Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 381
Filtrar
1.
Annu Rev Microbiol ; 77: 89-109, 2023 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-37001148

RESUMO

Hypersaline waters and glacial ice are inhospitable environments that have low water activity and high concentrations of osmolytes. They are inhabited by diverse microbial communities, of which extremotolerant and extremophilic fungi are essential components. Some fungi are specialized in only one of these two environments and can thrive in conditions that are lethal to most other life-forms. Others are generalists, highly adaptable species that occur in both environments and tolerate a wide range of extremes. Both groups efficiently balance cellular osmotic pressure and ion concentration, stabilize cell membranes, remodel cell walls, and neutralize intracellular oxidative stress. Some species use unusual reproductive strategies. Further investigation of these adaptations with new methods and carefully designed experiments under ecologically relevant conditions will help predict the role of fungi in hypersaline and glacial environments affected by climate change, decipher their stress resistance mechanisms and exploit their biotechnological potential.


Assuntos
Biotecnologia , Microbiota , Membrana Celular , Parede Celular , Fungos
2.
Proc Biol Sci ; 291(2018): 20232653, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38471558

RESUMO

Extreme environments enable the study of simplified food-webs and serve as models for evolutionary bottlenecks and early Earth ecology. We investigated the biodiversity of invertebrate meiofauna in the benthic zone of the Great Salt Lake (GSL), Utah, USA, one of the most hypersaline lake systems in the world. The hypersaline bays within the GSL are currently thought to support only two multicellular animals: brine fly larvae and brine shrimp. Here, we report the presence, habitat, and microbial interactions of novel free-living nematodes. Nematode diversity drops dramatically along a salinity gradient from a freshwater river into the south arm of the lake. In Gilbert Bay, nematodes primarily inhabit reef-like organosedimentary structures built by bacteria called microbialites. These structures likely provide a protective barrier to UV and aridity, and bacterial associations within them may support life in hypersaline environments. Notably, sampling from Owens Lake, another terminal lake in the Great Basin that lacks microbialites, did not recover nematodes from similar salinities. Phylogenetic divergence suggests that GSL nematodes represent previously undescribed members of the family Monhysteridae-one of the dominant fauna of the abyssal zone and deep-sea hydrothermal vents. These findings update our understanding of halophile ecosystems and the habitable limit of animals.


Assuntos
Ecossistema , Nematoides , Animais , Lagos/química , Filogenia , Bactérias
3.
Environ Sci Technol ; 58(13): 6039-6048, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38507701

RESUMO

Membrane distillation (MD) has attracted considerable interest in hypersaline wastewater treatment. However, its practicability is severely impeded by the ineffective interception of volatile organic compounds (VOCs), which seriously affects the product water quality. Herein, a hypercrosslinked alginate (Alg)/aluminum (Al) hydrogel composite membrane is facilely fabricated via Alg pregel formation and ionic crosslinking for efficient VOC interception. The obtained MD membrane shows a sufficient phenol rejection of 99.52% at the phenol concentration of 100 ppm, which is the highest rejection among the reported MD membranes. Moreover, the hydrogel composite membrane maintains a high phenol interception (>99%), regardless of the feed temperature, initial phenol concentration, and operating time. Diffusion experiments and molecular dynamics simulation verify that the selective diffusion is the dominant mechanism for VOCs-water separation. Phenol experiences a higher energy barrier to pass through the dense hydrogel layer compared to water molecules as the stronger interaction between phenol-Alg compared with water-Alg. Benefited from the dense and hydratable Alg/Al hydrogel layer, the composite membrane also exhibits robust resistance to wetting and fouling during long-term operation. The superior VOCs removal efficiency and excellent durability endow the hydrogel composite membrane with a promising application for treating complex wastewater containing both volatile and nonvolatile contaminants.


Assuntos
Compostos Orgânicos Voláteis , Purificação da Água , Destilação , Hidrogéis , Membranas Artificiais , Fenol
4.
Environ Res ; 255: 119078, 2024 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754609

RESUMO

Coastal wetlands are known for their diverse ecosystems, yet their soil characteristics are often misunderstood and thought to be monotonous. These soils are frequently subjected to saline water saturation, leading to unique soil processes. However, the combination and intensity of these processes can vary considerably across different ecosystems. In this study, we hypothesize that these diverse soil processes not only govern the geochemical conditions in coastal ecosystems but also influence their ability to deliver ecosystem services. To test this hypothesis, we conducted soil analyses in mangroves, seagrass meadows, and hypersaline tidal flats along the Brazilian coast. We used key soil properties as indicators of soil processes and developed a conceptual model linking soil processes and soil-related ecosystem services in these environments. Under more anoxic conditions, the intense soil organic matter accumulation and sulfidization processes in mangroves evidence their significance in terms of climate regulation through organic carbon sequestration and contaminants immobilization. Similarly, pronounced sulfidization in seagrasses underscores their ability to immobilize contaminants. In contrast, hypersaline tidal flats soils exhibit increased intensities of salinization and calcification processes, leading to a high capacity for accumulating inorganic carbon as secondary carbonates (CaCO3), underscoring their role in climate regulation through inorganic carbon sequestration. Our findings show that contrary to previously thought coastal wetlands are far from monotonous, exhibiting significant variations in the types and intensities of soil processes, which in turn influence their capacity to deliver ecosystem services. This understanding is pivotal for guiding effective management strategies to enhance ecosystem services in coastal wetlands.


Assuntos
Solo , Áreas Alagadas , Solo/química , Brasil , Ecossistema , Salinidade
5.
Environ Res ; 254: 118676, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38763285

RESUMO

In this study, magnetic CoFe2O4-PAC nanocatalysts were synthesized through facile hydrothermal and co‒precipitation approaches with ultrasonic irradiation, which were used for the treatment of hypersaline petrochemical wastewater (HPCW). When an ultrasound‒induced synthesis process (US@CoFe2O4‒PAC) was used, a more efficient and stable magnetic spinel CoFe2O4‒PAC nanocatalyst was developed. The application of this nanocatalyst as a PMS activator, not only caused eradication of 90.4% of chemical oxygen demand (COD) of a HPCW after 90 min reaction time under the optimum conditions (pH 5-6, catalyst dose 1.0 g/L and 1.0 mM PMS), but also led to marginal leaching of iron (314 µg/L) and cobalt (95 µg/L) from the nanocatalyst. Recycling experiments over five consecutive runs showed a negligible decrease (7.2%) in COD removal efficiency which proved the stability and reusability of magnetic US@CoFe2O4-PAC. Two main mechanisms of adsorption and catalytic oxidation processes (homogeneous and heterogeneous PMS) are involved simultaneously in the PMS/US@CoFe2O4-PAC system, which are responsible for the destruction of refractory contaminants of HPCW through the generation of SO4•‒ and OH• radicals. COD of HPCW was mainly removed through SO4•- radical attack (73.6%) and the biodegradability of HPCW was enhanced dramatically after 90 min reaction time. The germination index (GI) of raw HPCW was increased 17.1 ± 4.2% and 24.3 ± 8.8% after 15 and 90 min reaction time, respectively, even PMS/US@CoFe2O4-PAC system showed less impact on phytotoxicity mitigation. Hence, it can be recommended to dilute the effluent before using for irrigational purpose. The findings of this study present practical significance of spinel US@CoFe2O4-PAC, which is an environment‒friendly catalyst, easy to handle and can sustain long‒term operation for the treatment of recalcitrant hypersaline wastewater and the other potential practical applications.


Assuntos
Cobalto , Compostos Férricos , Águas Residuárias , Poluentes Químicos da Água , Águas Residuárias/química , Cobalto/química , Compostos Férricos/química , Catálise , Biodegradação Ambiental , Eliminação de Resíduos Líquidos/métodos , Salinidade
6.
Appl Microbiol Biotechnol ; 108(1): 252, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38441672

RESUMO

Extremotolerant and extremophilic fungi are an important part of microbial communities that thrive in extreme environments. Among them, the black yeasts are particularly adaptable. They use their melanized cell walls and versatile morphology, as well as a complex set of molecular adaptations, to survive in conditions that are lethal to most other species. In contrast to extremophilic bacteria and archaea, these fungi are typically extremotolerant rather than extremophilic and exhibit an unusually wide ecological amplitude. Some extremely halotolerant black yeasts can grow in near-saturated NaCl solutions, but can also grow on normal mycological media. They adapt to the low water activity caused by high salt concentrations by sensing their environment, balancing osmotic pressure by accumulating compatible solutes, removing toxic salt ions from the cell using membrane transporters, altering membrane composition and remodelling the highly melanized cell wall. As protection against extreme conditions, halotolerant black yeasts also develop different morphologies, from yeast-like to meristematic. Genomic studies of black yeasts have revealed a variety of reproductive strategies, from clonality to intense recombination and the formation of stable hybrids. Although a comprehensive understanding of the ecological role and molecular adaptations of halotolerant black yeasts remains elusive and the application of many experimental methods is challenging due to their slow growth and recalcitrant cell walls, much progress has been made in deciphering their halotolerance. Advances in molecular tools and genomics are once again accelerating the research of black yeasts, promising further insights into their survival strategies and the molecular basis of their adaptations. KEY POINTS: • Black yeasts show remarkable adaptability to environmental stress • Black yeasts are part of microbial communities in hypersaline environments • Halotolerant black yeasts utilise various molecular and morphological adaptations.


Assuntos
Ascomicetos , Extremófilos , Saccharomyces cerevisiae , Archaea , Parede Celular , Ambientes Extremos
7.
Cryobiology ; 114: 104859, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38336089

RESUMO

Cryopreservation of microorganisms is an essential tool in industrial- and food applications where conservation of microbial activity and critical beneficial traits need to be guaranteed to provide a consistent product or production process. This often refers to simple, single species or low diversity assemblages in liquid cultures that can easily be revived and regrown to perform the desired process. Cryopreservation is also of essence for scientific experimentation where many environmental samples are taken in remote sampling sites and at high costs. Biobanking, or the long term preservation and potential revival of complex, structured samples come with an additional challenge related to maintaining the structure upon revival. Here we look at cryopreserving and reviving a complex photosynthesis driven microbial mat from a hypersaline ecosystem. Amplicon sequencing of the 16S and 18S ribosomal RNA gene was used to determine the community composition of bacteria and eukaryotes respectively. The tests included the use of different cryopreservative agents and different times of cryopreservation at -150 °C. Upon revival, the cryopreservatives cannot be separated from the preserved samples without disturbing the community structure, while carryover of these compounds may influence reconstitution of the communities. Indeed, although both glycerol and Me2SO are good cryopreservatives of microbial assemblages, carryover of these compounds had a profound negative effect on the reestablishment of a functional microbial mat. Best cryopreservation and reconstitution results were obtained in the absence of a cryopreservative agent or when methanol was used.


Assuntos
Bancos de Espécimes Biológicos , Ecossistema , Criopreservação/métodos , Bactérias/genética , Fotossíntese , Filogenia
8.
Bioprocess Biosyst Eng ; 47(5): 665-681, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38589569

RESUMO

This work explores the potential of three hypersaline native microalgae strains from Oklahoma, Geitlerinema carotinosum, Pseudanabaena sp., and Picochlorum oklahomensis, for simultaneous treatment of flowback (FW) and produced wastewater (PW) and the production of algal biomass. The quality of wastewater before and after treatment with these microalgae strains was evaluated and a characterization of algal biomass in terms of moisture, volatile matter, fixed carbon, and ash contents was assessed. The experimental results indicated how all the microalgae strains were able to grow in both FW and PW, revealing their potential for wastewater treatment. Although algal biomass production was limited by nutrient availability both in PW and FW, a maximum biomass concentration higher than 1.35 g L-1 were achieved by the three strains in two of the PWs and one of the FWs tested, with Pseudanabaena sp. reaching nearly 2 g L-1. Interestingly, higher specific growth rates were obtained by the two cyanobacteria strains G. carotinosum and Pseudanabaena sp. when cultivated in both PW and FW, compared to P. oklahomensis. The harvested algal biomass contained a significant amount of energy, even though it was significantly reduced by the very high salt content. The energy content fell within the recommended range of 16-17 MJ kg-1 for biomass as feedstock for biofuels. The algal treatment resulted in the complete removal of ammonia from the wastewater and a significant reduction in contaminants, such as nitrate, phosphate, boron, and micronutrients like zinc, manganese, and iron.


Assuntos
Microalgas , Águas Residuárias , Microalgas/crescimento & desenvolvimento , Microalgas/metabolismo , Águas Residuárias/microbiologia , Águas Residuárias/química , Biomassa , Oklahoma , Purificação da Água/métodos , Poluentes Químicos da Água , Salinidade
9.
J Environ Manage ; 359: 121075, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38723502

RESUMO

Sequencing batch biofilm reactor (SBBR) has the potential to treat hypersaline high-strength nitrogen wastewater by simultaneous nitrification-denitrification (SND). Dissolved oxygen (DO) and aeration modes are major factors affecting pollutant removal. Low DO (0.35-3.5 mg/L) and alternative anoxic/aerobic (A/O) mode are commonly used for municipal wastewater treatment, however, the appropriate DO concentration and operation mode are still unknown under hypersaline environment because of the restricted oxygen transfer in denser extracellular polymeric substances (EPS) barrier and the decreased carbon source consumption during the anoxic phase. Herein, two SBBRs (R1, fully aerobic mode; R2, A/O mode) were used for the treatment of hypersaline high-strength nitrogen wastewater (200 mg/L NH4+-N, COD/N of 3 and 3% salinity). The results showed that the relatively low DO (2 mg/L) could not realize effective nitrification, while high DO (4.5 mg/L) evidently increased nitrification efficiency by enhancing oxygen transfer in denser biofilm that was stimulated by high salinity. A stable SND was reached 16 days faster with a ∼10% increase of TN removal under A/O mode. Mechanism analysis found that denser biofilm with coccus and bacillus were present in A/O mode instead of filamentous microorganisms, with the secretion of more EPS. Corynebacterium and Halomonas were the dominant genera in both SBBRs, and HN-AD process might assist partial nitrification-denitrification (PND) for highly efficient TN removal in biofilm systems. By using the appropriate operation mode and parameters, the average NH4+-N and TN removal efficiency could respectively reach 100% and 70.8% under the NLR of 0.2 kg N·m-3·d-1 (COD/N of 3), which was the highest among the published works using SND-based SBBRs in treatment of saline high-strength ammonia nitrogen (low COD/N) wastewater. This study provided new insights in biofilm under hypersaline stress and provided a solution for the treatment of hypersaline high-strength nitrogen (low COD/N) water.


Assuntos
Biofilmes , Reatores Biológicos , Desnitrificação , Nitrificação , Nitrogênio , Águas Residuárias , Nitrogênio/metabolismo , Eliminação de Resíduos Líquidos/métodos , Salinidade , Oxigênio/metabolismo
10.
J Environ Sci (China) ; 138: 189-199, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38135387

RESUMO

Membrane distillation (MD) is a promising alternative desalination technology, but the hydrophobic membrane cannot intercept volatile organic compounds (VOCs), resulting in aggravation in the quality of permeate. In term of this, electro-Fenton (EF) was coupled with sweeping gas membrane distillation (SGMD) in a more efficient way to construct an advanced oxidation barrier at the gas-liquid interface, so that the VOCs could be trapped in this layer to guarantee the water quality of the distillate. During the so-called EF-MD process, an interfacial interception barrier containing hydroxyl radical formed on the hydrophobic membrane surface. It contributed to the high phenol rejection of 90.2% with the permeate phenol concentration lower than 1.50 mg/L. Effective interceptions can be achieved in a wide temperature range, even though the permeate flux of phenol was also intensified. The EF-MD system was robust to high salinity and could electrochemically regenerate ferrous ions, which endowed the long-term stability of the system. This novel EF-MD configuration proposed a valuable strategy to intercept VOCs in MD and will broaden the application of MD in hypersaline wastewater treatment.


Assuntos
Compostos Orgânicos Voláteis , Purificação da Água , Destilação/métodos , Membranas Artificiais , Purificação da Água/métodos , Fenóis
11.
BMC Genomics ; 24(1): 508, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37653415

RESUMO

BACKGROUND: Cold-adapted archaea have diverse ecological roles in a wide range of low-temperature environments. Improving our knowledge of the genomic features that enable psychrophiles to grow in cold environments helps us to understand their adaptive responses. However, samples from typical cold regions such as the remote Arctic and Antarctic are rare, and the limited number of high-quality genomes available leaves us with little data on genomic traits that are statistically associated with cold environmental conditions. RESULTS: In this study, we examined the haloarchaeal genus Halorubrum and defined a new clade that represents six isolates from polar and deep earth environments ('PD group' hereafter). The genomic G + C content and amino acid composition of this group distinguishes it from other Halorubrum and the trends are consistent with the established genomic optimization of psychrophiles. The cold adaptation of the PD group was further supported by observations of increased flexibility of proteins encoded across the genome and the findings of a growth test. CONCLUSIONS: The PD group Halorubrum exhibited denser genome packing, which confers higher metabolic potential with constant genome size, relative to the reference group, resulting in significant differences in carbon, nitrogen and sulfur metabolic patterns. The most marked feature was the enrichment of genes involved in sulfur cycling, especially the production of sulfite from organic sulfur-containing compounds. Our study provides an updated view of the genomic traits and metabolic potential of Halorubrum and expands the range of sources of cold-adapted haloarchaea.


Assuntos
Halorubrum , Temperatura , Genômica , Tamanho do Genoma , Aminoácidos
12.
Mol Ecol ; 32(15): 4313-4328, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37271924

RESUMO

Adaptation to local conditions is known to occur in seagrasses; however, knowledge of the genetic basis underlying this phenomenon remains scarce. Here, we analysed Posidonia oceanica from six sites within and around the Stagnone di Marsala, a semi-enclosed coastal lagoon where salinity and temperature exceed the generally described tolerance thresholds of the species. Sea surface temperatures (SSTs) were measured and plant samples were collected for the assessment of morphology, flowering rate and for screening genome-wide polymorphisms using double digest restriction-site-associated DNA sequencing. Results demonstrated more extreme SSTs and salinity levels inside the lagoon than the outer lagoon regions. Morphological results showed significantly fewer and shorter leaves and reduced rhizome growth of P. oceanica from the inner lagoon and past flowering events were recorded only for a meadow farthest away from the lagoon. Using an array of 51,329 single nucleotide polymorphisms, we revealed a clear genetic structure among the study sites and confirmed the genetic isolation and high clonality of the innermost site. In all, 14 outlier loci were identified and annotated with several proteins including those relate to plant stress response, protein transport and regulators of plant-specific developmental events. Especially, five outlier loci showed maximum allele frequency at the innermost site, likely reflecting adaptation to the extreme temperature and salinity regimes, possibly due to the selection of more resistant genotypes and the progressive restriction of gene flow. Overall, this study helps us to disentangle the genetic basis of seagrass adaptation to local environmental conditions and may support future works on assisted evolution in seagrasses.


Assuntos
Alismatales , Salinidade , Temperatura , Oceanos e Mares , Alismatales/genética , Seleção Genética , Mar Mediterrâneo
13.
Artigo em Inglês | MEDLINE | ID: mdl-37578894

RESUMO

An extremely halophilic archaeal strain, designated S1CR25-10T, was isolated from hypersaline soil sampled in the Odiel Saltmarshes Natural Area in Southwestern Spain (Huelva) and subjected to a polyphasic taxonomic characterization. The cells were Gram-stain-negative, motile and their colonies were pink-pigmented. It was a strictly aerobic haloarchaeon that could grow at 25-55 °C (optimum, 37 °C), at pH 6.0-9.0 (optimum, pH 7.0-8.0) and in the presence of 12-30 % (w/v) total salts (optimum, 20-25 %, w/v). The phylogenetic analysis based on the comparison of the 16S rRNA gene sequences revealed that strain S1CR25-10T belongs to the genus Natrinema, with 98.9 % similarity to Natrinema salinisoli SLN56T. In addition, the values of orthologous average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity were below the threshold limits accepted for prokaryotic species delineation, with N. salinisoli SLN56T showing the highest relatedness values (92.6 % and 48.4 %, respectively). The major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and a glycolipid chromatographically identical to sulfated diglycosyl diether. The DNA G+C content of the isolate was 63.8 mol%. Based on the phylogenetic, phenotypic and chemotaxonomic characterization and the whole genome results, strain S1CR25-10T represents a new species within the genus Natrinema, for which the name Natrinema salsiterrestre sp. nov., with type strain S1CR25-10T (=CECT 30623T=CCM 9251T), is proposed.


Assuntos
Ácidos Graxos , Halobacteriaceae , Filogenia , RNA Ribossômico 16S/genética , DNA Arqueal/genética , Composição de Bases , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Ácidos Graxos/química , Fosfolipídeos/química , Fosfatidilgliceróis/análise , China
14.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37889849

RESUMO

A novel halophilic bacterium, strain 71-iT, was isolated from Inche-Broun hypersaline lake in Golestan province, in the north of Iran. It was a Gram-stain-negative, non-endospore forming, rod-shaped bacterium. It grew at 4-40 °C (optimum 30 °C), pH 6.0-11.0 (optimum pH 7.5) and with 0.5-15 % (w/v) NaCl [optimum 3 % (w/v) NaCl]. The results of phylogenetic analyses based on the 16S rRNA gene sequence comparison indicated its affiliation to the genus Marinobacter and the low percentage of identity with the most closely related species (97.5 %), indicated its placement as a novel species within this genus. Digital DNA-DNA hybridization (dDDH) values and average nucleotide identity (ANI) analyses of this strain against closely related species confirmed its condition of novel taxon. On the other hand, the percentage of the average amino acid identity (AAI) affiliated strain 71-iT within the genus Marinobacter. The DNA G+C content of this isolate was 57.7 mol%. The major fatty acids were C16 : 0 and C16 : 1ω7c and/or C16 : 1 ω6c. Ubiquinone-9 was the major isoprenoid quinone and diphosphatidylglycerol (DPG), phosphatidylglycerol (PG) and phosphatidylethanolamine (PE) were the main polar lipids of this strain. On the basis of the phylogenomic and phenotypic (including chemotaxonomic) features, we propose strain 71-iT (= IBRC M 11023T = CECT 30160T = LMG 29252T) as the type strain of a novel species within the genus Marinobacter, with the name Marinobacter iranensis sp. nov. Genomic detections of this strain in various metagenomic databases indicate that it is a relatively abundant species in environments with low salinities (approximately 5 % salinity), but not in hypersaline habitats with high salt concentrations.


Assuntos
Ácidos Graxos , Marinobacter , Ácidos Graxos/química , Lagos/microbiologia , Cloreto de Sódio , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Composição de Bases , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química
15.
Int J Syst Evol Microbiol ; 73(11)2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37990990

RESUMO

An extremely halophilic archaeon, strain S1AR25-5AT, was isolated from a hypersaline soil sampled in Odiel Saltmarshes Natural Area (Huelva, Spain). The cells were Gram-stain-negative, motile, pleomorphic rods. Cell growth was observed in the presence of 15-30 % (w/v) NaCl [optimum, 25 % (w/v) NaCl], at pH 6.0-9.0 (optimum, pH 6.5-7.5) and at 25-50 °C (optimum, 37 °C). Based on the 16S rRNA and rpoB' gene sequence comparisons, strain S1AR25-5AT was affiliated to the genus Haloarcula. Taxogenomic analysis, including comparison of the genomes and the phylogenomic tree based on the core-orthologous proteins, together with the genomic indices, i.e., orthologous average nucleotide identity, digital DNA-DNA hybridization and average amino acid identity, confirmed that strain S1AR25-5AT (=CCM 9249T=CECT 30619T) represents a new species of the genus Haloarcula, for which we propose the name Haloarcula terrestris sp. nov. The major polar lipids were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulphate and an unidentified glycolipid, which correlated with the lipid profile of species of the genus Haloarcula. In addition, based on the modern approach in description of species in taxonomy of prokaryotes, the above mentioned genomic indexes indicated that the species Haloarcula tradensis should be considered as a heterotypic synonym of Haloarcula argentinensis.


Assuntos
Haloarcula , RNA Ribossômico 16S/genética , Cloreto de Sódio , Ácidos Graxos/química , Filogenia , Análise de Sequência de DNA , Composição de Bases , DNA Arqueal/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Fosfolipídeos/química , Fosfatidilgliceróis
16.
J Eukaryot Microbiol ; 70(6): e12993, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37528557

RESUMO

Microbial diversity found in hypersaline ecosystems is structurally unique and essential in many microbiological and ecological processes. Tuz Lake, the second biggest lake in Türkiye, is a talassohaline (over 32% [w/v]) lake with near-neutral pH. The aim of study was to investigate the composition of the eukaryotic microbial community in Tuz Lake by 18S rDNA amplicon sequencing, as well as its relationship and change with environmental factors during 1-year period. Next-generation sequencing and bioinformatic analysis were applied to describe the eukaryotic microbial community in Tuz Lake. As a result of bioinformatics analysis, Archaeplastida (39%) and Stramenopiles, Alveolata, Rhizaria (SAR) (51%) were the most abundant taxa represented in the dataset. The Archaeplastida phylum showed a significant difference between winter and summer and higher abundance in summer in contrast to the SAR group, which represented higher abundance in winter. Genus level assessment showed that the most abundant genera were Navicula, Chlorophyta;unclassified_taxa, Dunaliella, Cladosporium, Paraphelidium, Scuticociliates;unclassified_taxa, and Chlamydomonadales;unclassified_taxa. Navicula abundance was significantly different and overwhelmingly dominant in winter. On the other hand, Cladosporium and Chlorophyta; unclassified_taxa represented a significant difference between seasons and high abundance in summer. Furthermore, Dunaliella populations were not detected in midsummer and early fall when the temperature increased and water volume in the lake decreased.


Assuntos
Clorófitas , Diatomáceas , Microbiota , Eucariotos/genética , Biodiversidade , DNA Ribossômico/genética , Estações do Ano , Lagos/microbiologia , Diatomáceas/genética , Clorófitas/genética , Microbiota/genética
17.
Microb Cell Fact ; 22(1): 220, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37880695

RESUMO

BACKGROUND: Normally, a salt amount greater than 3.5% (w/v) is defined as hypersaline. Large amounts of hypersaline wastewater containing organic pollutants need to be treated before it can be discharged into the environment. The most critical aspect of the biological treatment of saline wastewater is the inhibitory/toxic effect exerted on bacterial metabolism by high salt concentrations. Although efforts have been dedicated to improving the performance through the use of salt-tolerant or halophilic bacteria, the diversities of the strains and the range of substrate spectrum remain limited, especially in chlorophenol wastewater treatment. RESULTS: In this study, a salt-tolerant chlorophenol-degrading strain was generated from Rhodococcus rhodochrous DSM6263, an original aniline degrader, by adaptive laboratory evolution. The evolved strain R. rhodochrous CP-8 could tolerant 8% NaCl with 4-chlorophenol degradation capacity. The synonymous mutation in phosphodiesterase of strain CP-8 may retard the hydrolysis of cyclic adenosine monophosphate (cAMP), which is a key factor reported in the osmoregulation. The experimentally verified up-regulation of intracellular cAMP level in the evolved strain CP-8 contributes to the improvement of growth phenotype under high osmotic condition. Additionally, a point mutant of the catechol 1,2-dioxygenase, CatAN211S, was revealed to show the 1.9-fold increment on activity, which the mechanism was well explained by molecular docking analysis. CONCLUSIONS: This study developed one chlorophenol-degrading strain with extraordinary capacity of salt tolerance, which showed great application potential in hypersaline chlorophenol wastewater treatment. The synonymous mutation in phosphodiesterase resulted in the change of intracellular cAMP concentration and then increase the osmotic tolerance in the evolved strain. The catechol 1,2-dioxygenase mutant with improved activity also facilitated chlorophenol removal since it is the key enzyme in the degradation pathway.


Assuntos
Clorofenóis , Dioxigenases , Rhodococcus , Catecol 1,2-Dioxigenase/metabolismo , Águas Residuárias , Biodegradação Ambiental , Simulação de Acoplamento Molecular , Rhodococcus/metabolismo , Clorofenóis/química , Clorofenóis/metabolismo , Diester Fosfórico Hidrolases/metabolismo
18.
Environ Sci Technol ; 57(14): 5841-5851, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36989064

RESUMO

The functional loss of membranes caused by pore wetting, mineral scaling, or structural instability is a critical challenge in membrane distillation (MD), which primarily hinders its practical applications. Herein, we propose a novel and facile strategy to fabricate omniphobic membranes with exceptionally robust MD performance. Specifically, a substrate with a hierarchical re-entrant architecture was constructed via spray-water-assisted non-solvent-induced phase separation (SWNIPS), followed by a direct fluorinated surface decoration via "thiol-ene" click chemistry. Deionized (DI) water contact angle measurements revealed an ultrahigh surface water contact angle (166.8 ± 1.8°) and an ultralow sliding angle (3.6 ± 1.1°) of the resultant membrane. Destructive abrasion cycle and ultrasonication tests confirmed its structural robustness. Moreover, the membrane possessed excellent wetting resistance, as evidenced by the prevention of membrane pore penetration by all low-surface-tension testing liquids, allowing stable long-term MD operation to treat brine wastewater with a surfactant content of 0.6 mM. In a desalination experiment using shale gas wastewater, the omniphobic membrane exhibited robust MD performance, achieving a high water recovery ratio of ∼60% without apparent changes in water flux and permeate conductivity over the entire membrane process. Overall, our study paves the way for a nanoparticle-free methodology for the scalable fabrication of high-performance MD membranes with surface omniphobicity and structural robustness in hypersaline wastewater treatment.


Assuntos
Nanopartículas , Purificação da Água , Águas Residuárias , Destilação , Membranas Artificiais , Água , Purificação da Água/métodos
19.
Environ Sci Technol ; 57(41): 15725-15735, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37787747

RESUMO

Membrane distillation (MD) is considered to be rather promising for high-salinity wastewater reclamation. However, its practical viability is seriously challenged by membrane wetting, fouling, and scaling issues arising from the complex components of hypersaline wastewater. It remains extremely difficult to overcome all three challenges at the same time. Herein, a nanocomposite hydrogel engineered Janus membrane has been facilely constructed for desired wetting/fouling/scaling-free properties, where a cellulose nanocrystal (CNC) composite hydrogel layer is formed in situ atop a microporous hydrophobic polytetrafluoroethylene (PTFE) substrate intermediated by an adhesive layer. By the synergies of the elevated membrane liquid entry pressure, inhibited surfactant diffusion, and highly hydratable surface imparted by the hydrogel/CNC (HC) layer, the resultant HC-PTFE membrane exhibits robust resistance to surfactant-induced wetting and oil fouling during 120 h of MD operation. Meanwhile, owing to the dense and hydroxyl-abundant surface, it is capable of mitigating gypsum scaling and scaling-induced wetting, resulting in a high normalized flux and low distillate conductivity at a concentration factor of 5.2. Importantly, the HC-PTFE membrane enables direct desalination of real hypersaline wastewater containing broad-spectrum foulants with stable vapor flux and robust salt rejection (99.90%) during long-term operation, demonstrating its great potential for wastewater management in industrial scenarios.


Assuntos
Águas Residuárias , Purificação da Água , Nanogéis , Destilação/métodos , Purificação da Água/métodos , Membranas Artificiais , Hidrogéis , Politetrafluoretileno , Tensoativos
20.
Environ Sci Technol ; 57(15): 6320-6330, 2023 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-37027336

RESUMO

Membranes offer a scalable and cost-effective approach to ion separations for lithium recovery. In the case of salt-lake brines, however, the high feed salinity and low pH of the post-treated feed have an uncertain impact on nanofiltration's selectivity. Here, we adopt experimental and computational approaches to analyze the effect of pH and feed salinity and elucidate key selectivity mechanisms. Our data set comprises over 750 original ion rejection measurements, spanning five salinities and two pH levels, collected using brine solutions that model three salt-lake compositions. Our results demonstrate that the Li+/Mg2+ selectivity of polyamide membranes can be enhanced by 13 times with acid-pretreated feed solutions. This selectivity enhancement is attributed to the amplified Donnan potential from the ionization of carboxyl and amino moieties under low solution pH. As feed salinities increase from 10 to 250 g L-1, the Li+/Mg2+ selectivity decreases by ∼43%, a consequence of weakening exclusion mechanisms. Further, our analysis accentuates the importance of measuring separation factors using representative solution compositions to replicate the ion-transport behaviors with salt-lake brine. Consequently, our results reveal that predictions of ion rejection and Li+/Mg2+ separation factors can be improved by up to 80% when feed solutions with the appropriate Cl-/SO42- molar ratios are used.


Assuntos
Lagos , Lítio , Lítio/química , Lagos/química , Cloreto de Sódio , Sais/química
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa