Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Theriogenology ; 179: 7-13, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34823061

RESUMO

Intra-follicular oocyte transfer (IFOT) is a promising and innovative technique for in vivo embryo production previously described for equines and bovines. The aim of this study was to assess the feasibility of IFOT in the ovine species. Two preliminary in vivo and in vitro trials were performed to test the optimal procedures and timing for IFOT. In the in vivo trial, follicular growth was monitored with transrectal ultrasonography in ten adult ewes to preliminarily determine the ovulation and ideal timing for IFOT. The in vitro trial assessed i) the optimal inner diameter of the injection needle and ii) the recovery rate and integrity of injected cumulus-oocyte complexes (COCs) after follicle aspiration. For IFOT and embryo collection, five ewes were synchronized by CIDR insertion. Forty hours after CIDR removal, in ewes under sedation and general anesthesia, the ovaries were exposed by laparotomy, and the preovulatory follicle was injected with COCs previously collected from ovaries obtained from an abattoir. At 4 h after surgery, fully recovered ewes were housed in a paddock with a ram of proven fertility. Crayon marking on ram's chest was used to detect mating. Ovulation was assessed 40 h after the transfer of oocytes by transrectal ultrasonography. On day 6 after IFOT, embryo collection was performed by uterine flushing. In the in vitro testing, injection of >5 mm follicles with a 28 G needle loaded with 30 COCs in a 5 µL volume resulted in higher recovery rates and better preservation of COCs integrity. In the in vivo trial, ultrasound scanning revealed that ovulation occurred between 60 and 72 h after CIDR removal in all animals. In one ewe subjected to IFOT, 22/24 oocytes were effectively injected into the preovulatory follicle, but no embryos were collected after flushing. In the remaining four animals, 85/102 oocytes were injected, and six cleaved embryos, 12 morulae and 1 blastocyst were collected, including native embryos. This preliminary investigation indicated that IFOT in ovine species resulted in ovulation, fimbrial capture, tubal transport of heterologous oocytes and in vivo embryo production. Further studies are needed to optimize the embryo recovery rate and develop less invasive techniques for oocyte injection and uterine flushing, such as through a laparoscopic or transcervical approach.


Assuntos
Blastocisto , Oócitos , Animais , Bovinos , Estudos de Viabilidade , Feminino , Cavalos , Masculino , Recuperação de Oócitos/veterinária , Folículo Ovariano , Ovinos
2.
Theriogenology ; 166: 90-96, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33711651

RESUMO

The maturation kinetics and in vitro fertilization of immature bovine oocytes injected by the intra-follicular oocyte injection (IFOT) technique into pre-ovulatory follicles of previously synchronized cows were evaluated. In Experiment 1, grade I, II and III cumulus-oocyte complexes (COCs) were randomly distributed to one of three Groups: Matvitro22 (COCs matured in vitro for 22 h), MatFol20 and MatFol28 (COCs matured in vivo after being injected into a pre-ovulatory follicle of previously synchronized cows for 19.8 ± 0.1 h and 28.3 ± 0.1 h, respectively). Cows received 12.5 mg of LH (Lutropin, Bioniche, Canada) at the time of IFOT in the MatFol20 Group or 10 h after IFOT in the MatFol28 Group. MatFol20 and MatFol28 COCs were aspirated approximately 20 h after the LH injection for nuclear maturation kinetics and recovery rate assessment. In Experiment 2, grade I, II, and III COCs were randomly distributed into two Groups: Matvitro22 Group, COCs were matured and fertilized in vitro, and MatFol20 Group, COCs were matured as in the MatFol20 Group in Experiment 1, but COCs were fertilized in vitro. Putative zygotes were classified as fertilized, unfertilized or polyspermic. In Experiment 1, the recovery rate was lower (P < 0.001) in the MatFol20 Group (52.9%, 91/172) compared with MatFol28 (72.9%, 113/155). Rate of oocytes in germinal vesicle stage, metaphase I, anaphase I and telophase I were similar among Groups. However, oocytes matured in vivo for 28.3 h had lower rate of metaphase II (P = 0.001) and greater rates of degenerated (P = 0.001) and parthenogenetically activated (P = 0.001) oocytes. In experiment 2, the rates of polyspermy and degenerated were similar between Groups. However, the rate of fertilized oocytes was greater (P = 0.05) in oocytes in the MatFol20 Group. It is concluded that oocyte in vivo maturation for 19.8 h after IFOT does not compromise the nuclear maturation kinetics and increases in vitro fertilization rates. However, the extra 10 h of intra-follicular incubation time decreased oocyte viability.


Assuntos
Fertilização in vitro , Oócitos , Animais , Bovinos , Feminino , Fertilização in vitro/veterinária , Cinética , Oogênese , Folículo Ovariano
3.
Theriogenology ; 97: 41-49, 2017 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-28583607

RESUMO

To circumvent the negative impacts of in vitro culture on bovine embryos, we have recently established a new method, the so called intra-follicular oocyte transfer (IFOT), enabling in vivo fertilization and in vivo development of in vitro matured oocytes up to the blastocyst stage as well as to term. In this study, we raised the question whether immature bovine oocytes could also be transferred into a pre-ovulatory follicle to support in vivo maturation prior to subsequent in vivo fertilization, in vivo development as well as to term. To unravel that question, a total of 791 immature oocytes were transferred in groups of ∼50 into pre-ovulatory follicles of 16 recipient heifers. Consequently, we were able to recollect a total of 306 structures 8 days thereafter (38.5%). All in all, 12 heifers (75%) gave embryos developed to the morula or blastocyst stage in addition to the expected native embryos. Among all recollected structures, 40.1% had developed to the morula and/or blastocyst stage, meaning a total efficiency of 17.3% based on all transferred oocytes. Of impact, IFOT-embryos reached significantly higher developmental rates to the Morula and/or blastocyst stage until day 7 compared to in vitro cultured control embryos, despite being derived from the same charge of slaughterhouse ovaries (40.1 vs. 29.3%). This implicates a beneficial effect of the follicular environment for the intrinsic quality of the fertilized embryos during maturation and for subsequent developmental rates up to the blastocyst stage. Finally, the birth of two healthy calves after transfer of frozen-thawed IFOT-derived blastocysts to final recipients established the first proof of principle that IFOT of immature bovine oocytes generates bovine blastocysts bearing developmental capacity to term. Likewise, to the best of our knowledge, these calves are the first calves derived from full in vivo development of immature slaughterhouse derived oocytes. Thus, the results of the present study clearly demonstrate that IFOT of immature slaughterhouse-derived oocytes is now a feasible technique. Since efficiencies following IFOT achieved within the present study were improved compared to previous studies, IFOT now offers an attractive option for designing new scientific experiments.


Assuntos
Bovinos , Oócitos/fisiologia , Animais , Blastocisto , Criopreservação/veterinária , Transferência Embrionária/veterinária , Feminino , Fertilização in vitro/veterinária , Técnicas de Maturação in Vitro de Oócitos , Folículo Ovariano , Gravidez , Resultado da Gravidez
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa