Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Nanotechnology ; 35(16)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38171320

RESUMO

Carbon nanowalls (CNWs) have attracted significant attention for gas sensing applications due to their exceptional material properties such as large specific surface area, electric conductivity, nano- and/or micro-porous structure, and high charge carrier mobility. In this work, CNW films were synthesized and used to fabricate gas sensors for carbon dioxide (CO2) gas sensing. The CNW films were synthesized using an inductively-coupled plasma (ICP) plasma-enhanced chemical vapor deposition (PECVD) method and their structural and morphological properties were characterized using Raman spectroscopy and electron microscopy. The obtained CNW films were used to fabricate gas sensors employing interdigitated gold (Au) microelectrodes. The gas sensors were fabricated using both direct synthesis of CNW films on interdigitated Au microelectrodes on quartz and also transferring presynthesized CNW films onto interdigitated Au microelectrodes on glass. The CO2gas-sensing properties of fabricated devices were investigated for different concentrations of CO2gas and temperature-ranges. The sensitivities of fabricated devices were found to have a linear dependence on the concentration of CO2gas and increase with temperature. It was revealed that devices, in which CNW films have a maze-like structure, perform better compared to the ones that have a petal-like structure. A sensitivity value of 1.18% was obtained at 500 ppm CO2concentration and 100 °C device temperature. The CNW-based gas sensors have the potential for the development of easy-to-manufacture and efficient gas sensors for toxic gas monitoring.

2.
Beilstein J Nanotechnol ; 9: 1895-1905, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30013883

RESUMO

In this work, the deposition of carbon nanowalls (CNWs) by inductively coupled plasma enhanced chemical vapor deposition (ICP-PECVD) is investigated. The CNWs are electrically conducting and show a large specific surface area, which is a key characteristic to make them interesting for sensors, catalytic applications or energy-storage systems. It was recently discovered that CNW films can be deposited by the use of the single-source metal-organic precursor aluminium acetylacetonate. This precursor is relatively unknown in combination with the ICP-PECVD deposition method in literature and, thus, based on our previous publication is further investigated in this work to better understand the influence of the various deposition parameters on the growth. Silicon, stainless steel, nickel and copper are used as substrate materials. The CNWs deposited are characterized by scanning electron microscopy (SEM), Raman spectroscopy and Auger electron spectroscopy (AES). The combination of bias voltage, the temperature of the substrate and the substrate material had a strong influence on the morphology of the graphitic carbon nanowall structures. With regard to these results, a first growth model for the deposition of CNWs by ICP-PECVD and aluminium acetylacetonate is proposed. This model explains the formation of four different morphologies (nanorods as well as thorny, straight and curled CNWs) by taking the surface diffusion into account. The surface diffusion depends on the particle energies and the substrate material and thus explains the influence of these parameters.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa