Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 166
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(26): e2221007120, 2023 06 27.
Artigo em Inglês | MEDLINE | ID: mdl-37339207

RESUMO

The objective of this study is to examine IL-11-induced mechanisms of inflammatory cell migration to the central nervous system (CNS). We report that IL-11 is produced at highest frequency by myeloid cells among the peripheral blood mononuclear cell (PBMC) subsets. Patients with relapsing-remitting multiple sclerosis (RRMS) have an increased frequency of IL-11+ monocytes, IL-11+ and IL-11R+ CD4+ lymphocytes, and IL-11R+ neutrophils in comparison to matched healthy controls. IL-11+ and granulocyte-macrophage colony-stimulating factor (GM-CSF)+ monocytes, CD4+ lymphocytes, and neutrophils accumulate in the cerebrospinal fluid (CSF). The effect of IL-11 in-vitro stimulation, examined using single-cell RNA sequencing, revealed the highest number of differentially expressed genes in classical monocytes, including up-regulated NFKB1, NLRP3, and IL1B. All CD4+ cell subsets had increased expression of S100A8/9 alarmin genes involved in NLRP3 inflammasome activation. In IL-11R+-sorted cells from the CSF, classical and intermediate monocytes significantly up-regulated the expression of multiple NLRP3 inflammasome-related genes, including complement, IL18, and migratory genes (VEGFA/B) in comparison to blood-derived cells. Therapeutic targeting of this pathway with αIL-11 mAb in mice with RR experimental autoimmune encephalomyelitis (EAE) decreased clinical scores, CNS inflammatory infiltrates, and demyelination. αIL-11 mAb treatment decreased the numbers of NFκBp65+, NLRP3+, and IL-1ß+ monocytes in the CNS of mice with EAE. The results suggest that IL-11/IL-11R signaling in monocytes represents a therapeutic target in RRMS.


Assuntos
Encefalomielite Autoimune Experimental , Inflamassomos , Animais , Camundongos , Inflamassomos/metabolismo , Monócitos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Leucócitos Mononucleares/metabolismo , Interleucina-11/genética , Interleucina-11/metabolismo , Sistema Nervoso Central/metabolismo , Movimento Celular
2.
Proc Natl Acad Sci U S A ; 118(16)2021 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-33846242

RESUMO

Precision medicine in oncology leverages clinical observations of exceptional response. Toward an understanding of the molecular features that define this response, we applied an integrated, multiplatform analysis of RNA profiles derived from clinically annotated glioblastoma samples. This analysis suggested that specimens from exceptional responders are characterized by decreased accumulation of microglia/macrophages in the glioblastoma microenvironment. Glioblastoma-associated microglia/macrophages secreted interleukin 11 (IL11) to activate STAT3-MYC signaling in glioblastoma cells. This signaling induced stem cell states that confer enhanced tumorigenicity and resistance to the standard-of-care chemotherapy, temozolomide (TMZ). Targeting a myeloid cell restricted an isoform of phosphoinositide-3-kinase, phosphoinositide-3-kinase gamma isoform (PI3Kγ), by pharmacologic inhibition or genetic inactivation disrupted this signaling axis by reducing microglia/macrophage-associated IL11 secretion in the tumor microenvironment. Mirroring the clinical outcomes of exceptional responders, PI3Kγ inhibition synergistically enhanced the anti-neoplastic effects of TMZ in orthotopic murine glioblastoma models. Moreover, inhibition or genetic inactivation of PI3Kγ in murine glioblastoma models recapitulated expression profiles observed in clinical specimens isolated from exceptional responders. Our results suggest key contributions from tumor-associated microglia/macrophages in exceptional responses and highlight the translational potential for PI3Kγ inhibition as a glioblastoma therapy.


Assuntos
Glioblastoma/metabolismo , Microglia/metabolismo , Temozolomida/farmacologia , Adulto , Animais , Neoplasias Encefálicas/patologia , Linhagem Celular Tumoral , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Resistencia a Medicamentos Antineoplásicos/fisiologia , Feminino , Glioblastoma/tratamento farmacológico , Glioblastoma/patologia , Humanos , Interleucina-11/imunologia , Interleucina-11/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Nus , Microglia/fisiologia , Fosfatidilinositol 3-Quinase/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Transdução de Sinais/efeitos dos fármacos , Temozolomida/metabolismo , Microambiente Tumoral/efeitos dos fármacos , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/fisiologia
3.
Int J Mol Sci ; 25(3)2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38338642

RESUMO

IL6 is a proinflammatory cytokine that binds to membrane-bound IL6 receptor (IL6R) or soluble IL6R to signal via gp130 in cis or trans, respectively. We tested the hypothesis that sgp130Fc, which is believed to be a selective IL6 trans-signalling inhibitor, is in fact a non-specific inhibitor of gp130 signalling. In human cancer and primary cells, sgp130Fc inhibited IL6, IL11, OSM and CT1 cis-signalling. The IC50 values of sgp130Fc for IL6 and OSM cis-signalling were markedly (20- to 200-fold) lower than the concentrations of sgp130Fc used in mouse studies and clinical trials. sgp130 inhibited IL6 and OSM signalling in the presence of an ADAM10/17 inhibitor and the absence of soluble IL6R or OSMR, with effects that were indistinguishable from those of a gp130 neutralising antibody. These data show that sgp130Fc does not exclusively block IL6 trans-signalling and reveal instead that broad inhibition of gp130 signalling likely underlies its therapeutic effects. This proposes global or modular inhibition of gp130 as a therapeutic approach for treating human disease.


Assuntos
Citocinas , Interleucina-6 , Camundongos , Humanos , Animais , Citocinas/farmacologia , Receptor gp130 de Citocina/metabolismo , Interleucina-6/metabolismo , Transdução de Sinais , Receptores de Interleucina-6
4.
Apoptosis ; 28(3-4): 566-575, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36653732

RESUMO

Apoptotic signaling pathways are involved in acute kidney injury (AKI) induced by the antineoplastic drug cisplatin (Cis). Mechanical stress is known to increase interleukin (IL) -11, a pleiotropic cytokine with antiapoptotic and antinecrotic effects. We compared the impact of high-intensity interval training (HIIT) with low-intensity continuous training (LICT) and moderate-intensity continuous training (MICT) on renal levels of IL-11 and the expression of apoptotic markers in female rats with nephrotoxicity induced by Cis. For that, the animals were divided into five groups (n = 7): control and sedentary (C + S); Cis and sedentary (Cis + S); Cis and LICT (Cis + LICT); Cis and MICT (Cis + MICT) and Cis and HIIT (Cis + HIIT). At the end of 8 weeks of treadmill running, the rats received a single injection of Cis (5 mg/kg), and 7 days later they were euthanized. Serum and kidney samples were collected to assess the blood urea nitrogen (BUN), gene expression of TNF receptor 1 (TNFR1) and 2 (TNFR2), caspase-3, (p38) MAPK (MAPK14), p53, Bax, Bak, Bcl-2, and Bcl-xL, renal levels of IL-11, IL-8, and p53, and immunolocalization of cleaved caspase-3, Bax, Bcl-2, and (p38) MAPK in renal tissue. Our data indicate that all trained groups showed a significant intensity-dependent increase in renal levels of IL-11 associated with reduced local expression of proapoptotic and increased antiapoptotic markers, but these effects were more pronounced with HIIT. So, HIIT appears to provide superior renoprotection than traditional continuous training by modulating apoptotic signaling pathways, and this effect can be related to the increase in renal levels of IL-11.


Assuntos
Treinamento Intervalado de Alta Intensidade , Nefropatias , Condicionamento Físico Animal , Animais , Feminino , Ratos , Apoptose , Proteína X Associada a bcl-2 , Caspase 3 , Cisplatino/toxicidade , Interleucina-11 , Proteína Supressora de Tumor p53 , Nefropatias/induzido quimicamente
5.
Biol Chem ; 404(1): 59-69, 2023 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-36268909

RESUMO

Interleukin-11 (IL-11) is a pleiotropic cytokine that regulates proliferation and motility of cancer cells. Fibroblasts reside in the cancer microenvironment and are the primary source of IL-11. Activated fibroblasts, including cancer-associated fibroblasts that produce IL-11, contribute to the development and progression of cancer, and induce fibrosis associated with cancer. Changes in fatty acid composition or its metabolites, and an increase in free fatty acids have been observed in cancer. The effect of deregulated fatty acids on the development and progression of cancer is not fully understood yet. In the present study, we investigated the effects of fatty acids on mRNA expression and secretion of IL-11 in lung fibroblasts. Among the eight fatty acids added exogenously, arachidonic acid (AA) increased mRNA expression and secretion of IL-11 in lung fibroblasts in a dose-dependent manner. AA-induced upregulation of IL-11 was dependent on the activation of the p38 or ERK MAPK signaling pathways. Furthermore, prostaglandin E2, associated with elevated cyclooxygenase-2 expression, participated in the upregulation of IL-11 via its specific receptor in an autocrine/paracrine manner. These results suggest that AA may mediate IL-11 upregulation in lung fibroblasts in the cancer microenvironment, accompanied by unbalanced fatty acid composition.


Assuntos
Fibroblastos , Interleucina-11 , Ácido Araquidônico/farmacologia , Ácido Araquidônico/metabolismo , Interleucina-11/metabolismo , Interleucina-11/farmacologia , Fibroblastos/metabolismo , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Ciclo-Oxigenase 2/farmacologia , Pulmão/metabolismo , RNA Mensageiro/metabolismo , Células Cultivadas
6.
J Transl Med ; 21(1): 491, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37480086

RESUMO

BACKGROUND: The pathogenic mechanisms shared between kidney stones and diabetes at the transcriptional level remain elusive, and the molecular mechanisms by which resveratrol exerts its protective effects against these conditions require further investigation. METHODS: To address these gaps in knowledge, we conducted a comprehensive analysis of microarray and RNA-seq datasets to elucidate shared biomarkers and biological pathways involved in the pathogenesis of kidney stones and diabetes. An assortment of bioinformatic approaches was employed to illuminate the common molecular markers and associated pathways, thereby contributing to the identification of innovative therapeutic targets. Further investigation into the molecular mechanisms of resveratrol in preventing these conditions was conducted using molecular docking simulation and first-principles calculations. RESULTS: The study identified 11 potential target genes associated with kidney stones and diabetes through the intersection of genes from weighted gene co-expression network analysis (WGCNA) and differentially expressed genes (DEGs) screening. Among these, Interleukin 11 (IL11) emerged as a pivotal hub gene and a potential diagnostic biomarker for both conditions, particularly in males. Expression analysis of IL11 demonstrated elevated levels in kidney stones and diabetes groups compared to controls. Additionally, IL11 exhibited correlations with specific cell types and differential expression in normal and pathological conditions. Gene set enrichment analysis (GSEA) highlighted significant disparities in biological processes, pathways, and immune signatures associated with IL11. Moreover, molecular docking simulation of resveratrol towards IL11 and a first-principles investigation of Ca adsorption on the resveratrol surface provided structural evidence for the development of resveratrol-based drugs for these conditions. CONCLUSIONS: Overall, this investigation illuminates the discovery of common molecular mechanisms underlying kidney stones and diabetes, unveils potential diagnostic biomarkers, and elucidates the significance of IL11 in these conditions. It also provides insights into IL11 as a promising therapeutic target and highlights the role of resveratrol. Nonetheless, further research is warranted to enhance our understanding of IL11 targeting mechanisms and address any limitations in the study.


Assuntos
Diabetes Mellitus , Cálculos Renais , Masculino , Humanos , Interleucina-11 , Resveratrol/farmacologia , Resveratrol/uso terapêutico , Simulação de Acoplamento Molecular , Cálculos Renais/tratamento farmacológico , Cálculos Renais/genética , Biomarcadores
7.
J Transl Med ; 21(1): 416, 2023 06 26.
Artigo em Inglês | MEDLINE | ID: mdl-37365574

RESUMO

BACKGROUND: Recent studies have discovered an emerging role of IL11 in various colitis-associated cancers, suggesting that IL11 mainly promotes tumor cell survival and proliferation in regulating tumorigenesis. Herein we aimed to reveal a novel function of IL-11 through STAT3 signaling in regulating tumor immune evasion. METHODS: AOM/DSS model in Il11-/- and Apcmin/+/Il11-/- mice were used to detect tumor growth and CD8+ T infiltration. STAT1/3 phosphorylation and MHC-I, CXCL9, H2-K1 and H2-D1 expression were detected in MC38 cells and intestine organoids treated with/without recombinant IL11 to explore effect of IL11/STAT3 signaling, with IL11 mutein used to competitively inhibit IL11 and rescue inhibited STAT1 activation. Correlation between IL11 and CD8+ T infiltration was analyzed using TIMER2.0 website. IL11 expression and survival prognosis was analyzed in clinical data of patient cohort from Nanfang Hospital. RESULTS: IL11 is highly expressed in CRC and indicates unfavorable prognosis. IL11 knockout increased CD8+ T cell infiltration and reduced intestinal and colon formation. Tumors were significantly suppressed while MHC-I and CXCL9 expression for CD8+ T infiltration were remarkably increased in the tumor tissues of Apcmin/+/Il11-/- mice or Il11-/- mice induced by AOM/DSS. IL11/STAT3 signaling downregulated MHC-I and CXCL9 by inhibiting IFNγ-induced STAT1 phosphorylation. IL11 mutein competitively inhibit IL11 to upregulate CXCL9 and MHC-I in tumor and attenuated tumor growth. CONCLUSIONS: This study ascribes for a new immunomodulatory role for IL11 during tumor development that is amenable to anti-cytokine based therapy of colon cancer.


Assuntos
Neoplasias do Colo , Interleucina-11 , Camundongos , Animais , Interleucina-11/metabolismo , Interleucina-11/farmacologia , Transdução de Sinais , Neoplasias do Colo/genética , Neoplasias do Colo/patologia , Citocinas/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Fator de Transcrição STAT3/metabolismo
8.
Cell Commun Signal ; 21(1): 293, 2023 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-37853428

RESUMO

Macrophage filopodia, which are dynamic nanotube-like protrusions, have mainly been studied in the context of pathogen clearance. The mechanisms by which they facilitate intercellular communication and mediate tissue inflammation remain poorly understood. Here, we show that macrophage filopodia produce a unique membrane structure called "filopodial tip vesicle" (FTV) that originate from the tip of macrophages filopodia. Filopodia tip-derived particles contain numerous internal-vesicles and function as cargo storage depots via nanotubular transport. Functional studies indicate that the shedding of FTV from filopodia tip allows the delivery of many molecular signalling molecules to fibroblasts. We observed that FTV derived from M1 macrophages and high glucose (HG)-stimulated macrophages (HG/M1-ftv) exhibit an enrichment of the chemokine IL11, which is critical for fibroblast transdifferentiation. HG/M1-ftv induce renal interstitial fibrosis in diabetic mice, while FTV inhibition or targeting FTV IL11- alleviates renal interstitial fibrosis, suggesting that the HG/M1-ftvIL11 pathway may be a novel mechanism underlying renal fibrosis in diabetic nephropathy. Collectively, FTV release could represent a novel function by which filopodia contribute to cell biological processes, and FTV is potentially associated with macrophage filopodia-related fibrotic diseases. Video Abstract.


Assuntos
Diabetes Mellitus Experimental , Pseudópodes , Camundongos , Animais , Pseudópodes/metabolismo , Interleucina-11/metabolismo , Diabetes Mellitus Experimental/metabolismo , Macrófagos/metabolismo , Inflamação/metabolismo , Fibrose
9.
Pharmacol Res ; 197: 106985, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37949331

RESUMO

IL-11 is linked to fibrotic diseases, but its role in pulmonary hypertension is unclear. We examined IL-11's involvement in idiopathic pulmonary arterial hypertension (iPAH). Using samples from control (n = 20) and iPAH (n = 6) subjects, we assessed IL-11 and IL-11Rα expression and localization through RT-qPCR, ELISA, immunohistochemistry, and immunofluorescence. A monocrotaline-induced PAH model helped evaluate the impact of siRNA-IL-11 on pulmonary artery remodeling and PH. The effects of recombinant human IL-11 and IL-11Rα on human pulmonary artery smooth muscle cell (HPASMC) proliferation, pulmonary artery endothelial cell (HPAEC) mesenchymal transition, monocyte interactions, endothelial tube formation, and precision cut lung slice (PCLS) pulmonary artery remodeling and contraction were evaluated. IL-11 and IL-11Rα were over-expressed in pulmonary arteries (3.2-fold and 75-fold respectively) and serum (1.5-fold and 2-fold respectively) of patients with iPAH. Therapeutic transient transfection with siRNA targeting IL-11 resulted in a significant reduction in pulmonary artery remodeling (by 98%), right heart hypertrophy (by 66%), and pulmonary hypertension (by 58%) in rats exposed to monocrotaline treatment. rhIL-11 and soluble rhIL-11Rα induce HPASMC proliferation and HPAEC to monocyte interactions, mesenchymal transition, and tube formation. Neutralizing monoclonal IL-11 and IL-11Rα antibodies inhibited TGFß1 and EDN-1 induced HPAEC to mesenchymal transition and HPASMC proliferation. In 3D PCLS, rhIL-11 and soluble rhIL-11Rα do not promote pulmonary artery contraction but sensitize PCLS pulmonary artery contraction induced by EDN-1. In summary, IL-11 and IL-11Rα are more highly expressed in the pulmonary arteries of iPAH patients and contribute to pulmonary artery remodeling and the development of PH.


Assuntos
Hipertensão Pulmonar , Hipertensão Arterial Pulmonar , Humanos , Animais , Ratos , Hipertensão Pulmonar Primária Familiar , Interleucina-11 , Hipertensão Pulmonar/induzido quimicamente , Hipertensão Pulmonar/tratamento farmacológico , Monocrotalina , Artéria Pulmonar , RNA Interferente Pequeno/genética
10.
Int J Mol Sci ; 24(4)2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36834778

RESUMO

Glioblastoma cells adapt to changes in glucose availability through metabolic plasticity allowing for cell survival and continued progression in low-glucose concentrations. However, the regulatory cytokine networks that govern the ability to survive in glucose-starved conditions are not fully defined. In the present study, we define a critical role for the IL-11/IL-11Rα signalling axis in glioblastoma survival, proliferation and invasion when cells are starved of glucose. We identified enhanced IL-11/IL-11Rα expression correlated with reduced overall survival in glioblastoma patients. Glioblastoma cell lines over-expressing IL-11Rα displayed greater survival, proliferation, migration and invasion in glucose-free conditions compared to their low-IL-11Rα-expressing counterparts, while knockdown of IL-11Rα reversed these pro-tumorigenic characteristics. In addition, these IL-11Rα-over-expressing cells displayed enhanced glutamine oxidation and glutamate production compared to their low-IL-11Rα-expressing counterparts, while knockdown of IL-11Rα or the pharmacological inhibition of several members of the glutaminolysis pathway resulted in reduced survival (enhanced apoptosis) and reduced migration and invasion. Furthermore, IL-11Rα expression in glioblastoma patient samples correlated with enhanced gene expression of the glutaminolysis pathway genes GLUD1, GSS and c-Myc. Overall, our study identified that the IL-11/IL-11Rα pathway promotes glioblastoma cell survival and enhances cell migration and invasion in environments of glucose starvation via glutaminolysis.


Assuntos
Glioblastoma , Humanos , Linhagem Celular , Linhagem Celular Tumoral , Glioblastoma/metabolismo , Glucose/metabolismo , Interleucina-11/metabolismo , Receptores de Interleucina-11
11.
Int J Mol Sci ; 24(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37240247

RESUMO

Cytokines and chemokines (chemotactic cytokines) are soluble extracellular proteins that bind to specific receptors and play an integral role in the cell-to-cell signaling network. In addition, they can promote the homing of cancer cells into different organs. We investigated the potential relationship between human hepatic sinusoidal endothelial cells (HHSECs) and several melanoma cell lines for the expression of chemokine and cytokine ligands and receptor expression during the invasion of melanoma cells. In order to identify differences in gene expression related to invasion, we selected invasive and non-invasive subpopulations of cells after co-culturing with HHSECs and identified the gene expression patterns of 88 chemokine/cytokine receptors in all cell lines. Cell lines with stable invasiveness and cell lines with increased invasiveness displayed distinct profiles of receptor genes. Cell lines with increased invasive capacity after culturing with conditioned medium showed a set of receptor genes (CXCR1, IL1RL1, IL1RN, IL3RA, IL8RA, IL11RA, IL15RA, IL17RC, and IL17RD) with significantly different expressions. It is very important to emphasize that we detected significantly higher IL11RA gene expression in primary melanoma tissues with liver metastasis as well, compared to those without metastasis. In addition, we assessed protein expression in endothelial cells before and after co-culturing them with melanoma cell lines by applying chemokine and cytokine proteome arrays. This analysis revealed 15 differentially expressed proteins (including CD31, VCAM-1, ANGPT2, CXCL8, and CCL20) in the hepatic endothelial cells after co-culture with melanoma cells. Our results clearly indicate the interaction between liver endothelial and melanoma cells. Furthermore, we assume that overexpression of the IL11RA gene may play a key role in organ-specific metastasis of primary melanoma cells to the liver.


Assuntos
Neoplasias Hepáticas , Melanoma , Humanos , Citocinas/genética , Receptores de Quimiocinas , Células Endoteliais/metabolismo , Melanoma/metabolismo , Quimiocinas/genética , Neoplasias Hepáticas/genética , Expressão Gênica
12.
Int J Mol Sci ; 24(22)2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38003371

RESUMO

Bone allografts are widely used as osteoconductive support to guide bone regrowth. Bone allografts are more than a scaffold for the immigrating cells as they maintain some bioactivity of the original bone matrix. Yet, it remains unclear how immigrating cells respond to bone allografts. To this end, we have evaluated the response of mesenchymal cells exposed to acid lysates of bone allografts (ALBA). RNAseq revealed that ALBA has a strong impact on the genetic signature of gingival fibroblasts, indicated by the increased expression of IL11, AREG, C11orf96, STC1, and GK-as confirmed by RT-PCR, and for IL11 and STC1 by immunoassays. Considering that transforming growth factor-ß (TGF-ß) is stored in the bone matrix and may have caused the expression changes, we performed a proteomics analysis, TGF-ß immunoassay, and smad2/3 nuclear translocation. ALBA neither showed detectable TGF-ß nor was the lysate able to induce smad2/3 translocation. Nevertheless, the TGF-ß receptor type I kinase inhibitor SB431542 significantly decreased the expression of IL11, AREG, and C11orf96, suggesting that other agonists than TGF-ß are responsible for the robust cell response. The findings suggest that IL11, AREG, and C11orf96 expression in mesenchymal cells can serve as a bioassay reflecting the bioactivity of the bone allografts.


Assuntos
Interleucina-11 , Fator de Crescimento Transformador beta , Interleucina-11/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Gengiva/metabolismo , Fibroblastos/metabolismo , Aloenxertos/metabolismo , Células Cultivadas
13.
Mol Biol (Mosk) ; 57(1): 3-9, 2023.
Artigo em Russo | MEDLINE | ID: mdl-36976735

RESUMO

The study of the role of cytokines in various pathological conditions of the body is a topical area in modern biomedicine. Understanding the physiological roles played by cytokines will aid in finding applications for them as pharmacological agents in clinical practice. Interleukin 11 (IL-11) was discovered in 1990 in fibrocyte-like bone marrow stromal cells, but there has been increased interest in this cytokine in recent years. IL-11 has been shown to correct inflammatory pathways in the epithelial tissues of the respiratory system, where the main events occur during SARS-CoV-2 infection. Further research in this direction will probably support the use of this cytokine in clinical practice. The cytokine plays a significant role in the central nervous system; local expression by nerve cells has been shown. Studies show the involvement of IL-11 in the mechanisms of development of a number of pathologies of the nervous system, and therefore it seems relevant to generalize and analyze the experimental data obtained in this direction. This review summarizes information that shows the involvement of IL-11 in the mechanisms of development of brain pathologies. In the near future this cytokine will likely find clinical application for the correction of mechanisms that are involved in the formation of pathological conditions of the nervous system.


Assuntos
COVID-19 , Interleucina-11 , Humanos , Antígenos CD/metabolismo , COVID-19/genética , Receptor gp130 de Citocina , Citocinas/farmacologia , Interleucina-11/genética , Sistema Nervoso/metabolismo , SARS-CoV-2/metabolismo
14.
Semin Cancer Biol ; 68: 31-46, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-31711994

RESUMO

Drug repurposing is a valuable approach in delivering new cancer therapeutics rapidly into the clinic. Existing safety and patient tolerability data for drugs already in clinical use represent an untapped resource in terms of identifying therapeutic agents for off-label protein targets. The multicellular effects of STAT3 mediated by a range of various upstream signaling pathways make it an attractive therapeutic target with utility in a range of diseases including cancer, and has led to the development of a variety of STAT3 inhibitors. Moreover, heightened STAT3 transcriptional activation in tumor cells and within the cells of the tumor microenvironment contribute to disease progression. Consequently, there are many STAT3 inhibitors in preclinical development or under evaluation in clinical trials for their therapeutic efficacy predominantly in inflammatory diseases and cancer. Despite these advances, many challenges remain in ultimately providing STAT3 inhibitors to patients as cancer treatments, highlighting the need not only for a better understanding of the mechanisms associated with STAT3 activation, but also how various pharmaceutical agents suppress STAT3 activity in various cancers. In this review we discuss the importance of STAT3-dependent functions in cancer, review the status of compounds designed as direct-acting STAT3 inhibitors, and describe some of the strategies for repurposing of drugs as STAT3 inhibitors for cancer therapy.


Assuntos
Antineoplásicos/uso terapêutico , Descoberta de Drogas , Reposicionamento de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Preparações Farmacêuticas/administração & dosagem , Fator de Transcrição STAT3/antagonistas & inibidores , Animais , Humanos
15.
Annu Rev Med ; 71: 263-276, 2020 01 27.
Artigo em Inglês | MEDLINE | ID: mdl-31986085

RESUMO

Interleukin (IL)-11 is upregulated in a wide variety of fibro-inflammatory diseases such as systemic sclerosis, rheumatoid arthritis, pulmonary fibrosis, inflammatory bowel disease, kidney disease, drug-induced liver injury, and nonalcoholic steatohepatitis. IL-11 is a member of the IL-6 cytokine family and has several distinct properties that define its unique and nonredundant roles in disease. The IL-11 receptor is highly expressed on stromal, epithelial and polarized cells, where noncanonical IL-11 signaling drives the three pathologies common to all fibro-inflammatory diseases-myofibroblast activation, parenchymal cell dysfunction, and inflammation-while also inhibiting tissue regeneration. This cytokine has been little studied, and publications on IL-11 peaked in the early 1990s, when it was largely misunderstood. Here we describe recent advances in our understanding of IL-11 biology, outline how misconceptions as to its function came about, and highlight the large potential of therapies targeting IL-11 signaling for treating human disease.


Assuntos
Fibrose/imunologia , Inflamação/imunologia , Interleucina-11/imunologia , Animais , Artrite Reumatoide/imunologia , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Doença Hepática Induzida por Substâncias e Drogas/imunologia , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/patologia , Fibrose/metabolismo , Fibrose/patologia , Humanos , Inflamação/metabolismo , Doenças Inflamatórias Intestinais/imunologia , Doenças Inflamatórias Intestinais/metabolismo , Doenças Inflamatórias Intestinais/patologia , Interleucina-11/metabolismo , Interleucina-11/fisiologia , Interleucina-6/imunologia , Nefropatias/imunologia , Nefropatias/metabolismo , Nefropatias/patologia , Fígado/imunologia , Fígado/metabolismo , Fígado/patologia , Pulmão/imunologia , Pulmão/metabolismo , Pulmão/patologia , Camundongos , Miofibroblastos/imunologia , Miofibroblastos/metabolismo , Miofibroblastos/patologia , Neoplasias/imunologia , Neoplasias/metabolismo , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Hepatopatia Gordurosa não Alcoólica/patologia , Fibrose Pulmonar/imunologia , Fibrose Pulmonar/metabolismo , Fibrose Pulmonar/patologia , Proteínas Recombinantes , Escleroderma Sistêmico/imunologia , Escleroderma Sistêmico/metabolismo , Escleroderma Sistêmico/patologia , Pele/imunologia , Pele/metabolismo , Pele/patologia
16.
Cytokine ; 149: 155750, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34689057

RESUMO

Interleukin-11 (IL-11) is a cytokine that has been strongly implicated in the pathogenesis of fibrotic diseases and solid malignancies. Elevated IL-11 expression is also associated with several non-malignant inflammatory diseases where its function remains less well-characterized. Here, we summarize current literature surrounding the contribution of IL-11 to the pathogenesis of autoimmune inflammatory diseases, including rheumatoid arthritis, multiple sclerosis, diabetes and systemic sclerosis, as well as other chronic inflammatory conditions such as periodontitis, asthma, chronic obstructive pulmonary disease, psoriasis and colitis.


Assuntos
Inflamação/metabolismo , Interleucina-11/metabolismo , Animais , Doenças Autoimunes/metabolismo , Humanos
17.
Respir Res ; 23(1): 313, 2022 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-36376885

RESUMO

BACKGROUND: Pulmonary hypertension (PH) associated to idiopathic pulmonary fibrosis (IPF) portends a poor prognosis. IL-11 has been implicated in fibrotic diseases, but their role on pulmonary vessels is unknown. Here we analyzed the contribution of IL-11 to PH in patients with IPF and the potential mechanism implicated. METHODS: Pulmonary arteries, lung tissue and serum of control subjects (n = 20), IPF (n = 20) and PH associated to IPF (n = 20) were used to study the expression and localization of IL-11 and IL-11Rα. Two models of IL-11 and bleomycin-induced lung fibrosis associated to PH were used in Tie2-GFP transgenic mice to evaluate the contribution of IL-11 and endothelial cells to pulmonary artery remodeling. The effect of IL-11 and soluble IL-11Rα on human pulmonary artery endothelial cells and smooth muscle cell transformations and proliferation were analyzed. RESULTS: IL-11 and IL-11Rα were over-expressed in pulmonary arteries and serum of patients with PH associated to IPF vs IPF patients without PH. Recombinant mice (rm)IL-11 induced lung fibrosis and PH in Tie2-GFP mice, activating in vivo EnMT as a contributor of pulmonary artery remodeling and lung fibrosis. Transient transfection of siRNA-IL-11 reduced lung fibrosis and PH in Tie2-GFP bleomycin model. Human (h)rIL-11 and soluble hrIL-11Rα induced endothelial to mesenchymal transition (EnMT) and pulmonary artery smooth muscle cell to myofibroblast-like transformation, cell proliferation and senescence in vitro. CONCLUSIONS: IL-11 and IL-11Rα are overexpressed in pulmonary arteries of PH associated to IPF patients, and contributes to pulmonary artery remodeling and PH.


Assuntos
Hipertensão Pulmonar , Fibrose Pulmonar Idiopática , Animais , Humanos , Camundongos , Bleomicina/toxicidade , Células Endoteliais/metabolismo , Hipertensão Pulmonar/metabolismo , Fibrose Pulmonar Idiopática/induzido quimicamente , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/complicações , Interleucina-11/genética , Interleucina-11/metabolismo , Interleucina-11/farmacologia , Pulmão/metabolismo , Artéria Pulmonar/metabolismo , Remodelação Vascular
18.
J Allergy Clin Immunol ; 148(2): 585-598, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33771552

RESUMO

BACKGROUND: Biallelic variants in IL6ST, encoding GP130, cause a recessive form of hyper-IgE syndrome (HIES) characterized by high IgE level, eosinophilia, defective acute phase response, susceptibility to bacterial infections, and skeletal abnormalities due to cytokine-selective loss of function in GP130, with defective IL-6 and IL-11 and variable oncostatin M (OSM) and IL-27 levels but sparing leukemia inhibitory factor (LIF) signaling. OBJECTIVE: Our aim was to understand the functional and structural impact of recessive HIES-associated IL6ST variants. METHODS: We investigated a patient with HIES by using exome, genome, and RNA sequencing. Functional assays assessed IL-6, IL-11, IL-27, OSM, LIF, CT-1, CLC, and CNTF signaling. Molecular dynamics simulations and structural modeling of GP130 cytokine receptor complexes were performed. RESULTS: We identified a patient with compound heterozygous novel missense variants in IL6ST (p.Ala517Pro and the exon-skipping null variant p.Gly484_Pro518delinsArg). The p.Ala517Pro variant resulted in a more profound IL-6- and IL-11-dominated signaling defect than did the previously identified recessive HIES IL6ST variants p.Asn404Tyr and p.Pro498Leu. Molecular dynamics simulations suggested that the p.Ala517Pro and p.Asn404Tyr variants result in increased flexibility of the extracellular membrane-proximal domains of GP130. We propose a structural model that explains the cytokine selectivity of pathogenic IL6ST variants that result in recessive HIES. The variants destabilized the conformation of the hexameric cytokine receptor complexes, whereas the trimeric LIF-GP130-LIFR complex remained stable through an additional membrane-proximal interaction. Deletion of this membrane-proximal interaction site in GP130 consequently caused additional defective LIF signaling and Stüve-Wiedemann syndrome. CONCLUSION: Our data provide a structural basis to understand clinical phenotypes in patients with IL6ST variants.


Assuntos
Receptor gp130 de Citocina , Síndrome de Job , Simulação de Dinâmica Molecular , Mutação de Sentido Incorreto , Criança , Receptor gp130 de Citocina/química , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/imunologia , Citocinas/genética , Citocinas/imunologia , Genes Recessivos , Humanos , Síndrome de Job/genética , Síndrome de Job/imunologia , Masculino , RNA-Seq , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Sequenciamento do Exoma
19.
Int J Mol Sci ; 23(3)2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-35163731

RESUMO

The IL-6 cytokine family is a group of signaling molecules with wide expression and function across vertebrates. Each member of the family signals by binding to its specific receptor and at least one molecule of gp130, which is the common transmembrane receptor subunit for the whole group. Signal transduction upon stimulation of the receptor complex results in the activation of multiple downstream cascades, among which, in mammary cells, the JAK-STAT3 pathway plays a central role. In this review, we summarize the role of the IL-6 cytokine family-specifically IL-6 itself, LIF, OSM, and IL-11-as relevant players during breast cancer progression. We have compiled evidence indicating that this group of soluble factors may be used for early and more precise breast cancer diagnosis and to design targeted therapy to treat or even prevent metastasis development, particularly to the bone. Expression profiles and possible therapeutic use of their specific receptors in the different breast cancer subtypes are also described. In addition, participation of these cytokines in pathologies of the breast linked to lactation and involution of the gland, as post-partum breast cancer and mastitis, is discussed.


Assuntos
Neoplasias da Mama , Interleucina-6 , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/prevenção & controle , Receptor gp130 de Citocina/genética , Receptor gp130 de Citocina/metabolismo , Feminino , Humanos , Fator Inibidor de Leucemia , Oncostatina M , Receptores de Citocinas/metabolismo
20.
Int J Mol Sci ; 23(16)2022 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-36012165

RESUMO

Interleukin 11 (IL11) is upregulated in inflammatory conditions, where it is mostly believed to have anti-inflammatory activity. However, recent studies suggest instead that IL11 promotes inflammation by activating fibroblasts. Here, we assessed whether IL11 is pro- or anti-inflammatory in fibroblasts. Primary cultures of human kidney, lung or skin fibroblasts were stimulated with IL11 that resulted in the transient phosphorylation of signal transducer and activator of transcription 3 (STAT3) and the sustained activation of extracellular signal-regulated protein kinases (ERK). RNA sequencing over a time course of IL11 stimulation revealed a robust but short-lived transcriptional response that was enriched for gene set hallmarks of inflammation and characterized by the upregulation of SERPINB2, TNFRSF18, Interleukin 33 (IL33), CCL20, IL1RL1, CXCL3/5/8, ICAM1 and IL11 itself. IL33 was the most upregulated signaling factor (38-fold, p = 9.8 × 10-5), and IL1RL1, its cognate receptor, was similarly increased (18-fold, p = 1.1 × 10-34). In proteomic studies, IL11 triggered a proinflammatory secretome with the notable upregulation of IL8, IL6, MCP1, CCL20 and CXCL1/5/6, which are important chemotaxins for neutrophils, monocytes, and lymphocytes. IL11 induced IL33 expression across fibroblast types, and the inhibition of STAT3 but not of MEK/ERK prevented this. These data establish IL11 as pro-inflammatory with specific importance for priming the IL33 alarmin response in inflammatory fibroblasts across tissues.


Assuntos
Interleucina-11 , Interleucina-33 , Fibroblastos/metabolismo , Humanos , Inflamação/genética , Inflamação/metabolismo , Interleucina-11/genética , Interleucina-11/metabolismo , Interleucina-33/metabolismo , Proteômica
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa