RESUMO
Research indicates that phase-to-ground short-circuits in a frequency converter can subject the rectifier diode and IGBT to excessive voltage and current, potentially causing damage if the component selection margin during hardware design is insufficient. In order to solve the above problems, this paper studies the design of the LCL filter and ground short circuit problem of the hundred-kilowatt inverter. Firstly, an analytical method for calculating the DC bus capacitance and reactor of the inverter is proposed. The interaction between the DC bus capacitance and the reactor parameters and performance is considered in the implementation process. The parameters of the DC bus capacitor and reactor are given. Secondly, the one-to-ground short circuit of the inverter is studied, and the energy flow mode and mathematical expression of the double boost circuit, considering the influence of the leakage inductance of the power transformer, are given. Based on the above analysis, a method for determining the rectifier diode and IGBT, considering the one-to-ground short circuit of the inverter, is proposed. Finally, a one-hundred-kilowatt inverter is developed, and the corresponding experiments are carried out. The feasibility of the proposed scheme is verified by simulation and experiment.
RESUMO
Background: Volumetric modulated arc therapy (VMAT) and 3D image-guided brachytherapy (3D-IGBT) have recently been introduced in Vietnam for the treatment of locally advanced cervical cancer. This study aims to assess the outcomes and toxicities of chemoradiation using VMAT followed by 3D-IGBT in Vietnamese cervical cancer patients. Materials and methods: A prospective interventional study on 72 patients with 2018 International Federation of Gynecology and Obstetrics (FIGO) stage IB3-IIIC2 disease who underwent concurrent chemoradiation using VMAT, followed by 3D-IGBT according to EMBRACE-II protocol. Primary endpoints were locoregional control; secondary endpoints were systemic control and toxicity. Results: Median body volume received 43 Gy was 1589.1 cm3 (range 1214.8-2574.8). Median high-risk clinical target volume (CTV-HR) was 18.8 cm3 (range 8.6-61.2) with a median dose to 90% (D90) of CTV-HR of 90.6 Gy (range 86.8-99.6). Mean doses to 2cc (D2cc) of bladder, rectum, and sigmoid were 75.8, 55.2, and 62.1 Gy, respectively. At median 19-month follow-up (range 12-25), locoregional control and systemic control were 95.8% and 81.9%, respectively. Systemic control was the lowest in N2 disease (54.5%). Grade ≥ 3 acute toxicities were less than 10%, except neutropenia (31.9%). Extended-field radiation increased significantly nausea, fatigue, and thrombocytopenia. No grade ≥ 3 proctitis or cystitis; 8.3% had grade 3 vaginal stenosis. Conclusions: VMAT-based chemoradiation therapy followed by 3D-IGBT achieved high locoregional control with manageable toxicities in locally advanced cervical cancer. Systemic control correlated with disease stage.
RESUMO
This paper proposes a junction temperature estimation algorithm for the insulated gate bipolar transistor (IGBT) based on a power loss calculation and a thermal impedance model for inverter systems. The Simulink model was designed to calculate the power losses of power semiconductor devices and to estimate the junction temperature with a simplified thermal impedance model. This model can estimate the junction temperature up to the transient state, including the steady state. The parameters used to calculate the power losses, the thermal resistance, and the thermal capacitance were optimized for a given inverter to be tested for improving the accuracy. The simulation results and experimental measurement data were compared to verify the proposed junction temperature estimation algorithm. Finally, the algorithm was installed on the inverter controller, and the performance was verified by comparing the real time estimation result with the measured temperature.
RESUMO
Recently, the press-pack insulated gate bipolar transistor (IGBT) has usually been used in direct current (DC) transmission. The press-pack IGBT (PPI) adopts a parallel layout of boss chips, and the currents of each chip will be uneven in the process of turning on and off, which will affect the reliability of the device. To measure the currents of each chip, based on the analysis of the principle and equivalent model of the Rogowski coil, this paper puts forward the design scheme and design index of multi-layer printed circuit board (PCB) Rogowski coil with good high-frequency performance, strong anti-interference ability and sufficient sensitivity. With the simulation analysis of Altium Designer and ANSYS softwares, a 1 mm thick, 76-turn integrated four-layer PCB Rogowski coil is designed. Then, adding a composite integrator, an integrated Rogowski coil sensor for measurement of PPI chips currents is designed. The Pspice simulation and the experiment results show that the sensor is fully satisfied with the chip current measurement.
RESUMO
In this work, a semi-submersible piezoelectric energy harvester was used to provide power to a low-cost 4G Arduino shield. Initially, unsteady Reynolds averaged Navier-Stokes (URANS)-based simulations were conducted to investigate the dynamic forces under different conditions. An adaptive differential evolution (JADE) multivariable optimization algorithm was used for the power calculations. After JADE optimization, a communication cycle was designed. The shield works in two modes: communication and power saving. The power-saving mode is active for 285 s and the communication mode for 15 s. This cycle consumes a determinate amount of power, which requires a specific piezoelectric material and, in some situations, an extra power device, such as a battery or supercapacitor. The piezoelectric device is able to work at the maximum power point using a specific Insulated Gate Bipolar Transistor (IGBT) H-bridge controlled with a relay action. For the extra power supply, a bidirectional buck-boost converter was implemented to flow the energy in both directions. This electronic circuit was simulated to compare the extra power supply and the piezoelectric energy harvester behavior. Promising results were obtained in terms of power production and energy storage. We used 0.59, 0.67 and 1.69 W piezoelectric devices to provide the energy for the 4G shield and extra power supply device.
RESUMO
With the trend of high integration and high power of insulated gate bipolar transistor (IGBT) components, strict requirements have been placed on the heat dissipation capabilities of the IGBT devices. On the basis of traditional rectangular fins, this paper developed two new types of heat-dissipating fins to meet the high requirements of heat dissipation for the IGBT devices. One is the rectangular radiator with a groove length of 2.5 mm and a width of 0.85 mm, the other is the arc radiator with the angle of 125 arc angle, 0.8 mm arc height, and 1.4 mm circle radius. After theoretically calculating the IGBT junction temperature, numerical simulations have been implemented to verify the theoretical result. The commercial CFD software, STAR-CCM+, was employed to simulate the heat dissipation characteristics of the IGBT module under different wind speeds, power, and fin structures. By analyzing the temperature field and vector field of the IGBT module, the analysis results demonstrate that the error between the simulation result and the theoretical calculation is within 5%, which proves the feasibility of the newly designed heat-dissipating fins. When the wind speed is 12.5 m/s, the power is 110 W, the fin height is 31.2 mm, and the fin thickness is 2.3 mm, the rectangular radiator can achieve the best heat dissipation performance.
RESUMO
The insulated gate bipolar transistor (IGBT) is a kind of excellent performance switching device used widely in power electronic systems. How to estimate the remaining useful life (RUL) of an IGBT to ensure the safety and reliability of the power electronics system is currently a challenging issue in the field of IGBT reliability. The aim of this paper is to develop a prognostic technique for estimating IGBTs' RUL. There is a need for an efficient prognostic algorithm that is able to support in-situ decision-making. In this paper, a novel prediction model with a complete structure based on optimally pruned extreme learning machine (OPELM) and Volterra series is proposed to track the IGBT's degradation trace and estimate its RUL; we refer to this model as Volterra k-nearest neighbor OPELM prediction (VKOPP) model. This model uses the minimum entropy rate method and Volterra series to reconstruct phase space for IGBTs' ageing samples, and a new weight update algorithm, which can effectively reduce the influence of the outliers and noises, is utilized to establish the VKOPP network; then a combination of the k-nearest neighbor method (KNN) and least squares estimation (LSE) method is used to calculate the output weights of OPELM and predict the RUL of the IGBT. The prognostic results show that the proposed approach can predict the RUL of IGBT modules with small error and achieve higher prediction precision and lower time cost than some classic prediction approaches.
RESUMO
Under certain circumstances, a high-speed railway may require constant acceleration or emergency braking, in which case the inverter may experience short-term overload conditions and the current passing through the IGBT will go beyond the rated design tolerance. Under overload conditions, the IGBT loss will increase instantly, raising the power semiconductor device's junction temperature in the process. This research examines the boosting-gate-voltage-driven IGBT control technology. It increases the gate drive voltage and the IGBT current capacity and decreases the conduction voltage drop of IGBT under short-term overload conditions, reducing the instantaneous loss and temperature rise undulation of IGBT. The working characteristics of IGBT devices are studied, and the influence of gate drive voltage on device loss and temperature rise fluctuations is analyzed. Based on the emergency acceleration and brake conditions of the actual train operation, the short-term overload characteristics of the inverter are analyzed. The optimization analysis of the boosting gate voltage under emergency conditions is carried out, and the IGBT drive circuit with gate voltage pumping function is designed. The effectiveness of the driving circuit is verified through PSpice simulation and actual switching characteristic test. According to the analysis of experimental data, it can be verified that increasing the gate voltage technology can reduce IGBT losses.
RESUMO
As a core component of power conversion systems, insulated gate bipolar transistor (IGBT) modules continually suffer from severe thermal damage caused by temperature swings and shear stress, resulting in fatigue failure. Bond wires falling off is one of the failure modes of IGBT modules. Given that the number of fallen-off bond wires is a significant parameter to evaluate the health status of the IGBT modules, this paper proposes an online identification model to recognize the number of fallen-off bond wires during normal operation. Firstly, a database containing datum Vce,on-Tj-IC (collector-emitter on-state voltage Vce,on, chip junction temperature Tj, collector current IC) planes with different fallen-off bond wires is built based on an offline aging test. Secondly, a Foster network model and a special circuit are designed to measure the junction temperature Tj and the collector-emitter on-state voltage Vce,on, respectively. Thirdly, the feature points of the IGBT module represented by Vce,on, Tj, and IC are given to the database to recognize the number of fallen-off bond wires according to the position of the feature points in the datum plane. The experimental results show that the proposed method can determine the fallen-off bond wires under the operation condition.
RESUMO
Insulated gate bipolar transistors (IGBTs) are widely used in power electronic devices, and their health prediction problems have attracted much attention in the field of power electronic equipment health management. The performance degradation of IGBT gate oxide is one of the most important failure modes. In order to analyze this failure mechanism and the ease of implementation of a monitoring circuit, the gate leakage current of IGBTs was selected as the fault precursor parameter for the degradation of their gate oxide performance, and feature selection and fusion were carried out by using time domain characteristic analysis, grayscale correlation, Mahalanobis distance, Kalman filter, and other methods. Thus, a health indicator was obtained to characterize the degradation of IGBT performance, which was used to indicate the degree of aging of the IGBT gate oxide layer. In this paper, we propose an improved degradation prediction model called MultiScaleFormer, inspired by advanced design ideas of the iTransformer network architecture, combined with the health parameters of IGBTs to construct a degradation prediction model for the IGBT gate oxide layer. MultiScaleFormer showed the highest fitting accuracy compared with the Long Short-Term Memory (LSTM), Convolutional Neural Network (CNN), Support Vector Regression (SVR), Gaussian Process Regression (GPR), CNN-LSTM, and Transformer models in our experiment. The mean absolute error (MAE) of the MultiScaleFormer prediction was as low as 0.0087. Extraction of the health indicator and the construction and verification of the degradation prediction model were carried out on the dataset released by the NASA-Ames Laboratory. These results demonstrate the feasibility of the gate leakage current as a fault precursor parameter for IGBT gate oxide failure, and the feasibility and accuracy of the MultiScaleFormer prediction model for IGBT performance degradation.
RESUMO
BACKGROUND: This study aims to evaluate patients with locally advanced cervical cancer who underwent definitive radiochemotherapy, including brachytherapy, at the University Hospital of Muenster (UKM), focusing on target volume coverage, oncologic outcome parameters, and organs at risk (OAR) toxicities. Results are compared with the Gyn GEC-ESTRO (GGE) recommendations. METHODS: Of a cohort of 48 patients, treated between 2013 and 2023, the physical radiation treatment planning with application of CT and MRI and oncologic follow-up data was analyzed. Target volume structures, comprising the high-risk clinical target volume (HR-CTV), intermediate-risk clinical target volume (IR-CTV), Point A, and corresponding EQD2(α/ß=10) doses were determined. Endpoints included local tumor control, overall survival (OS), recurrence-free survival (RFS), and progression-free survival (PFS). Total OAR (D2cc) EQD2(α/ß=3) doses were correlated with adverse events defined by CTCAE v5.0 and LENT-SOMA criteria. RESULTS: Median follow-up was 58.0 months (95% CI [27.6, 88.4]). FIGO stage I was present in 7 (15%) patients, II in 13 (27%), and III in 28 (58%) patients. A total of 38 (79%) patients showed a complete remission 3 months after treatment. The 5-year event-free rate was 67.4% (95% CI [49.3, 80.3]) for OS, 77.0% (95% CI [56.7, 88.6]) for RFS and 68.1% (95% CI [49.7, 80.9]) for PFS. Incomplete radiation treatment and advanced tumor stages led to worse outcomes. Meeting Point A GGE recommendations increased chances for complete remission and could decrease chances of an event occurring for OS, PFS, and RFS. Compliance with GGE recommendations lowered the chances of OAR toxicity occurring. CONCLUSIONS: MRI-based target volume definition for brachytherapy in cervical cancer may improve patients' OS, PFS, and RFS. Time-to-event endpoints are consistent with comparable studies, and adherence to current ESGO/ESTRO/ESP guidelines is endorsed.
RESUMO
This paper provides an evaluation of a 4-kW grid-connected full-bridge PV inverter under three different scenarios to assess its reliability with a fixed PV degradation rate, with a climate-based degradation rate, and without considering PV degradation. The climate-based degradation rates are estimated using a physics-based model that considers the different parameters influencing the PV reliability. Three different locations representing three different climate zones (hot and dry, hot and humid, and moderate climates) have been chosen in this study. The estimated lifetime of the IGBT, the switching device in the PV inverter, varies depending on the location, with the inclusion of fixed and climate-based degradation rates extending the lifespan of the PV inverter in the examined locations. The results demonstrate the significant impact of PV climate-based degradation rates on power electronics' reliability assessment and the importance of considering various factors in predicting device failures. To ensure the PV inverter's lifespan over the desired period in areas with high solar irradiation rates and extremely hot climates, the design parameters should be slightly elevated above the standard value.
RESUMO
A novel insulated gate bipolar transistor with Semi-Insulated POly Silicon (SIPOS) is presented in this paper and analyzed through TCAD simulation. In the off state, the SIPOS-IGBT can obtain a uniform electric field distribution, which enables a thinner drift region under the same breakdown voltage. In the on state, an electron accumulation layer is formed along the SIPOS, which can increase the injection level of the "PiN region" in the device, and the carrier concentration in the drift region is also increased due to the charge balance effect. Moreover, the SIPOS-IGBT can achieve a quick and thorough depletion in the drift region during the turn-off transient, which can greatly reduce the turn-off loss of the SIPOS-IGBT. These advantages improve the tradeoff between the conduction and switching losses. According to the simulation results, the SIPOS-IGBT obtained a 58% lower turn loss than that of a field-stop (FS) IGBT and 30% lower than an HK-IGBT with the same on-state voltage.
RESUMO
The use of electronic load controllers (ELCrs) is widely adopted in pico hydropower systems to maintain output power supplied to the consumer load, regardless of changes in consumer demand. This is due to the absence of moving mechanical parts, affordability, prevention of the hammer effect in pipes, and being more efficient than the governor systems. However, implementing existing ELCrs in a pico hydropower system can pose challenges related to power quality, efficiency, or costs. In this paper, a fuzzy PI-based single-switch bidirectional AC chopper electronic load controller (FP-SSBAC ELCr) is proposed. This configuration reduces the number of insulated gate bipolar transistors (IGBTs) from two, typically found in the conventional bidirectional AC choppers, to one per phase, resulting in cost reduction. A hybrid controller, comprising fuzzy and PI controllers, is designed to quickly maintain a constant output voltage and frequency when consumer load abruptly changes. The gains of the PI controller are updated by the fuzzy logic controller based on the voltage error and its derivative. The proposed model is simulated in MATLAB/Simulink and validated experimentally under sudden changes in consumer load. The results achieved with the FP-SSBAC ELCr demonstrate improved dynamic performance without overshoot compared to PI-based ELCrs. The highest recorded voltage and current total harmonic distortions (THDs) are 2.8 % and 2.1 %, respectively, meeting the IEEE 519 standard. Therefore, the proposed model has the potential to enhance performance and efficiency and can be implemented cost-effectively in pico hydropower systems.
RESUMO
For insulated gate bipolar transistor (IGBT) modules using wire bonding as the interconnection method, the main failure mechanism is cracking of the bonded interface. Studying the mechanical properties of the bonded interface is crucial for assessing the reliability of IGBT modules. In this paper, first, shear tests are conducted on the bonded interface to test the bonded interface's strength. Then, finite element-cohesive zone modeling (FE-CZM) is established to describe the mechanical behavior of the bonded interface. A novel machine learning (ML) architecture integrating a convolutional neural network (CNN) and a long short-term memory (LSTM) network is used to identify the shape and parameters of the traction separation law (TSL) of the FE-CZM model accurately and efficiently. The CNN-LSTM architecture not only has excellent feature extraction and sequence-data-processing abilities but can also effectively address the long-term dependency problem. A total of 1800 sets of datasets are obtained based on numerical computations, and the CNN-LSTM architecture is trained with load-displacement (F-δ) curves as input parameters and TSL shapes and parameters as output parameters. The results show that the error rate of the model for TSL shape prediction is only 0.186%. The performance metric's mean absolute percentage error (MAPE) is less than 3.5044% for all the predictions of the TSL parameters. Compared with separate CNN and LSTM architectures, the proposed CNN-LSTM-architecture approach exhibits obvious advantages in recognizing TSL shapes and parameters. A combination of the FE-CZM and ML methods in this paper provides a promising and effective solution for identifying the mechanical parameters of the bonded interfaces of IGBT modules.
RESUMO
In this paper, a low switching loss built-in diode of a high-voltage reverse-conducting insulated gate bipolar transistor (RC-IGBT) is proposed without deteriorating IGBT characteristics. It features a particular shortened P+ emitter (SE) in the diode part of RC-IGBT. Firstly, the shortened P+ emitter in the diode part can suppress the hole injection efficiency resulting in the reduced carriers extracted during the reverse recovery process. The peak of the reverse recovery current and switching loss of the built-in diode during reverse recovery is therefore lowered. Simulation results indicate that the diode's reverse recovery loss of the proposed RC-IGBT is lowered by 20% compared with that of the conventional RC-IGBT. Secondly, the separate design of the P+ emitter prevents the performance of IGBT from deteriorating. Finally, the wafer process of the proposed RC-IGBT is almost the same as that of conventional RC-IGBT, which makes it a promising candidate for manufacturing.
RESUMO
This paper explores the operation mechanism of the superjunction structure in RC-IGBTs based on carrier distribution and analyzes the advantages and challenges associated with its application in RC-IGBTs for the first time. A Partial Schottky Collector Superjunction Reverse Conduction IGBT (PSC-SJ-RC-IGBT) is proposed to address these issues. The new structure eliminates the snapback phenomenon. Furthermore, by leveraging the unipolar conduction of the Schottky diode and its fast turn-off characteristics, the proposed device significantly reduces the turn-off power consumption and reverse recovery charge. With medium pillar doping concentration, the turn-off loss of the PSC-SJ-RC-IGBT decreases by 54.1% compared to conventional superjunction RC-IGBT, while the reverse recovery charge is reduced by 52.6%.
RESUMO
A novel snapback-free superjunction reverse-conducting insulated gate bipolar transistor (SJ-RC-IGBT) is proposed and verified by simulation. In the SJ-RC-IGBT, the parasitic P/N/P/N structure as thyristor or Shockley diode demonstrates large conductivity due to an overabundance of carriers for reverse conduction. By preventing electrons from leaking across the N+ region at the collector side, the extra electron-blocking (EB) layer introduced in the SJ-RC-IGBT can dramatically enhance electron-hole pairs in the N/P-pillars. Hence, the SJ-RC-IGBT demonstrates a low on-state voltage (Von). In addition, snapback-free characteristics and a large safe operating area (SOA) are also achieved in the SJ-RC-IGBT. During the turn-off process, a significant amount of electrons are extracted by parasitic MOS across the EB layer at the collector side to decrease the turn-off loss (Eoff). According to the optimized results, the SJ-RC-IGBT with EB layer obtains an ultralow Eoff of 3.9 mJ/cm2 at Von = 1.38 V with 88% and 81% decreases, respectively, compared with the conventional reverse-conducting IGBT (CRC-IGBT) and superjunction IGBT (SJ-IGBT).
RESUMO
Purpose: We aimed to assess the toxicity profile and clinical outcome in patients with locally advanced cervical cancer (LACC) treated with a combination of image-guided intensity-modulated radiation therapy (IG-IMRT) and image-guided brachytherapy (IGBT). Material and methods: 25 LACC patients were recruited in this single-arm prospective study. Whole pelvis IG-IMRT was delivered (45 Gy with simultaneously integrated nodal boost of 55 Gy in 25 fractions), with concurrent weekly cisplatin (40 mg/m2). Patients received IGBT of 7 Gy each in 4 fractions to high-risk clinical target volume (HR-CTV). First fraction was done under MRI, and subsequent fractions were performed under CT guidance. Primary endpoint was acute toxicity, and secondary endpoints were 2-year loco-regional control and late toxicity. Results: The median age was 52 years, and FIGO 2018 stage distribution was IIA2, IIB, IIIB, and IIIC1 in 12%, 40%, 20%, and 28% patients, respectively. All patients received concurrent chemotherapy with median number of 5 cycles (range, 4-5 cycles). Grade 1 and 2 diarrhea, and grade 1 cystitis was reported in 4 (16%), 3 (12%), and 2 (8%) patients, respectively. Grade 1 and 2 anemia, and grade 1 and 2 dermatitis were observed in 3 (12%) and 2 (8%), and 3 (12%) and 3 (12%) patients, respectively. No patient reported grade 3-4 acute toxicity. At median follow-up of 29.5 months (range, 25-37 months), late grade 1 bladder toxicity was observed in 1 (4%) patient. Loco-regional control at 1 and 2 years were 96% and 92%, respectively. Conclusions: The combination of IG-IMRT and IGBT yielded excellent outcomes in terms of acute toxicity and loco-regional control.
RESUMO
In high-integration electronic components, the insulated-gate bipolar transistor (IGBT) power module has a high working temperature, which requires reasonable thermal analysis and a cooling process to improve the reliability of the IGBT module. This paper presents an investigation into the heat dissipation of the integrated microchannel cooling plate in the silicon carbide IGBT power module and reports the impact of the BL series micropump on the efficiency of the cooling plate. The IGBT power module was first simplified as an equivalent-mass block with a mass of 62.64 g, a volume of 15.27 cm3, a density of 4.10 g/cm3, and a specific heat capacity of 512.53 J/(kg·K), through an equivalent method. Then, the thermal performance of the microchannel cooling plate with a main channel and a secondary channel was analyzed and the design of experiment (DOE) method was used to provide three factors and three levels of orthogonal simulation experiments. The three factors included microchannel width, number of secondary inlets, and inlet diameter. The results show that the microchannel cooling plate significantly reduces the temperature of IGBT chips and, as the microchannel width, number of secondary inlets, and inlet diameter increase, the junction temperature of chips gradually decreases. The optimal structure of the cooling plate is a microchannel width of 0.58 mm, 13 secondary inlets, and an inlet diameter of 3.8 mm, and the chip-junction temperature of this structure is decreased from 677 °C to 77.7 °C. In addition, the BL series micropump was connected to the inlet of the cooling plate and the thermal performance of the microchannel cooling plate with a micropump was analyzed. The micropump increases the frictional resistance of fluid flow, resulting in an increase in chip-junction temperature to 110 °C. This work demonstrates the impact of micropumps on the heat dissipation of cooling plates and provides a foundation for the design of cooling plates for IGBT power modules.