RESUMO
Sodium chloride is expected to be found on many of the surfaces of icy moons like Europa and Ganymede. However, spectral identification remains elusive as the known NaCl-bearing phases cannot match current observations, which require higher number of water of hydration. Working at relevant conditions for icy worlds, we report the characterization of three "hyperhydrated" sodium chloride (SC) hydrates, and refined two crystal structures [2NaCl·17H2O (SC8.5); NaCl·13H2O (SC13)]. We found that the dissociation of Na+ and Cl- ions within these crystal lattices allows for the high incorporation of water molecules and thus explain their hyperhydration. This finding suggests that a great diversity of hyperhydrated crystalline phases of common salts might be found at similar conditions. Thermodynamic constraints indicate that SC8.5 is stable at room pressure below 235 K, and it could be the most abundant NaCl hydrate on icy moon surfaces like Europa, Titan, Ganymede, Callisto, Enceladus, or Ceres. The finding of these hyperhydrated structures represents a major update to the H2O-NaCl phase diagram. These hyperhydrated structures provide an explanation for the mismatch between the remote observations of the surface of Europa and Ganymede and previously available data on NaCl solids. It also underlines the urgent need for mineralogical exploration and spectral data on hyperhydrates at relevant conditions to help future icy world exploration by space missions.
RESUMO
Spacecraft observations suggest that the plumes of Saturn's moon Enceladus draw water from a subsurface ocean, but the sustainability of conduits linking ocean and surface is not understood. Observations show eruptions from "tiger stripe" fissures that are sustained (although tidally modulated) throughout each orbit, and since the 2005 discovery of the plumes. Peak plume flux lags peak tidal extension by â¼1 rad, suggestive of resonance. Here, we show that a model of the tiger stripes as tidally flexed slots that puncture the ice shell can simultaneously explain the persistence of the eruptions through the tidal cycle, the phase lag, and the total power output of the tiger stripe terrain, while suggesting that eruptions are maintained over geological timescales. The delay associated with flushing and refilling of O(1)-m-wide slots with ocean water causes erupted flux to lag tidal forcing and helps to buttress slots against closure, while tidally pumped in-slot flow leads to heating and mechanical disruption that staves off slot freezeout. Much narrower and much wider slots cannot be sustained. In the presence of long-lived slots, the 10(6)-y average power output of the tiger stripes is buffered by a feedback between ice melt-back and subsidence to O(10(10)) W, which is similar to observed power output, suggesting long-term stability. Turbulent dissipation makes testable predictions for the final flybys of Enceladus by Cassini Our model shows how open connections to an ocean can be reconciled with, and sustain, long-lived eruptions. Turbulent dissipation in long-lived slots helps maintain the ocean against freezing, maintains access by future Enceladus missions to ocean materials, and is plausibly the major energy source for tiger stripe activity.
RESUMO
We present a model for the internal structure of Saturn's moon Enceladus. This model allows us to estimate the physical conditions at the bottom of the satellite's potential subsurface water reservoir and to determine the radial distribution of pressure and gravity. This leads to a better understanding of the physical and chemical conditions at the water/rock boundary. This boundary is the most promising area on icy moons for astrobiological studies as it could serve as a potential habitat for extraterrestrial life similar to terrestrial microbes that inhabit rocky mounds on Earth's sea floors.
Assuntos
Meio Ambiente Extraterreno , Gravitação , Modelos Estatísticos , Saturno , Exobiologia , Humanos , Gelo/análiseRESUMO
All known life on Earth inhabits environments that maintain conditions between certain extremes of temperature, chemical composition, energy availability, and so on (Chapter 6). Life may have emerged in similar environments elsewhere in the Solar System and beyond. The ongoing search for life elsewhere mainly focuses on those environments most likely to support life, now or in the past-that is, potentially habitable environments. Discussion of habitability is necessarily based on what we know about life on Earth, as it is our only example. This chapter gives an overview of the known and presumed requirements for life on Earth and discusses how these requirements can be used to assess the potential habitability of planetary bodies across the Solar System and beyond. We first consider the chemical requirements of life and potential feedback effects that the presence of life can have on habitable conditions, and then the planetary, stellar, and temporal requirements for habitability. We then review the state of knowledge on the potential habitability of bodies across the Solar System and exoplanets, with a particular focus on Mars, Venus, Europa, and Enceladus. While reviewing the case for the potential habitability of each body, we summarize the most prominent and impactful studies that have informed the perspective on where habitable environments are likely to be found.
Assuntos
Exobiologia , Meio Ambiente Extraterreno , Planeta Terra , Meio Ambiente Extraterreno/química , Planetas , Sistema SolarRESUMO
Life on our planet likely evolved in the ocean, and thus exo-oceans are key habitats to search for extraterrestrial life. We conducted a data-driven bibliographic survey on the astrobiology literature to identify emerging research trends with marine science for future synergies in the exploration for extraterrestrial life in exo-oceans. Based on search queries, we identified 2592 published items since 1963. The current literature falls into three major groups of terms focusing on (1) the search for life on Mars, (2) astrobiology within our Solar System with reference to icy moons and their exo-oceans, and (3) astronomical and biological parameters for planetary habitability. We also identified that the most prominent research keywords form three key-groups focusing on (1) using terrestrial environments as proxies for Martian environments, centred on extremophiles and biosignatures, (2) habitable zones outside of "Goldilocks" orbital ranges, centred on ice planets, and (3) the atmosphere, magnetic field, and geology in relation to planets' habitable conditions, centred on water-based oceans.
RESUMO
Saturn's mid-sized icy moons have complex relationships with Saturn's interior, the rings, and with each other, which can be expressed in their shapes, interiors, and geology. Observations of their physical states can, thus, provide important constraints on the ages and formation mechanism(s) of the moons, which in turn informs our understanding of the formation and evolution of Saturn and its rings. Here, we describe the cratering records of the mid-sized moons and the value and limitations of their use for constraining the histories of the moons. We also discuss observational constraints on the interior structures of the moons and geologically-derived inferences on their thermal budgets through time. Overall, the geologic records of the moons (with the exception of Mimas) include evidence of epochs of high heat flows, short- and long-lived subsurface oceans, extensional tectonics, and considerable cratering. Curiously, Mimas presents no clear evidence of an ocean within its surface geology, but its rotation and orbit indicate a present-day ocean. While the moons need not be primordial to produce the observed levels of interior evolution and geologic activity, there is likely a minimum age associated with their development that has yet to be determined. Uncertainties in the populations impacting the moons makes it challenging to further constrain their formation timeframes using craters, whereas the characteristics of their cores and other geologic inferences of their thermal evolutions may help narrow down their potential histories. Disruptive collisions may have also played an important role in the formation and evolution of Saturn's mid-sized moons, and even the rings of Saturn, although more sophisticated modeling is needed to determine the collision conditions that produce rings and moons that fit the observational constraints. Overall, the existence and physical characteristics of Saturn's mid-sized moons provide critical benchmarks for the development of formation theories.
RESUMO
Flow cytometry is a potential technology for in situ life detection on icy moons (such as Enceladus and Europa) and on the polar ice caps of Mars. We developed a method for using flow cytometry to positively identify four classes of biomarkers using exogenous fluorescent stains: nucleic acids, proteins, carbohydrates, and lipids. We demonstrated the effectiveness of exogenous stains with six known organisms and known abiotic material and showed that the cytometer is easily able to distinguish between the known organisms and the known abiotic material using the exogenous stains. To simulate a life-detection experiment on an icy world lander, we used six natural samples with unknown biotic and abiotic content. We showed that flow cytometry can identify all four biomarkers using the exogenous stains and can separate the biotic material from the known abiotic material on scatter plots. Exogenous staining techniques would likely be used in conjunction with intrinsic fluorescence, clustering, and sorting for a more complete and capable life-detection instrument on an icy moon lander.
RESUMO
The field of astrobiology aims to understand the origin of life on Earth and searches for evidence of life beyond our planet. Although there is agreement on some of the requirements for life on Earth, the exact process by which life emerged from prebiotic conditions is still uncertain, leading to various theories. In order to expand our knowledge of life and our place in the universe, scientists look for signs of life through the use of biosignatures, observations that suggest the presence of past or present life. These biosignatures often require up-close investigation by orbiters and landers, which have been employed in various space missions. Mars, because of its proximity and Earth-like environment, has received the most attention and has been explored using (sub)surface sampling and analysis. Despite its inhospitable surface conditions, Venus has also been the subject of space missions due to the presence of potentially habitable conditions in its atmosphere. In addition, the discovery of habitable environments on icy moons has sparked interest in further study. This article provides an overview of the origin of life on Earth and the astrobiology studies carried out by orbiters and landers.
RESUMO
The reliable identification of biosignatures is key to the search for life elsewhere. On ocean worlds like Enceladus or Europa, this can be achieved by impact ionization mass spectrometers, such as the SUrface Dust Analyzer (SUDA) on board NASA's upcoming Europa Clipper mission. During spacecraft flybys, these instruments can sample ice grains formed from subsurface water and emitted by these moons. Previous laboratory analog experiments have demonstrated that SUDA-type instruments could identify amino acids, fatty acids, and peptides in ice grains and discriminate between their abiotic and biotic origins. Here, we report experiments simulating impact ionization mass spectra of ice grains containing DNA, lipids, and metabolic intermediates extracted from two bacterial cultures: Escherichia coli and Sphingopyxis alaskensis. Salty Enceladan or Europan ocean waters were simulated using matrices with different NaCl concentrations. Characteristic mass spectral signals, such as DNA nucleobases, are clearly identifiable at part-per-million-level concentrations. Mass spectra of all substances exhibit unambiguous biogenic patterns, which in some cases show significant differences between the two bacterial species. Sensitivity to the biosignatures decreases with increasing matrix salinity. The experimental parameters indicate that future impact ionization mass spectrometers will be most sensitive to the investigated biosignatures for ice grain encounter speeds of 4-6 km/s.
Assuntos
Meio Ambiente Extraterreno , Gelo , Meio Ambiente Extraterreno/química , Exobiologia , Bactérias , LipídeosRESUMO
The icy moons of the outer Solar System display evidence of subsurface liquid water and, therefore, potential habitability for life. Flybys of Saturn's moon Enceladus by the Cassini spacecraft have provided measurements of material from plumes that suggest hydrothermal activity and the presence of organic matter. Jupiter's moon Europa may have similar plumes and is the target for the forthcoming Europa Clipper mission that carries a high mass resolution and high sensitivity mass spectrometer, called the MAss Spectrometer for Planetary EXploration (MASPEX), with the capability for providing detailed characterization of any organic materials encountered. We have performed a series of experiments using pyrolysis-gas chromatography-mass spectrometry to characterize the mass spectrometric fingerprints of microbial life. A range of extremophile Archaea and Bacteria have been analyzed and the laboratory data converted to MASPEX-type signals. Molecular characteristics of protein, carbohydrate, and lipid structures were detected, and the characteristic fragmentation patterns corresponding to these different biological structures were identified. Protein pyrolysis fragments included phenols, nitrogen heterocycles, and cyclic dipeptides. Oxygen heterocycles, such as furans, were detected from carbohydrates. Our data reveal how mass spectrometry on Europa Clipper can aid in the identification of the presence of life, by looking for characteristic bacterial fingerprints that are similar to those from simple Earthly organisms.
Assuntos
Exobiologia , Lua , Archaea , Bactérias , Exobiologia/métodos , Meio Ambiente Extraterreno/química , Espectrometria de MassasRESUMO
Monohydrate sulfate kieserites (M 2+SO4·H2O) and their solid solutions are essential constituents on the surface of Mars and most likely also on Galilean icy moons in our solar system. Phase stabilities of end-member representatives (M 2+ = Mg, Fe, Co, Ni) have been examined crystallographically using single-crystal X-ray diffraction at 1â bar and temperatures down to 15â K, by means of applying open He cryojet techniques at in-house laboratory instrumentation. All four representative phases show a comparable, highly anisotropic thermal expansion behavior with a remarkable negative thermal expansion along the monoclinic b axis and a pronounced anisotropic expansion perpendicular to it. The lattice changes down to 15â K correspond to an 'inverse thermal pressure' of approximately 0.7â GPa, which is far below the critical pressures of transition under hydro-static compression (Pc ≥ 2.40â GPa). Consequently, no equivalent structural phase transition was observed for any compound, and neither dehydration nor rearrangements of the hydrogen bonding schemes have been observed. The M 2+SO4·H2O (M 2+ = Mg, Fe, Co, Ni) end-member phases preserve the kieserite-type C2/c symmetry; hydrogen bonds and other structural details were found to vary smoothly down to the lowest experimental temperature. These findings serve as an important basis for the assignment of sulfate-related signals in remote-sensing data obtained from orbiters at celestial bodies, as well as for thermodynamic considerations and modeling of properties of kieserite-type sulfate monohydrates relevant to extraterrestrial sulfate associations at very low temperatures.
RESUMO
Impact delivery of prebiotic compounds to the early Earth from an impacting comet is considered to be one of the possible ways by which prebiotic molecules arrived on the Earth. Given the ubiquity of impact features observed on all planetary bodies, bolide impacts may be a common source of organics on other planetary bodies both in our own and other solar systems. Biomolecules such as amino acids have been detected on comets and are known to be synthesized due to impact-induced shock processing. Here we report the results of a set of hypervelocity impact experiments where we shocked icy mixtures of amino acids mimicking the icy surface of planetary bodies with high-speed projectiles using a two-stage light gas gun and analyzed the ejecta material after impact. Electron microscopic observations of the ejecta have shown the presence of macroscale structures with long polypeptide chains revealed from LCMS analysis. These results suggest a pathway in which impact on cometary ices containing building blocks of life can lead to the synthesis of material architectures that could have played a role in the emergence of life on the Earth and which may be applied to other planetary bodies as well.
RESUMO
Water bodies on Mars and the icy moons of the outer solar system are now recognized as likely being associated with high levels of salt. Therefore, the study of high salinity environments and their inhabitants has become increasingly relevant for Astrobiology. Members of the archaeal class Halobacteria are the most successful microbial group living in hypersaline conditions and are recognized as key model organisms for exposure experiments. Despite this, data for the class is uneven across taxa and widely dispersed across the literature, which has made it difficult to properly assess the potential for species of Halobacteria to survive under the polyextreme conditions found beyond Earth. Here we provide an overview of published data on astrobiology-linked exposure experiments performed with members of the Halobacteria, identifying clear knowledge gaps and research opportunities.
RESUMO
The precipitation of hydrated phases from a chondrite-like Na-Mg-Ca-SO4-Cl solution is studied using in situ synchrotron X-ray powder diffraction, under rapid- (360â Kâ h-1, T = 250-80â K, t = 3â h) and ultra-slow-freezing (0.3â Kâ day-1, T = 273-245â K, t = 242â days) conditions. The precipitation sequence under slow cooling initially follows the predictions of equilibrium thermodynamics models. However, after â¼50â days at 245â K, the formation of the highly hydrated sulfate phase Na2Mg(SO4)2·16H2O, a relatively recent discovery in the Na2Mg(SO4)2-H2O system, was observed. Rapid freezing, on the other hand, produced an assemblage of multiple phases which formed within a very short timescale (≤4â min, ΔT = 2â K) and, although remaining present throughout, varied in their relative proportions with decreasing temperature. Mirabilite and meridianiite were the major phases, with pentahydrite, epsomite, hydrohalite, gypsum, blödite, konyaite and loweite also observed. Na2Mg(SO4)2·16H2O was again found to be present and increased in proportion relative to other phases as the temperature decreased. The results are discussed in relation to possible implications for life on Europa and application to other icy ocean worlds.
RESUMO
Organic chemistry is ubiquitous in the Solar System, and both Mars and a number of icy satellites of the outer Solar System show substantial promise for having hosted or hosting life. Here, we propose a novel astrobiologically focused instrument suite that could be included as scientific payload in future missions to Mars or the icy moons: the Complex Molecules Detector, or CMOLD. CMOLD is devoted to determining different levels of prebiotic/biotic chemical and structural targets following a chemically general approach (i.e., valid for both terrestrial and nonterrestrial life), as well as their compatibility with terrestrial life. CMOLD is based on a microfluidic block that distributes a liquid suspension sample to three instruments by using complementary technologies: (1) novel microscopic techniques for identifying ultrastructures and cell-like morphologies, (2) Raman spectroscopy for detecting universal intramolecular complexity that leads to biochemical functionality, and (3) bioaffinity-based systems (including antibodies and aptamers as capture probes) for finding life-related and nonlife-related molecular structures. We highlight our current developments to make this type of instruments flight-ready for upcoming Mars missions: the Raman spectrometer included in the science payload of the ESAs Rosalind Franklin rover (Raman Laser Spectrometer instrument) to be launched in 2022, and the biomarker detector that was included as payload in the NASA Icebreaker lander mission proposal (SOLID instrument). CMOLD is a robust solution that builds on the combination of three complementary, existing techniques to cover a wide spectrum of targets in the search for (bio)chemical complexity in the Solar System.
Assuntos
Exobiologia/instrumentação , Gelo/análise , Dispositivos Lab-On-A-Chip , Marte , Microbiologia da Água , Biomarcadores/análise , Meio Ambiente Extraterreno/química , Microscopia/instrumentação , Voo Espacial/instrumentação , Análise Espectral Raman/instrumentaçãoRESUMO
Motivated by an interest in understanding the habitability of aqueous environments on Earth and in extraterrestrial settings, this study investigated the influence of ions in an artificial sodium-magnesium-sulfate-chloride ion system on the growth parameters (lag phase, growth rate, and final cell concentration) of bacteria. These four ions, in different combinations, are key components of many aqueous environments on Earth and elsewhere. We investigated non-halophilic bacteria deliberately to remove the bias of prior adaptations to high concentrations of selected ions so that we could compare the effects of different ions. We tested the hypothesis that water activity determined the growth parameters independent of the ion types. Neither water activity or ionic strength alone could predict growth. However, when ionic strengths were matched, many differences in growth parameters could be explained by the water activity. We suggest that species-specific effects (caused by differences in biochemical and physiological influences), the role of individual ions in cellular processes, and potentially the chaotropicity and kosmotropicity of solutions influenced the growth. Our data show that although extreme combinations of these ions allow for general predictions on the habitability of extraterrestrial aqueous environments, a complex interplay of ionic effects influences the growth and thus the adaptations required for given ion combinations. The data also show that an accurate quantification of the habitability of ocean worlds, such as Europa and Enceladus, can only be made when samples are obtained from these water bodies and the ion combinations are determined.
Assuntos
Adaptação Fisiológica , Bactérias/crescimento & desenvolvimento , Meio Ambiente Extraterreno/química , Microbiologia da Água , Água/química , Cloretos/química , Planeta Terra , Exobiologia , Íons/química , Magnésio/química , Concentração Osmolar , Sódio/química , Sulfatos/químicaRESUMO
To ensure that scientific investments in space exploration are not compromised by terrestrial contamination of celestial bodies, special care needs to be taken to preserve planetary conditions for future astrobiological exploration. Significant effort has been made and is being taken to address planetary protection in the context of inner Solar System exploration. In particular for missions to Mars, detailed internationally accepted guidelines have been established. For missions to the icy moons in the outer Solar System, Europa and Enceladus, the planetary protection requirements are so far based on a probabilistic approach and a conservative estimate of poorly known parameters. One objective of the European Commission-funded project, Planetary Protection of Outer Solar System, was to assess the existing planetary protection approach, to identify inherent knowledge gaps, and to recommend scientific investigations necessary to update the requirements for missions to the icy moons.
Assuntos
Contenção de Riscos Biológicos , Exobiologia , Meio Ambiente Extraterreno , Lua , Genômica , Gelo , Viabilidade Microbiana , Microbiota , Planetas , Esterilização , VácuoRESUMO
Conclusively detecting, or ruling out the possibility of, life on the icy moons of the outer Solar System will require spacecraft missions to undergo rigorous planetary protection and contamination control procedures to achieve extremely low levels of organic terrestrial contamination. Contamination control is necessary to avoid forward contamination of the body of interest and to avoid the detection of false-positive signals, which could either mask indigenous organic chemistry of interest or cause an astrobiological false alarm. Here we test a new method for rapidly and inexpensively assessing the organic cleanliness of spaceflight hardware surfaces using solid phase micro extraction (SPME) fibers to directly swab surfaces. The results suggest that the method is both time and cost efficient. The SPME-gas chromatography-mass spectrometry (SPME-GC-MS) method is sensitive to common midweight, nonpolar contaminant compounds, for example, aliphatic and aromatic hydrocarbons, which are common contaminants in laboratory settings. While we demonstrate the potential of SPME for surface sampling, the GC-MS instrumentation restricts the SPME-GC-MS technique's sensitivity to larger polar and nonvolatile compounds. Although not used in this study, to increase the potential range of detectable compounds, SPME can also be used in conjunction with high-performance liquid chromatography/liquid chromatography-mass spectrometry systems suitable for polar analytes (Kataoka et al., 2000). Thus, our SPME method presents an opportunity to monitor organic contamination in a relatively rapid and routine way that produces information-rich data sets.
Assuntos
Exobiologia , Gelo , Lua , Compostos Orgânicos/análise , Planetas , Microextração em Fase Sólida/métodos , Astronave , Cromatografia Gasosa-Espectrometria de Massas , Compostos Orgânicos/química , Padrões de ReferênciaRESUMO
At present, the study of diverse habitable environments of astrobiological interest has become a major challenge. Due to the obvious technical and economical limitations on in situ exploration, laboratory simulations are one of the most feasible research options to make advances both in several astrobiologically interesting environments and in developing a consistent description of the origin of life. With this objective in mind, we applied vacuum and high pressure technology to the design of versatile simulation chambers devoted to the simulation of the interstellar medium, planetary atmospheres conditions and high-pressure environments. These simulation facilities are especially appropriate for studying the physical, chemical and biological changes induced in a particular sample by in situ irradiation or physical parameters in a controlled environment. Furthermore, the implementation of several spectroscopies, such as infrared, Raman, ultraviolet, etc., to study solids, and mass spectrometry to monitor the gas phase, in our simulation chambers, provide specific tools for the in situ physico-chemical characterization of analogues of astrobiological interest. Simulation chamber facilities are a promising and potential tool for planetary exploration of habitable environments. A review of many wide-ranging applications in astrobiology are detailed herein to provide an understanding of the potential and flexibility of these unique experimental systems.