Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Network ; : 1-24, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38445646

RESUMO

The 5th generation (5 G) network is required to meet the growing demand for fast data speeds and the expanding number of customers. Apart from offering higher speeds, 5 G will be employed in other industries such as the Internet of Things, broadcast services, and so on. Energy efficiency, scalability, resiliency, interoperability, and high data rate/low delay are the primary requirements and obstacles of 5 G cellular networks. Due to IEEE 802.11p's constraints, such as limited coverage, inability to handle dense vehicle networks, signal congestion, and connectivity outages, efficient data distribution is a big challenge (MAC contention problem). In this research, vehicle-to-vehicle (V2V), vehicle-to-infrastructure (V2I) and vehicle-to-pedestrian (V2P) services are used to overcome bandwidth constraints in very dense network communications from cellular tool to everything (C-V2X). Clustering is done through multi-layered multi-access edge clustering, which helps reduce vehicle contention. Fuzzy logic and Q-learning and intelligence are used for a multi-hop route selection system. The proposed protocol adjusts the number of cluster-head nodes using a Q-learning algorithm, allowing it to quickly adapt to a range of scenarios with varying bandwidths and vehicle densities.

2.
Sensors (Basel) ; 24(9)2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38732859

RESUMO

Vehicular ad hoc networks (VANETs) use multiple channels to communicate using wireless access in vehicular environment (WAVE) standards to provide a variety of vehicle-related applications. The current IEEE 802.11p WAVE communication channel structure is composed of one control channel (CCH) and several service channels (SCHs). SCHs are used for non-safety data transmission, while the CCH is used for broadcasting beacons, control, and safety. WAVE devices transmit data that alternate between CCHs and SCHs, and each channel is active for a duration called the CCH interval (CCHI) and SCH interval (SCHI), respectively. Currently, both intervals are fixed at 50 ms. However, fixed-length intervals cannot effectively respond to dynamically changing traffic loads. Additionally, when many vehicles are simultaneously using the limited channel resources for data transmission, the network performance significantly degrades due to numerous packet collisions. Herein, we propose an adaptive resource allocation technique for efficient data transmission. The technique dynamically adjusts the SCHI and CCHI to improve network performance. Moreover, to reduce data collisions and optimize the network's backoff distribution, the proposed scheme applies reinforcement learning (RL) to provide an intelligent channel access algorithm. The simulation results demonstrate that the proposed scheme can ensure high throughputs and low transmission delays.

3.
Sensors (Basel) ; 23(9)2023 Apr 27.
Artigo em Inglês | MEDLINE | ID: mdl-37177538

RESUMO

Direct communication between vehicles and surrounding objects, called vehicle-to-everything (V2X), is ready for the market and promises to raise the level of safety and comfort while driving. To this aim, specific bands have been reserved in some countries worldwide and different wireless technologies have been developed; however, these are not interoperable. Recently, the issue of co-channel coexistence has been raised, leading the European Telecommunications Standards Institute (ETSI) to propose a number of solutions, called mitigation methods, for the coexistence of the IEEE 802.11p based ITS-G5 and the 3GPP fourth generation (4G) long term evolution (LTE)-V2X sidelink. In this work, several of the envisioned alternatives are investigated when adapted to the coexistence of the IEEE 802.11p with its enhancement IEEE 802.11bd and the latest 3GPP standards, i.e., the fifth generation (5G) new radio (NR)-V2X. The results, obtained through an open-source simulator that is shared with the research community for the evaluation of additional proposals, show that the methods called A and C, which require modifications to the standards, improve the transmission range of one or both systems without affecting the other, at least in low-density scenarios.

4.
Sensors (Basel) ; 23(23)2023 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-38067962

RESUMO

The traditional vehicular ad hoc network (VANET), which is evolving into the internet of vehicles (IoV), has drawn great attention for its enormous potential in road safety improvement, traffic management, infotainment service support, and even autonomous driving. IEEE 802.11p, as the vital standard for wireless access in vehicular environments, has been released for more than one decade and its evolution, IEEE 802.11bd, has also been released for a few months. Since the analytical models for the IEEE 802.11p/bd medium access control (MAC) play important roles in terms of performance evaluation and MAC protocol optimization, a lot of analytical models have been proposed. However, the existing analytical models are still not accurate as a result of ignoring some important factors of the MAC itself and real communication scenarios. Motivated by this, a novel analytical model is proposed, based on a novel two-dimensional (2-D) Markov chain model. In contrast to the existing studies, all the important factors are considered in this proposed model, such as the backoff freezing mechanism, retry limit, post-backoff states, differentiated packet arrival probabilities for empty buffer queue, and queue model of packets in the buffer. In addition, the influence of the capture effect under a Nakagami-m fading channel has also been considered. Then, the expressions of successful transmission, collided transmission, normalized unsaturated throughput, and average packet delay are all meticulously derived, respectively. At last, the accuracy of the proposed analytical model is verified via the simulation results, which show that it is more accurate than the existing analytical models.

5.
Entropy (Basel) ; 25(2)2023 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36832584

RESUMO

Vehicular ad hoc networks (VANETs) have recently drawn a large amount of attention because of their enormous potential in road safety improvement and traffic management as well as infotainment service support. As the standard of medium access control (MAC) and physical (PHY) layers for VANETs, IEEE 802.11p has been proposed for more than a decade. Though performance analyses of IEEE 802.11p MAC have been performed, the existing analytical methods still need to be improved. In this paper, to assess the saturated throughput and the average packet delay of IEEE 802.11p MAC in VANETs, a two-dimensional (2-D) Markov model is introduced by considering the capture effect under Nakagami-m fading channel. Moreover, the closed-form expressions of successful transmission, collided transmission, saturated throughput, and average packet delay are carefully derived. Finally, the simulation results are demonstrated to verify the accuracy of the proposed analytical model, which also proves that this analytical model is more precise than the existing ones in terms of saturated throughput and average packet delay.

6.
Sensors (Basel) ; 22(12)2022 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-35746267

RESUMO

Cooperative intelligent transportation systems (C-ITSs) such as platooning rely on a robust and timely network that may not always be available in sufficient quality. Out of the box hybrid networks only partly eliminate shortcomings: mutual interference avoidance, data load balancing, and data dissemination must be sophisticated. Lacking network quality may lead to safety bottlenecks that require that the distance between the following vehicles be increased. However, increasing gaps result in efficiency loss and additionally compromise safety as the platoon is split into smaller parts by traffic: maneuvers, e.g., cut-in maneuvers bear safety risks, and consequently lower efficiency even further. However, platoons, especially if they are very long, can negatively affect the flow of traffic. This mainly applies on entry or exit lanes, on narrow lanes, or in intersection areas: automated and non-automated vehicles in traffic do affect each other and are interdependent. To account for varying network quality and enable the coexistence of non-automated and platooned traffic, we present in this paper a new concept of platooning that unites ad hoc-in form of IEEE 802.11p-and cellular communication: feudalistic platooning. Platooned vehicles are divided into smaller groups, inseparable by surrounding traffic, and are assigned roles that determine the communication flow between vehicles, other groups and platoons, and infrastructure. Critical vehicle data are redundantly sent while the ad hoc network is only used for this purpose. The remaining data are sent-relying on cellular infrastructure once it is available-directly between vehicles with or without the use of network involvement for scheduling. The presented approach was tested in simulations using Omnet++ and Simulation of Urban Mobility (SUMO).


Assuntos
Reprodutibilidade dos Testes , Simulação por Computador
7.
Sensors (Basel) ; 22(23)2022 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-36502031

RESUMO

Recent advancements in vehicle-to-everything (V2X) communications have greatly increased the flexibility of the physical (PHY) and medium access control (MAC) layers. This increases the complexity when investigating the system from a network perspective to evaluate the performance of the supported applications. Such flexibility, in fact, needs to be taken into account through a cross-layer approach, which might lead to challenging evaluation processes. As an accurate simulation of the signals appears unfeasible, a typical solution is to rely on simple models for incorporating the PHY layer of the supported technologies based on off-line measurements or accurate link-level simulations. Such data are, however, limited to a subset of possible configurations, and extending them to others is costly when not even impossible. The goal of this paper is to develop a new approach for modeling the PHY layer of V2X communications that can be extended to a wide range of configurations without leading to extensive measurement or simulation campaigns at the link layer. In particular, given a scenario and starting from results in terms of the packet error rate (PER) vs. signal-to-interference-plus-noise ratio (SINR) related to a subset of possible configurations, we first approximated the curves with step functions characterized by a given SINR threshold, and we then derived one parameter, called implementation loss, that was used to obtain the SINR threshold and evaluate the network performance under any configuration in the same scenario. The proposed methodology, leading to a good trade-off among the complexity, generality, and accuracy of the performance evaluation process, was validated through extensive simulations with both IEEE 802.11p and LTE-V2X sidelink technologies in various scenarios. The results first show that the curves can be effectively approximated by using an SINR threshold, with a value corresponding to 0.5 PER, and then demonstrate that the network-level outputs derived from the proposed approach are very close to those obtained with complete curves, despite not being restricted to a few possible configurations.


Assuntos
Comunicação , Tecnologia da Informação , Simulação por Computador , Razão Sinal-Ruído , Tecnologia
8.
Sensors (Basel) ; 22(20)2022 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-36298050

RESUMO

Blind intersections have high accident rates due to the poor visibility of oncoming traffic, high traffic speeds, and lack of infrastructure (e.g., stoplights). These intersections are more commonplace in rural areas, where traffic infrastructure is less developed. The Internet of Vehicles (IoV) aims to address such safety concerns through a network of connected and autonomous vehicles (CAVs) that intercommunicate. This paper proposes a Road-Side Unit-based Virtual Intersection Management (RSU-VIM) over 802.11p system consisting of a Field-Programmable Gate Array (FPGA) lightweight RSU that is solar power-based and tailored to rural areas. The RSU utilizes the proposed RSU-VIM algorithm adapted from existing virtual traffic light methodologies to communicate with vehicles over IEEE 802.11p and facilitate intersection traffic, minimizing visibility issues. The implementation of the proposed system has a simulated cloud delay of 0.0841 s and an overall system delay of 0.4067 s with 98.611% reliability.

9.
Sensors (Basel) ; 22(16)2022 Aug 12.
Artigo em Inglês | MEDLINE | ID: mdl-36015797

RESUMO

In urban mobility, Vehicular Ad Hoc Networks (VANETs) provide a variety of intelligent applications. By enhancing automobile traffic management, these technologies enable advancements in safety and help decrease the frequency of accidents. The transportation system can now follow the development and growth of cities without sacrificing the quality and organisation of its services thanks to safety apps that include collision alerts, real-time traffic information, and safe driving applications, among others. Applications can occasionally demand a lot of computing power, making their processing impractical for cars with limited onboard processing capacity. Offloading of computation is encouraged by such a restriction. However, because vehicle mobility operations are dynamic, communication times (also known as link lifetimes) between nodes are frequently short. VANET applications and processes are impacted by such communication delays (e.g., the offloading decision when using the Computational Offloading technique). Making an accurate prediction of the link lifespan between vehicles is therefore challenging. The effectiveness of the communication time estimation is currently constrained by the link lifespan prediction methods used in the computational offloading process. This work investigates five machine learning (ML) algorithms to predict the link lifetime between nodes in VANETs in different scenarios. We propose the procedures required to carry out the link lifetime prediction method using existing ML techniques. The tactic creates datasets with the features the models need to learn and be trained. The SVR and XGBoost algorithms that were selected as part of the assessment process were trained. To make the prediction using the trained models, we modified the lifespan prediction function from an offloading approach. To determine the viability of applying link lifespan predictions from the models trained in the road and urban scenarios, we conducted a performance study. The findings indicate that compared to the conventional prediction strategy described in the literature, the suggested link lifetime prediction via regression approaches decreases prediction error rates. An offloading method from the literature is extended by the selected SVR. The task loss and recovery rates might be significantly reduced using the SVR. XGBoost outperformed its ML competitors in task recovery or drop rate by 70% to 80% in an assessed hypothesis compared to an offloading choice technique in the literature. With greater offloading rates from an application on the VANET, this effort is intended to give better efficiency in estimating this data using machine learning in various vehicular settings.


Assuntos
Condução de Veículo , Redes de Comunicação de Computadores , Algoritmos , Aprendizado de Máquina , Meios de Transporte
10.
Sensors (Basel) ; 22(24)2022 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-36560206

RESUMO

In this analysis, Cooperative Intelligent Transportation System relevant scenarios are created to investigate the need to differentiate Vehicle-to-X transmission technologies on behalf of accident analysis. For each scenario, the distances between the vehicles are calculated 5 s before the crash. Studies on the difference between Dedicated Short-Range Communication (IEEE 802.11p) and Cellular Vehicle-to-X communication (LTE-V2C PC5 Mode 4) are then used to assess whether both technologies have a reliable connection over the relevant distance. If this is the case, the transmission technology is of secondary importance for future investigations on Vehicle-to-X communication in combination with accident analysis. The results show that studies on freeways and rural roads can be carried out independently of the transmission technology and other boundary conditions (speed, traffic density, non-line of sight/line of sight). The situation is different for studies in urban areas, where both technologies may not have a sufficiently reliable connection range depending on the traffic density.


Assuntos
Acidentes de Trânsito , Meios de Transporte , Tecnologia
11.
Sensors (Basel) ; 21(6)2021 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-33805615

RESUMO

The future of transportation systems is going towards autonomous and assisted driving, aiming to reach full automation. There is huge focus on communication technologies expected to offer vehicular application services, of which most are location-based services. This paper provides a study on localization accuracy limits using vehicle-to-infrastructure communication channels provided by IEEE 802.11p and LTE-V, considering two different vehicular network designs. Real data measurements obtained on our highway testbed are used to model and simulate propagation channels, the position of base stations, and the route followed by the vehicle. Cramer-Rao lower bound, geometric dilution of precision, and least square error for time difference of arrival localization technique are investigated. Based on our analyses and findings, LTE-V outperforms IEEE 802.11p. However, it is apparent that providing larger signal bandwidth dedicated to localization, with network sites positioned at both sides of the highway, and considering the geometry between vehicle and network sites, improve vehicle localization accuracy.

12.
Sensors (Basel) ; 21(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34696150

RESUMO

Key application of an intelligent transportation system is traffic safety, and it provides driver assistance. Safety messages are of two types, beacon messages and event messages. The nodes broadcast these messages in the vehicular networks. The system must rely on a robust medium access control (MAC) protocol to support delivery of safety messages. The standard medium access scheme that is used in vehicular networks to provide service differentiation to support various applications is IEEE 802.11p. The emergency event messages should reach the drivers immediately to take necessary steps to avoid casualties on the road. In IEEE 802.11p, both of these messages are considered with the same priority so that no separate differentiation is created. The proposed work focuses on improving the quality of service for forward collision warning applications in intelligent transportation systems. The scheme proposes a priority-based cooperative MAC (PCMAC) for channel access that works on the context of information. Simulation and analytical results validate improved performance of PCMAC in terms of packet delivery ratio, throughput, and average packet delivery delay, as compared with other eminent MAC protocols. The simulation results show that it has a 9% higher improvement in throughput than IEEE 802.11p and has better performance in the increasing number of emergency messages.

13.
Sensors (Basel) ; 20(5)2020 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-32110972

RESUMO

Wireless access in vehicular environments to support wireless communication between vehicles has been developed to provide road safety and infotainment services. In vehicular environments where the channel changes rapidly, channel estimation is very important in improving the reliability of wireless communication. Therefore, numerous channel estimation schemes have been proposed; however, none of the schemes proposed so far can perform well over the entire signal-to-noise ratio (SNR) region. In this paper, we propose a novel channel estimation scheme that selectively uses the better scheme between two channel estimation schemes on a symbol-by-symbol basis. The results show that the proposed scheme performs symbol-by-symbol selection of the better channel estimation scheme within a packet, and thus shows excellent performance over the entire SNR region in vehicular environments in terms of the bit error rate and packet error rate.

14.
Sensors (Basel) ; 20(4)2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-32079248

RESUMO

With the arrival of 5G, the wireless network will be provided with abundant spectrum resources, massive data transmissions and low latency communications, which makes Vehicle-to-Everything applications possible. However, VANETs always accompany with frequent network topology changes due to the highly mobile feature of vehicles. As a result, the network performance will be affected by the frequent handover. In this paper, a seamless handover schemeis proposed where the Software-Defined Networking (SDN) and Mobile Edge Computing (MEC) technologies are employed to adapt to the dynamic topology change in VANETs. The introductionof SDN provides a global view of network topology and centralized control, which enables a stable transmission layer connection when a handover takes place, so that the upper layer performance isnot influenced by the network changes. By employing MEC server, the data are cached in advance before a handover happens, so that the vehicle can restore normal communication faster. In order toconfirm the superiority of our proposal, computer simulations are conducted from different aspects. The results show that our proposal can significantly improve the network performance when ahandover happens.

15.
Sensors (Basel) ; 19(13)2019 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-31284437

RESUMO

Recently, research into autonomous driving and traffic safety has been drawing a great deal of attention. To realize autonomous driving and solve traffic safety problems, wireless access in vehicular environments (WAVE) technology has been developed, and IEEE 802.11p defines the physical (PHY) layer and medium access control (MAC) layer in the WAVE standard. However, the IEEE 802.11p frame structure, which has low pilot density, makes it difficult to predict the properties of wireless channels in a vehicular environment with high vehicle speeds; thus, the performance of the system is degraded in realistic vehicular environments. The motivation for this paper is to improve the channel estimation and tracking performance without changing the IEEE 802.11p frame structure. Therefore, we propose a channel estimation technique that can perform well over the entire SNR range of values by changing the method of channel estimation accordingly. The proposed scheme selectively uses two channel estimation schemes, each with outstanding performance for either high-SNR or low-SNR signals. To implement this, an adaptation algorithm based on a preamble is proposed. The preamble is a signal known to the transmitter-receiver, so that the receiver can obtain channel estimates without demapping errors, evaluating performance of the channel estimation schemes. Simulation results comparing the proposed method to other schemes demonstrate that the proposed scheme can selectively switch between the two schemes to improve overall performance.

16.
Sensors (Basel) ; 19(5)2019 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-30841569

RESUMO

Recently, vehicular networks have emerged to facilitate intelligent transportation systems (ITS). They enable vehicles to communicate with each other in order to provide various services such as traffic safety, autonomous driving, and entertainments. The vehicle-to-vehicle (V2V) communication channel is doubly selective, where the channel changes within the transmission bandwidth and the frame duration. This necessitates robust algorithms to provide reliable V2V communications. In this paper, we propose a scheme that provides joint adaptive modulation, coding and payload length selection (AMCPLS) for V2V communications. Our AMCPLS scheme selects both the modulation and coding scheme (MCS) and the payload length of transmission frames for V2V communication links, according to the V2V channel condition. Our aim is to achieve both reliability and spectrum efficiency. Our proposed AMCPLS scheme improves the V2V effective throughput performance while satisfying a predefined frame error rate (FER). Furthermore, we present a deep learning approach that exploits deep convolutional neural networks (DCNN) for implementing the proposed AMCPLS. Simulation results reveal that the proposed DCNN-based AMCPLS approach outperforms other competing machine learning algorithms such as k-nearest neighbors (k-NN) and support vector machines (SVM) in terms of FER, effective throughput, and prediction time.

17.
Sensors (Basel) ; 19(5)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866451

RESUMO

Natural disasters and catastrophes not only cost the loss of human lives, but adversely affect the progress toward sustainable development of the country. As soon as disaster strikes, the first and foremost challenge for the concerned authorities is to make an expeditious response. Consequently, they need to be highly-organized, properly-trained, and sufficiently-equipped to effectively respond and limit the destructive effects of a disaster. In such circumstances, communication plays a vital role, whereby the consequences of tasks assigned to the workers for rescue and relief services may be streamlined by relaying necessary information among themselves. Moreover, most of the infrastructure is either severely damaged or completely destroyed in post-disaster scenarios; therefore, a Vehicular Ad Hoc Network (VANET) is used to carry out the rescue operation, as it does not require any pre-existing infrastructure. In this context, the current work proposes and validates an effective way to relay the crucial information through the development of an application and the deployment of an experimental TestBed in a vehicular environment. The TestBed may able to provide a way to design and validate the algorithms. It provides a number of vehicles with onboard units embedded with a credit-card-size microcomputer called Raspberry Pi and a Global Positioning System (GPS) module. Additionally, it dispatches one of the pre-defined codes of emergency messages based on the level of urgency through multiple hops to a central control room. Depending on the message code received from a client, the server takes appropriate action. Furthermore, the solution also provides a graphical interface that is easy to interpret and to understand at the control room to visualize the rescue operation on the fly.


Assuntos
Planejamento em Desastres , Serviços Médicos de Emergência , Desastres , Sistemas de Informação Geográfica
18.
Sensors (Basel) ; 18(11)2018 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-30366402

RESUMO

Vehicular ad hoc networks (VANETs) provide information and entertainment to drivers for safe and enjoyable driving. Wireless Access in Vehicular Environments (WAVE) is designed for VANETs to provide services efficiently. In particular, infotainment services are crucial to leverage market penetration and deployment costs of the WAVE standard. However, a low presence of infrastructure results in a shadow zone on the road and a link disconnection. The link disconnection is an obstacle to providing safety and infotainment services and becomes an obstacle to the deployment of the WAVE standard. In this paper, we propose a cooperative communication protocol to reduce performance degradation due to frequent link disconnection in the road environment. The proposed protocol provides contention-free data delivery by the coordination of roadside units (RSUs) and can provide the network QoS. The proposed protocol is shown to enhance throughput and delay through the simulation.

19.
Sensors (Basel) ; 19(1)2018 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-30597904

RESUMO

IEEE 802.11p based Dedicated Short-Range Communication (DSRC) is considered a potential wireless technology to enable transportation safety and traffic efficiency. A major challenge in the development of IEEE 802.11p technology is ensuring communication reliability in highly dynamic Vehicle-to-Vehicle (V2V) environments. The design of IEEE 802.11p does not have a sufficient number of training symbols in the time domain and pilot carriers in the frequency domain to enable accurate estimation of rapidly varying V2V channels. The channel estimation of IEEE 802.11p is preamble based, which cannot guarantee a suitable equalization in urban and highway scenarios, especially for longer length data packets. This limitation has been investigated by some research works, which suggest that one major challenge is determining an accurate means of updating channel estimate over the course of packet length while adhering to the standard. The motivation behind this article is to overcome this challenge. We have proposed an improved Constructed Data Pilot (iCDP) scheme which adheres to the standard and constructs data pilots by considering the correlation characteristics between adjacent data symbols in time domain and adjacent subcarriers in frequency domain. It is in contrast to previous schemes which considered the correlation in the time domain. The results have shown that the proposed scheme performs better than previous schemes in terms of bit error rate (BER) and root-mean-square error (RMSE).

20.
Sensors (Basel) ; 18(4)2018 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-29649149

RESUMO

Crowd sensing is a powerful tool to map and predict interests and events. In the future, it could be boosted by an increasing number of connected vehicles sharing information and intentions. This will be made available by on board wireless connected devices able to continuously communicate with other vehicles and with the environment. Among the enabling technologies, visible light communication (VLC) represents a low cost solution in the short term. In spite of the fact that vehicular communications cannot rely on the sole VLC due to the limitation provided by the light which allows communications in visibility only, VLC can however be considered to complement other wireless communication technologies which could be overloaded in dense scenarios. In this paper we evaluate the performance of VLC connected vehicles when urban crowd sensing is addressed and we compare the performance of sole vehicular visible light networks with that of VLC as a complementary technology of IEEE 802.11p. Results, obtained through a realistic simulation tool taking into account both the roadmap constraints and the technologies protocols, help to understand when VLC provides the major improvement in terms of delivered data varying the number and position of RSUs and the FOV of the receiver.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa