Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38892412

RESUMO

Due to their immobility and possession of underground parts, plants have evolved various mechanisms to endure and adapt to abiotic stresses such as extreme temperatures, drought, and salinity. However, the contribution of long noncoding RNAs (lncRNAs) to different abiotic stresses and distinct rice seedling parts remains largely uncharacterized beyond the protein-coding gene (PCG) layer. Using transcriptomics and bioinformatics methods, we systematically identified lncRNAs and characterized their expression patterns in the roots and shoots of wild type (WT) and ososca1.1 (reduced hyperosmolality-induced [Ca2+]i increase in rice) seedlings under hyperosmolarity and salt stresses. Here, 2937 candidate lncRNAs were identified in rice seedlings, with intergenic lncRNAs representing the largest category. Although the detectable sequence conservation of lncRNAs was low, we observed that lncRNAs had more orthologs within the Oryza. By comparing WT and ososca1.1, the transcription level of OsOSCA1.1-related lncRNAs in roots was greatly enhanced in the face of hyperosmolality stress. Regarding regulation mode, the co-expression network revealed connections between trans-regulated lncRNAs and their target PCGs related to OsOSCA1.1 and its mediation of hyperosmolality stress sensing. Interestingly, compared to PCGs, the expression of lncRNAs in roots was more sensitive to hyperosmolarity stress than to salt stress. Furthermore, OsOSCA1.1-related hyperosmolarity stress-responsive lncRNAs were enriched in roots, and their potential cis-regulated genes were associated with transcriptional regulation and signaling transduction. Not to be ignored, we identified a motif-conserved and hyperosmolarity stress-activated lncRNA gene (OSlncRNA), speculating on its origin and evolutionary history in Oryza. In summary, we provide a global perspective and a lncRNA resource to understand hyperosmolality stress sensing in rice roots, which helps to decode the complex molecular networks involved in plant sensing and adaptation to stressful environments.


Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Raízes de Plantas , RNA Longo não Codificante , Estresse Salino , Oryza/genética , Oryza/metabolismo , RNA Longo não Codificante/genética , Raízes de Plantas/genética , Raízes de Plantas/metabolismo , Estresse Salino/genética , Pressão Osmótica , Estresse Fisiológico/genética , Perfilação da Expressão Gênica , RNA de Plantas/genética , Plântula/genética , Transcriptoma
2.
Transgenic Res ; 30(6): 811-820, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34146237

RESUMO

Drought and salt are two major abiotic stresses that severely impact plant growth and development, as well as crop production. A previous study showed that OsOSCA1.4, one of eleven rice OSCAs (OsOSCAs), complements hyperosmolality-induced [Ca2+]cyt increases (OICIcyt), salt stress-induced [Ca2+]cyt increases (SICIcyt) and the associated growth phenotype in Arabidopsis osca1 (reduced hyperosmolality-induced [Ca2+]cyt increase 1). In this study, Except for OsOSCA2.3 and OsOSCA4.1, we generated independent transgenic lines overexpressing eight other OsOSCAs in the osca1 to explore their functions in osmotic Ca2+ signalling, stomatal movement, leaf water loss, and root growth in response to hyperosmolality and salt stress. Similar to OsOSCA1.4, overexpression of OsOSCA1.1 or OsOSCA2.2 in osca1 complemented OICIcyt and SICIcyt, as well as stomatal closure and root growth in response to hyperosmolality and salt stress treatments, and drought-related leaf water loss. In addition, overexpression of OsOSCA1.2, OsOSCA1.3 or OsOSCA2.1 in osca1 restored OICIcyt and SICIcyt, whereas overexpression of OsOSCA2.5 or OsOSCA3.1 did not. Moreover, osca1 overexpressing these five OsOSCAs exhibited various abiotic stress-associated growth phenotypes. However, overexpression of OsOSCA2.4 did not have any of these effects. These results indicated that multiple members of the OsOSCA family have redundant functions in osmotic sensing and diverse roles in stress adaption.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Oryza , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Secas , Regulação da Expressão Gênica de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Estresse Salino/genética , Estresse Fisiológico/genética , Água/metabolismo
3.
J Bacteriol ; 202(11)2020 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-32205462

RESUMO

While alternating between insects and mammals during its life cycle, Yersinia pestis, the flea-transmitted bacterium that causes plague, regulates its gene expression appropriately to adapt to these two physiologically disparate host environments. In fleas competent to transmit Y. pestis, low-GC-content genes y3555, y3551, and y3550 are highly transcribed, suggesting that these genes have a highly prioritized role in flea infection. Here, we demonstrate that y3555, y3551, and y3550 are transcribed as part of a single polycistronic mRNA comprising the y3555, y3554, y3553, y355x, y3551, and y3550 genes. Additionally, y355x-y3551-y3550 compose another operon, while y3550 can be also transcribed as a monocistronic mRNA. The expression of these genes is induced by hyperosmotic salinity stress, which serves as an explicit environmental stimulus that initiates transcriptional activity from the predicted y3550 promoter. Y3555 has homology to pyridoxal 5'-phosphate (PLP)-dependent aromatic aminotransferases, while Y3550 and Y3551 are homologous to the Rid protein superfamily (YjgF/YER057c/UK114) members that forestall damage caused by reactive intermediates formed during PLP-dependent enzymatic activity. We demonstrate that y3551 specifically encodes an archetypal RidA protein with 2-aminoacrylate deaminase activity but Y3550 lacks Rid deaminase function. Heterologous expression of y3555 generates a critical aspartate requirement in a Salmonella entericaaspC mutant, while its in vitro expression, and specifically its heterologous coexpression with y3550, enhances the growth rate of an Escherichia coli ΔaspC ΔtyrB mutant in a defined minimal amino acid-supplemented medium. Our data suggest that the y3555, y3551, and y3550 genes operate cooperatively to optimize aromatic amino acid metabolism and are induced under conditions of hyperosmotic salinity stress.IMPORTANCE Distinct gene repertoires are expressed during Y. pestis infection of its flea and mammalian hosts. The functions of many of these genes remain predicted or unknown, necessitating their characterization, as this may provide a better understanding of Y. pestis specialized biological adaptations to the discrete environments of its two hosts. This study provides functional context to adjacently clustered horizontally acquired genes predominantly expressed in the flea host by deciphering their fundamental processes with regard to (i) transcriptional organization, (ii) transcription activation signals, and (iii) biochemical function. Our data support a role for these genes in osmoadaptation and aromatic amino acid metabolism, highlighting these as preferential processes by which Y. pestis gene expression is modulated during flea infection.


Assuntos
Aminoácidos Aromáticos/metabolismo , Sifonápteros/microbiologia , Yersinia pestis/metabolismo , Animais , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Transferência Genética Horizontal , Óperon , Yersinia pestis/genética , Yersinia pestis/crescimento & desenvolvimento
4.
Artigo em Inglês | MEDLINE | ID: mdl-32438057

RESUMO

Dry eye disease (DED) is a multifactorial chronic inflammatory disease of the ocular surface characterized by tear film instability, hyperosmolarity, cell damage and inflammation. Hyperosmolarity is strongly established as the core mechanism of the DED. Benzalkonium chloride (BAK) - a quaternary ammonium salt commonly used in eye drops for its microbicidal properties - is well known to favor the onset of DED. Currently, little data are available regarding lipid metabolism alteration in ocular surface epithelial cells in the course of DED. Our aim was to explore the effects of benzalkonium chloride or hyperosmolarity exposure on the human corneal epithelial (HCE) cell lipidome, two different conditions used as in vitro models of DED. For this purpose, we performed a lipidomic analysis using UPLC-HRMS-ESI+/-. Our results demonstrated that BAK or hyperosmolarity induced important modifications in HCE lipidome including major changes in sphingolipids, glycerolipids and glycerophospholipids. For both exposures, an increase in ceramide was especially exhibited. Hyperosmolarity specifically induced triglyceride accumulation resulting in lipid droplet formation. Conversely, BAK induced an increase in lysophospholipids and a decrease in phospholipids. This lipidomic study highlights the lipid changes involved in inflammatory responses following BAK or hyperosmolarity exposures. Thereby, lipid research appears of great interest, as it could lead to the discovery of new biomarkers and therapeutic targets for the diagnosis and treatment of dry eye disease.


Assuntos
Compostos de Benzalcônio/farmacologia , Córnea/citologia , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/metabolismo , Metabolismo dos Lipídeos/efeitos dos fármacos , Concentração Osmolar , Conservantes Farmacêuticos/farmacologia , Ceramidas/metabolismo , Citocinas/metabolismo , Síndromes do Olho Seco/metabolismo , Gotículas Lipídicas , Lipidômica , Fosfolipídeos/metabolismo , Espécies Reativas de Oxigênio/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa