions within the two GDH paralogs. In this review, we describe the evolution of GLUD1 and GLUD2 after the duplication event in primates using the accumulated sequencing and structural data. A new gibbon GLUD2 sequence questions the indispensability of ancestral R496S and G509A mutations for GLUD2 irresponsiveness to GTP, providing an alternative with potentially similar regulatory features. The data of both GLUD1 and GLUD2 evolution not only confirm substitutions enhancing GLUD2 mitochondrial targeting, but also reveal a conserved mutation in ape GLUD1 mitochondrial targeting sequence that likely reduces its transport to mitochondria. Moreover, the information of GDH interactors, posttranslational modification and subcellular localization are provided for better understanding of the GDH mutations. Medically significant point mutations causing deregulation of GDH are considered from the structural and regulatory point of view.


Assuntos
Evolução Molecular , Glutamato Desidrogenase , Processamento de Proteína Pós-Traducional , Animais , Humanos , Glutamato Desidrogenase/metabolismo , Glutamato Desidrogenase/genética , Glutamato Desidrogenase/química , Ligantes , Mutação , Primatas/genética
13.
Rev Med Liege ; 79(3): 168-174, 2024 Mar.
Artigo em Francês | MEDLINE | ID: mdl-38487911

RESUMO

Congenital hyperinsulinism is the most common cause of recurrent hypoglycemia in newborns and children. Early diagnosis and rapid management are essential to avoid hypoglycaemic brain injury and later neurological complications. Management of those patients involves biological evaluation, molecular genetics, imaging techniques and surgical advances. We report the case of a newborn with recurrent hypoglycemia due to congenital hyperinsulinism (CHI) caused by a new variant in the ABCC8 gene. Fluorine 18-L-3,4 Dihydroxyphenylalanine Positron Emission Tomography (18F-DOPA PET/CT scan) reported a focal lesion at the isthmus of the pancreas which has been removed by laparoscopic surgery with a complete recovery for the patient.


L'hyperinsulinisme congénital est la cause la plus fréquente d'hypoglycémies récidivantes chez le nouveau-né et l'enfant. Un diagnostic et une prise en charge précoces sont primordiaux pour éviter les conséquences potentielles sur le développement neurologique. Ces derniers reposent sur la conjonction d'éléments biologiques, génétiques et d'imagerie. Nous rapportons le cas d'un nouveau-né présentant des hypoglycémies récidivantes. La mise au point mettra en évidence un hyperinsulinisme congénital (CHI) lié à un variant non encore décrit au sein du gène ABCC8. L'imagerie par Fluorine 18-L-3,4 Dihydroxyphenylalanine Positron Emission Tomography/Computed Tomography-scanner (18F-DOPA PET/CT scan) a mis en évidence une forme focale de l'hyperinsulinisme justifiant une prise en charge chirurgicale amenant à une guérison complète et à l'arrêt de tout traitement médicamenteux.


Assuntos
Hiperinsulinismo Congênito , Laparoscopia , Criança , Humanos , Recém-Nascido , Lactente , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Hiperinsulinismo Congênito/diagnóstico por imagem , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/patologia , Pâncreas/patologia , Pâncreas/cirurgia , Tomografia por Emissão de Pósitrons/métodos
14.
Rev Endocr Metab Disord ; 24(6): 1031-1044, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37552352

RESUMO

The initial step for the differential diagnosis of hypoglycemia is to determine whether it is hyperinsulinemic or non hyperinsulinemic. Existing literature discusses drug-related hypoglycemia, but it misses a focus on drug-induced hyperinsulinemic hypoglycemia (DHH). Here we reviewed the association existing between drugs and hyperinsulinemic hypoglycemia. We primarily selected on the main electronic databases (MEDLINE, EMBASE, Web of Science, and SCOPUS) the reviews on drug-induced hypoglycemia. Among the drugs listed in the reviews, we selected the ones linked to an increase in insulin secretion. For the drugs missing a clear association with insulin secretion, we investigated the putative mechanism underlying hypoglycemia referring to the original papers. Our review provides a list of the most common agents associated with hyperinsulinemic hypoglycemia (HH), in order to facilitate both the recognition and the prevention of DHH. We also collected data about the responsiveness of DHH to diazoxide or octreotide.


Assuntos
Hiperinsulinismo , Hipoglicemia , Humanos , Hipoglicemia/induzido quimicamente , Hipoglicemia/complicações , Hipoglicemia/tratamento farmacológico , Hiperinsulinismo/induzido quimicamente , Hiperinsulinismo/complicações , Hiperinsulinismo/diagnóstico , Diazóxido/efeitos adversos , Secreção de Insulina
15.
J Inherit Metab Dis ; 46(4): 744-755, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36695547

RESUMO

Hyperinsulinism/hyperammonemia (HI/HA) syndrome has been known to be caused by dominant gain-of-function mutations in GLUD1, encoding the mitochondrial enzyme glutamate dehydrogenase. Pathogenic GLUD1 mutations enhance enzymatic activity by reducing its sensitivity to allosteric inhibition by GTP. Two recent independent studies showed that a similar HI/HA phenotype can be caused by biallelic mutations in SLC25A36, encoding pyrimidine nucleotide carrier 2 (PNC2), a mitochondrial nucleotide carrier that transports pyrimidine and guanine nucleotides across the inner mitochondrial membrane: one study reported a single case caused by a homozygous truncating mutation in SLC25A36 resulting in lack of expression of SLC25A36 in patients' fibroblasts. A second study described two siblings with a splice site mutation in SLC25A36, causing reduction of mitochondrial GTP content, putatively leading to hyperactivation of glutamate dehydrogenase. In an independent study, through combined linkage analysis and exome sequencing, we demonstrate in four individuals of two Bedouin Israeli related families the same disease-causing SLC25A36 (NM_018155.3) c.284 + 3A > T homozygous splice-site mutation found in the two siblings. We demonstrate that the mutation, while causing skipping of exon 3, does not abrogate expression of mRNA and protein of the mutant SLC25A36 in patients' blood and fibroblasts. Affected individuals had hyperinsulinism, hyperammonemia, borderline low birth weight, tonic-clonic seizures commencing around 6 months of age, yet normal intellect and no significant other morbidities. Chronic constipation, hypothyroidism, and developmental delay previously described in a single patient were not found. We thus verify that biallelic SLC25A36 mutations indeed cause HI/HA syndrome and clearly delineate the disease phenotype.


Assuntos
Hiperamonemia , Hiperinsulinismo , Humanos , Glutamato Desidrogenase , Guanosina Trifosfato/farmacologia , Hiperamonemia/genética , Hiperinsulinismo/genética , Mutação , Síndrome , Proteínas de Transporte da Membrana Mitocondrial/genética
16.
Endocr Pract ; 29(12): 980-985, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37683825

RESUMO

OBJECTIVE: Due to a perceived rise in hyperinsulinemic hypoglycemia (HH) cases over time, notably during the COVID-19 pandemic, institutional experiences between 2013 and 2021 were reviewed to evaluate trends, characteristics, and outcomes in children with HH. METHODS: Charts of all children diagnosed with HH during the study period and evaluated by Pediatric Endocrinology were reviewed. HH was defined per Pediatric Endocrine Society guidelines. Regression analysis compared rates of change in HH cases and maternal risk factors over time. RESULTS: The incidence of HH began to rise in April 2016 and became significant in March 2017 (P < .001), with a more rapid rate of rise during the first year of the COVID-19 pandemic (P < .001). Seventy-four children with HH were identified over 9 years; 43% (n = 32) were diagnosed in 2020-2021. Maternal hypertensive disorders demonstrated longitudinal association with hyperinsulinism cases (P < .001). CONCLUSION: While HH diagnoses were on the rise for much of the 9-year study period, nearly half of all infants were diagnosed during the COVID-19 pandemic in 2020 to 21. The trends in HH diagnoses correlated with maternal hypertensive disorders. More studies exploring the roles of maternal health, hypertension, and stress and development of HH in offspring are needed.


Assuntos
COVID-19 , Hiperinsulinismo , Hipertensão Induzida pela Gravidez , Hipoglicemia , Lactente , Feminino , Gravidez , Humanos , Criança , Hipoglicemia/epidemiologia , Incidência , Saúde Materna , Pandemias , Hiperinsulinismo/complicações , Hiperinsulinismo/epidemiologia , COVID-19/epidemiologia , COVID-19/complicações
17.
Endocr Regul ; 57(1): 128-137, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-37285460

RESUMO

Objective. Kabuki syndrome (KS) is associated with hyperinsulinemic hypoglycemia (HH) in 0.3-4% of patients, thus exceeding the prevalence in the general population. HH association is stronger for KS type 2 (KDM6A-KS, OMIM #300867) than KS type 1 (KMT2D-KS, OMIM #147920). Both the disease-associated genes, KMD6A and KMT2D, modulate the chromatin dynamic. As such, KS is considered to be the best characterized pediatric chromatinopathy. However, the exact pathogenetic mechanisms leading to HH in this syndrome remain still unclear. Methods. We selected on the electronic database PubMed all articles describing or hypothesizing the mechanisms underlying the dysregulated insulin secretion in KS. Results. The impact on the gene expression due to the KDM6A or KMT2D function loss may lead to a deregulated pancreatic ß-cell differentiation during embryogenesis. Moreover, both KMT2D gene and KDM6A gene are implicated in promoting the transcription of essential pancreatic ß-cell genes and in regulating the metabolic pathways instrumental for insulin release. Somatic KMT2D or KDM6A mutations have also been described in several tumor types, including insulinoma, and have been associated with metabolic pathways promoting pancreatic cell proliferation. Conclusions. The impact of pathogenic variants in KDM6A and KDM2D genes on ß-cell insulin release remains to be fully clarified. Understanding this phenomenon may provide valuable insight into the physiological mechanisms of insulin release and into the pathological cascade causing hyperinsulinism in KS. The identification of these molecular targets may open new therapeutic opportunities based on epigenetic modifiers.


Assuntos
Hiperinsulinismo , Hipoglicemia , Humanos , Criança , Mutação , Hiperinsulinismo/complicações , Hiperinsulinismo/genética , Histona Desmetilases/genética , Insulina , Hipoglicemia/genética
18.
Pediatr Surg Int ; 39(1): 183, 2023 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-37079145

RESUMO

PURPOSE: Recurrent severe hypoglycemic attacks often persist even after performing pancreatectomy for medically unresponsive congenital hyperinsulinism (CHI). In this study, we present our experience with redo pancreatectomy for CHI. METHODS: We reviewed all children who underwent pancreatectomy for CHI between January 2005 and April 2021 in our center. A comparison was made between patients whose hypoglycemia was controlled after primary pancreatectomy and patients who required reoperation. RESULTS: A total of 58 patients underwent pancreatectomy for CHI. Refractory hypoglycemia after pancreatectomy occurred in 10 patients (17%), who subsequently underwent redo pancreatectomy. All patients who required redo pancreatectomy had positive family history of CHI (p = 0.0031). Median extent of initial pancreatectomy was lesser in the redo group with borderline level of statistical significance (95% vs. 98%, p = 0.0561). Aggressive pancreatectomy at the initial surgery significantly (p = 0.0279) decreased the risk for the need to redo pancreatectomy; OR 0.793 (95% CI 0.645-0.975). Incidence of diabetes was significantly higher in the redo group (40% vs. 9%, p = 0.033). CONCLUSION: Pancreatectomy with 98% extent of resection for diffuse CHI, especially with positive family history of CHI, is warranted to decrease the chance of reoperation for persistent severe hypoglycemia.


Assuntos
Hiperinsulinismo Congênito , Pancreatectomia , Criança , Humanos , Lactente , Incidência , Hiperinsulinismo Congênito/epidemiologia , Hiperinsulinismo Congênito/cirurgia
19.
Rev Endocr Metab Disord ; 23(5): 1063-1078, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35996042

RESUMO

Maturity-Onset Diabetes of the Youth (MODY) diabetes remains commonly misdiagnosed. A monogenic form should be suspected in individuals presenting hyperinsulinemic hypoglycemia (HH) associated with, either later development of MODY (hypoglycemia-remission-diabetes sequence), or with first/second-degree family history of diabetes. Herein, we aimed to describe this individual or family monogenic association between HH and diabetes, and identify potential genotype-phenotype correlations. We conducted a systematic review of 26 studies, including a total of 67 patients with this association resulting from variants in GCK (n = 5 cases), ABCC8 (n = 29), HNF1A (n = 5), or HNF4A (n = 28). A family history of hypoglycemia and/or diabetes was present in 91% of cases (61/67). Median age at first hypoglycemia was 24 h after birth. Diazoxide was initiated in 46 children (46/67-69%); responsiveness was found in 91% (42/46). Median HH duration was three years (1 day-25 years). Twenty-three patients (23/67-34%) later developed diabetes (median age: 13 years; range: 8-48); more frequently in those untreated with diazoxide. This association was most commonly inherited in an autosomal dominant manner (43/48-90%). Some genes were associated with less severe initial hypoglycemia (HNF1A), shorter duration of HH (HNF4A), and more maternal (ABCC8) or paternal (HNF4A) transmission. This study illustrates that the same genotype can give a biphasic phenotype in the same person or a reverse phenotype in the same family. Wider awareness of this association is necessary in pediatrics to establish annual monitoring of patients who have presented HH, and during maternity to screen diabetes and optimize genetic counseling and management of pregnancy, childbirth, and the newborn.PROSPERO registration: CRD42020178265.


Assuntos
Hiperinsulinismo Congênito , Diabetes Mellitus Tipo 2 , Criança , Hiperinsulinismo Congênito/genética , Diabetes Mellitus Tipo 2/genética , Diazóxido/uso terapêutico , Feminino , Humanos , Mutação , Fenótipo , Gravidez
20.
Am J Med Genet A ; 188(8): 2429-2433, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35621279

RESUMO

Congenital hyperinsulinism (CHI) is genetically heterogeneous, caused by pathogenic variants in multiple known genes regulating insulin secretion from the pancreatic ß-cells. The ABCC8 gene encodes the sulfonylurea receptor 1 (SUR1), a key player in insulin secretion, and pathogenic variants in ABCC8 are the most common cause of CHI. With increased application of genetic testing in clinical practice, variants of unknown clinical significance (VUS) are commonly reported. Additional functional investigation for variant pathogenicity is fundamental in establishing definitive molecular diagnosis and in guiding clinical management. However, due to the lack of ubiquitous tissue expression of these genes, obtaining functional studies on affected tissue has been challenging. We present a case of severe congenital hyperinsulinism which required a near-total pancreatectomy. CHI gene sequencing identified a homozygous silent variant in ABCC8 located on the last nucleotide of exon 38, c.4608G>A (p.Ala1536Ala). The total RNA was isolated from pancreas resected at the time of pancreatectomy. RNA sequencing and expression analysis demonstrated exon 38 skipping and decreased RNA expression, which supports the pathogenicity of this variant. This case highlights the feasibility of functional studies of VUS on resected pancreatic tissue. The result expands the mutation spectrum in ABCC8 and allows precise genetic counseling to affected families.


Assuntos
Hiperinsulinismo Congênito , Hiperinsulinismo , Canais de Potássio Corretores do Fluxo de Internalização , Hiperinsulinismo Congênito/diagnóstico , Hiperinsulinismo Congênito/genética , Hiperinsulinismo Congênito/cirurgia , Éxons/genética , Humanos , Hiperinsulinismo/genética , Mutação , Canais de Potássio Corretores do Fluxo de Internalização/genética , RNA , Receptores de Sulfonilureias/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa