Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Insects ; 15(6)2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38921163

RESUMO

Arthropod vectors are responsible for a multitude of human and animal diseases affecting poor communities in sub-Saharan Africa. Their control still relies on chemical agents, despite growing evidence of insecticide resistance and environmental health concerns. Biorational agents, such as the entomopathogenic fungus Metarhizium anisopliae, might be an alternative for vector control. Recently, the M. anisopliae isolate ICIPE 7 has been developed into a commercial product in Kenya for control of ticks on cattle. We were interested in assessing the potential of controlling not only ticks but also disease-transmitting mosquitoes and tsetse flies using cattle as blood hosts, with the aim of developing a product for integrated vector management. Laboratory bioassays were carried out with M. anisopliae, isolate ICIPE 7 and isolate ICIPE 30, to compare efficacy against laboratory-reared Anopheles arabiensis. ICIPE 7 was further tested against wild Glossina fuscipes and Rhipicephalus spp. Dose-response tests were implemented, period of mosquito exposure was evaluated for effects on time to death, and the number of spores attached to exposed vectors was assessed. Exposure to 109 spores/mL of ICIPE 7 for 10 min resulted in a similar mortality of An. arabiensis as exposure to ICIPE 30, albeit at a slower rate (12 vs. 8 days). The same ICIPE 7 concentration also resulted in mortalities of tsetse flies (LT50: 16 days), tick nymphs (LT50: 11 days), and adult ticks (LT50: 20 days). Mosquito mortality was dose-dependent, with decreasing LT50 of 8 days at a concentration of 106 spores/mL to 6 days at 1010 spores/mL. Exposure period did not modulate the outcome, 1 min of exposure still resulted in mortality, and spore attachment to vectors was dose-dependent. The laboratory bioassays confirmed that ICIPE 7 has the potential to infect and cause mortality to the three exposed arthropods, though at slower rate, thus requiring further validation under field conditions.

2.
Front Fungal Biol ; 2: 637817, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-37744116

RESUMO

Entomopathogenic fungi can cause substantial mortality in harmful insects. Before killing the insect, these pathogens start by negatively affecting the biological parameters of the host. Prior to our study, the information about how fungal exposure affects the biological parameters of the stable fly, Stomoxys calcitrans was still elusive. Therefore, we aimed to assess the infection of S. calcitrans with some Metarhizium anisopliae strains, and their impact on feeding, fecundity, fertility and other life-history traits of this fly. Among the 11 M. anisopliae strains screened, we identified ICIPE 30 as the most virulent strain against S. calcitrans. We observed that the infectivity of this strain was sex and age-dependent. Infected male S. calcitrans died earlier than their counterpart females. Older infected S. calcitrans died faster than infected young ones. Also, male and female S. calcitrans successfully transmitted ICIPE 30 conidia to their mates. We demonstrated that infection by ICIPE 30 extended the feeding time of S. calcitrans and consequently reduced the feeding probability of the fly and the amount of blood taken. Using a dual test oviposition bioassay, we determined that uninfected gravid female S. calcitrans avoided laying eggs on substrates amended with ICIPE 30 conidia. We showed that these conidia could lower the hatchability of the eggs deposited by gravid females. Using, a no-choice test, we showed that gravid female S. calcitrans infected with ICIPE 30 laid fewer eggs than uninfected females and those eggs hatched less. Using 11 strains of M. anisopliae and four high concentrations of ICIPE 30 conidia, we verified that S. calcitrans larvae were not susceptible to fungal infection. Further, we showed that though these larvae were tolerant to fungal infection, there was a significant effect on their fitness, with contaminated larvae having a small bodyweight coupled with longer developmental time as compared to uncontaminated larvae. Our study provides detailed information on how fungal infection affects the biology of S. calcitrans and the potential of using M. anisopliae ICIPE 30 as a biopesticide to reduce the fly population. Such knowledge can assist in developing fungal-based control strategies against this harmful fly.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa