Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
IUBMB Life ; 76(8): 485-504, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38529880

RESUMO

The functional and structural relationship among the individual components of the mitochondrial respiratory chain constitutes a central aspect of our understanding of aerobic catabolism. This interplay has been a subject of intense debate for over 50 years. It is well established that individual respiratory enzymes associate into higher-order structures known as respiratory supercomplexes, which represent the evolutionarily conserved organizing principle of the mitochondrial respiratory chain. In the yeast Saccharomyces cerevisiae, supercomplexes are formed by a complex III homodimer flanked by one or two complex IV monomers, and their high-resolution structures have been recently elucidated. Despite the wealth of structural information, several proposed supercomplex functions remain speculative and our understanding of their physiological relevance is still limited. Recent advances in the field were made possible by the construction of yeast strains where the association of complex III and IV into supercomplexes is impeded, leading to diminished respiratory capacity and compromised cellular competitive fitness. Here, we discuss the experimental evidence and hypotheses relative to the functional roles of yeast respiratory supercomplexes. Moreover, we review the current models of yeast complex III and IV assembly in the context of supercomplex formation and highlight the data scattered throughout the literature suggesting the existence of cross talk between their biogenetic processes.


Assuntos
Mitocôndrias , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Mitocôndrias/metabolismo , Mitocôndrias/genética , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Complexo III da Cadeia de Transporte de Elétrons/genética , Complexo IV da Cadeia de Transporte de Elétrons/metabolismo , Complexo IV da Cadeia de Transporte de Elétrons/genética , Transporte de Elétrons , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
2.
Pestic Biochem Physiol ; 197: 105653, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38072528

RESUMO

Allatostatin (AS) or Allatotropin (AT) is a class of insect short neuropeptide F (sNPF) that affects insect growth and development by inhibiting or promote the synthesis of juvenile hormone (JH) in different insects. III-2 is a novel sNPF analog derived from a group of nitroaromatic groups connected by different amino acids. In this study, we found that III-2 showed high insecticidal activity against S. frugiperda larvae with a LC50 of 18.7 mg L-1. As demonstrated by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS), III-2 particularly facilitated JH III and hindered 20E synthesis in S. frugiperda. The results of RNA-Seq and quantitative real-time polymerase chain reaction (qPCR) showed that III-2 treatment promoted the expression of key genes such as SfCYP15C1 in JH synthesis pathway and inhibited the expression of SfCYP314A1 and other genes in the 20E synthetic pathway. Significant differences were also observed in the expression of the genes related to cuticle formation. We report for the first time that sNPF compounds specifically interfere with the synthesis and secretion of a certain JH in insects, thus affecting the ecdysis and growth of insects, and leading to death. This study may provide a new plant conservation concept for us to seek the targeted control of certain insects based on specific interference with different JH.


Assuntos
Hormônios Juvenis , Espectrometria de Massas em Tandem , Animais , Spodoptera/genética , Spodoptera/metabolismo , Cromatografia Líquida , Hormônios Juvenis/farmacologia , Hormônios Juvenis/metabolismo , Larva/metabolismo , Insetos
3.
Molecules ; 27(3)2022 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-35164403

RESUMO

Aliphatic polyesters are the most common type of biodegradable synthetic polymer used in many pharmaceutical applications nowadays. This report describes the ring-opening polymerization (ROP) of l-lactide (L-LA), ε-caprolactone (CL) and glycolide (Gly) in the presence of a simple, inexpensive and convenient PEG200-BiOct3 catalytic system. The chemical structures of the obtained copolymers were characterized by 1H- or 13C-NMR. GPC was used to estimate the average molecular weight of the resulting polyesters, whereas TGA and DSC were employed to determine the thermal properties of polymeric products. The effects of temperature, reaction time, and catalyst content on the polymerization process were investigated. Importantly, the obtained polyesters were not cyto- or genotoxic, which is significant in terms of the potential for medical applications (e.g., for drug delivery systems). As a result of transesterification, the copolymers obtained had a random distribution of comonomer units along the polymer chain. The thermal analysis indicated an amorphous nature of poly(l-lactide-co-ε-caprolactone) (PLACL) and a low degree of crystallinity of poly(ε-caprolactone-co-glycolide) (PCLGA, Xc = 15.1%), in accordance with the microstructures with random distributions and short sequences of comonomer units (l = 1.02-2.82). Significant differences in reactivity were observed among comonomers, confirming preferential ring opening of L-LA during the copolymerization process.


Assuntos
Bismuto/química , Caproatos/química , Dioxanos/química , Lactonas/química , Ácido Poliglicólico/química , Polimerização , Caproatos/síntese química , Catálise , Dioxanos/síntese química , Lactonas/síntese química , Poliésteres/síntese química , Poliésteres/química , Ácido Poliglicólico/síntese química , Temperatura
4.
IUCrJ ; 10(Pt 1): 27-37, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36598500

RESUMO

Movement of the Rieske domain of the iron-sulfur protein is essential for intramolecular electron transfer within complex III2 (CIII2) of the respiratory chain as it bridges a gap in the cofactor chain towards the electron acceptor cytochrome c. We present cryo-EM structures of CIII2 from Yarrowia lipolytica at resolutions up to 2.0 Šunder different conditions, with different redox states of the cofactors of the high-potential chain. All possible permutations of three primary positions were observed, indicating that the two halves of the dimeric complex act independently. Addition of the substrate analogue decylubiquinone to CIII2 with a reduced high-potential chain increased the occupancy of the Qo site. The extent of Rieske domain interactions through hydrogen bonds to the cytochrome b and cytochrome c1 subunits varied depending on the redox state and substrate. In the absence of quinols, the reduced Rieske domain interacted more closely with cytochrome b and cytochrome c1 than in the oxidized state. Upon addition of the inhibitor antimycin A, the heterogeneity of the cd1-helix and ef-loop increased, which may be indicative of a long-range effect on the Rieske domain.


Assuntos
Citocromos b , Complexo III da Cadeia de Transporte de Elétrons , Complexo III da Cadeia de Transporte de Elétrons/metabolismo , Citocromos b/genética , Citocromos c/química , Microscopia Crioeletrônica , Conformação Proteica , Citocromos c1/metabolismo
5.
J Biochem ; 174(4): 335-344, 2023 Sep 29.
Artigo em Inglês | MEDLINE | ID: mdl-37384427

RESUMO

The sesaminol triglucoside (STG)-hydrolyzing ß-glucosidase from Paenibacillus sp. (PSTG1), which belongs to glycoside hydrolase family 3 (GH3), is a promising catalyst for the industrial production of sesaminol. We determined the X-ray crystal structure of PSTG1 with bound glycerol molecule in the putative active site. PSTG1 monomer contained typical three domains of GH3 with the active site in domain 1 (TIM barrel). In addition, PSTG1 contained an additional domain (domain 4) at the C-terminus that interacts with the active site of the other protomer as a lid in the dimer unit. Interestingly, the interface of domain 4 and the active site forms a hydrophobic cavity probably for recognizing the hydrophobic aglycone moiety of substrate. The short flexible loop region of TIM barrel was found to be approaching the interface of domain 4 and the active site. We found that n-heptyl-ß-D-thioglucopyranoside detergent acts as an inhibitor for PSTG1. Thus, we propose that the recognition of hydrophobic aglycone moiety is important for PSTG1-catalyzed reactions. Domain 4 might be a potential target for elucidating the aglycone recognition mechanism of PSTG1 as well as for engineering PSTG1 to create a further excellent enzyme to degrade STG more efficiently to produce sesaminol.


Assuntos
Glicosídeo Hidrolases , beta-Glucosidase , beta-Glucosidase/química , beta-Glucosidase/metabolismo , Glicosídeo Hidrolases/química , Glicosídeo Hidrolases/metabolismo , Furanos/metabolismo , Cristalografia por Raios X , Especificidade por Substrato
6.
ACS Appl Bio Mater ; 3(9): 6155-6166, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-35021748

RESUMO

Intrinsically fluorescent biocompatible multifunctional multipurpose terpolymers, i.e., methyl methacrylate-co-methyl 3-(N-isopropylacrylamido)-2-methylpropanoate-co-N-isopropylacrylamide (MMA-co-MNIPAMP-co-NIPAm, 1) and methyl methacrylate-co-methyl 3-(N-hydroxymethylacrylamido)-2-methylpropanoate-co-N-hydroxymethylacrylamide (MMA-co-MNHMAMP-co-NHMAm, 2), were synthesized via in situ-attached acrylamido-ester monomers during polymerization of hydrophobic monomers in water medium. These nonconjugated fluorescent terpolymers presenting aggregation-enhanced emissions (AEEs) were suitable for Bi(III) sensors, Bi(III) removal, cell imaging, and security inks. The fluorescence properties, mechanisms of quenching, interactions of Bi(III) with 1 and 2, and Bi(III) adsorption were explored using theoretical analyses of 1, 2, Bi(III)-1, and Bi(III)-2. Considering the overall properties, 1 was more suitable for diverse prospective applications.

8.
Materials (Basel) ; 11(1)2018 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-29337931

RESUMO

Real time spectroscopic ellipsometry (RTSE) has been applied for in-situ monitoring of the first stage of copper indium-gallium diselenide (CIGS) thin film deposition by the three-stage co-evaporation process used for fabrication of high efficiency thin film photovoltaic (PV) devices. The first stage entails the growth of indium-gallium selenide (In1-xGax)2Se3 (IGS) on a substrate of Mo-coated soda lime glass maintained at a temperature of 400 °C. This is a critical stage of CIGS deposition because a large fraction of the final film thickness is deposited, and as a result precise compositional control is desired in order to achieve the optimum performance of the resulting CIGS solar cell. RTSE is sensitive to monolayer level film growth processes and can provide accurate measurements of bulk and surface roughness layer thicknesses. These in turn enable accurate measurements of the bulk layer optical response in the form of the complex dielectric function ε = ε1 - iε2, spectra. Here, RTSE has been used to obtain the (ε1, ε2) spectra at the measurement temperature of 400 °C for IGS thin films of different Ga contents (x) deduced from different ranges of accumulated bulk layer thickness during the deposition process. Applying an analytical expression in common for each of the (ε1, ε2) spectra of these IGS films, oscillator parameters have been obtained in the best fits and these parameters in turn have been fitted with polynomials in x. From the resulting database of polynomial coefficients, the (ε1, ε2) spectra can be generated for any composition of IGS from the single parameter, x. The results have served as an RTSE fingerprint for IGS composition and have provided further structural information beyond simply thicknesses, for example information related to film density and grain size. The deduced IGS structural evolution and the (ε1, ε2) spectra have been interpreted as well in relation to observations from scanning electron microscopy, X-ray diffractometry and energy-dispersive X-ray spectroscopy profiling analyses. Overall the structural, optical and compositional analysis possible by RTSE has assisted in understanding the growth and properties of three stage CIGS absorbers for solar cells and shows future promise for enhancing cell performance through monitoring and control.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa