Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros

Base de dados
País como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-37409567

RESUMO

Gram-negative, aerobic, motile by means of two or more polar or subpolar flagella, rod-shaped strain NS12-5T and Gram-negative, facultatively anaerobic, yellow-coloured, rod-shaped strain RP8T were isolated from rice rhizosphere soil and fermented fruits of Liriope platyphylla in the Republic of Korea, respectively. The result of phylogenetic analyses based on 16S rRNA gene sequences showed that strain NS12-5T was most closely related to Ideonella aquatica 4Y11T with 99.79 % sequence similarity. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between strain NS12-5T and species of the genus Ideonella were 75.6-91.7 % and 20.3-43.9 %, respectively. Growth occurred at 15-40 °C and pH 5-11, and NaCl was not needed for growth. The major fatty acids of strain NS12-5T were summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c) and C16 : 0, and the major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C content of strain NS12-5T was 69.03 mol%. The result of phylogenetic analyses based on 16S rRNA gene sequences revealed that strain RP8T was most closely related to Spirosoma aureum BT328T with 96.01 % sequence similarity. The ANI and dDDH values between strain RP8T and reference strains of the genus Spirosoma were 72.9-76.4 % and 18.6-20.0 %, respectively. Growth occurred at 15-37 °C and pH 5-11, and NaCl was not needed for growth. The major fatty acids of strain RP8T were summed feature 3 (comprising C16 : 1 ω7c and/or C16 : 1 ω6c), C16 : 1 ω5c and iso-C15 : 0. The major polar lipids were phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol. The DNA G+C contents of strain RP8T were 54.9 mol%. Based on phenotypic, genomic and phylogenetic results, strains NS12-5T and RP8T represent novel species in the genus Ideonella and Spirosoma, respectively, and the names Ideonella oryzae sp. nov. and Spirosoma liriopis sp. nov. are proposed. The type strain of I. oryzae sp. nov. is NS12-5T (=KACC 22691T=TBRC 16346T) and the type strain of S. liriopis is RP8T (=KACC 22688T=TBRC 16345T).


Assuntos
Burkholderiales , Cytophagaceae , Ácidos Graxos/química , Fosfolipídeos/química , Fosfatidiletanolaminas , Frutas , Cardiolipinas , Filogenia , RNA Ribossômico 16S/genética , Solo , DNA Bacteriano/genética , Análise de Sequência de DNA , Composição de Bases , Técnicas de Tipagem Bacteriana , Burkholderiales/genética , Microbiologia do Solo
2.
Arch Microbiol ; 204(12): 711, 2022 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385587

RESUMO

The accumulation of macro-, micro- and nano-plastic wastes in the environment is a major global concern, as these materials are resilient to degradation processes. However, microorganisms have evolved their own biological means to metabolize these petroleum-derived polymers, e.g., Ideonella sakaiensis has recently been found to be capable of utilizing polyethylene terephthalate (PET) as its sole carbon source. This study aims to prove its potential capacity to biodegrade two commercial PET materials, obtained from food packaging containers. Plastic pieces of different crystallinity were simultaneously introduced to Ideonella sakaiensis during a seven-week lasting investigation. Loss in weight, appearance of plastics, as well as growth of Ideonella sakaiensis-through quantitative real-time PCR-were determined. Both plastics were found enzymatically attacked in a two-stage degradation process, reaching biodegradation capacities of up to 96%. Interestingly, the transparent, high crystallinity PET was almost fully degraded first, followed by the colored low-crystallinity PET. Results of quantitative real-time PCR-based gene copy numbers were found in line with experimental results, thus underlining its potential of this method to be applied in future studies with Ideonella sakaiensis.


Assuntos
Burkholderiales , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Embalagem de Alimentos , Burkholderiales/genética , Burkholderiales/metabolismo , Biodegradação Ambiental
3.
Int J Syst Evol Microbiol ; 72(10)2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-36268863

RESUMO

The three novel bacterial strains designated as 3Y2T, 4Y16 and 4Y11T were isolated from an aquaculture farm and characterized using a polyphasic taxonomic approach. These strains were determined to be catalase- and oxidase-positive and to hydrolyze gelatin and aesculin. The results of 16S rRNA gene-based phylogenetic analysis indicated that the three strains were related to members of the genus Ideonella. The phylogenomic results further indicated that the three strains formed two independent branches distinct from reference type strains within this genus. The digital DNA-DNA hybridization (dDDH), average nucleotide identity (ANI) and average amino acid identity (AAI) values between the three strains and their relatives were far below the thresholds of 70 % dDDH, 95-96 % ANI and 95 % AAI for species definition, respectively, indicating that the three strains represent two novel genospecies. The results of chemotaxonomic characterization indicated that the major cellular fatty acids of the three strains were summed feature 3 (C16 : 1ω6c and/or C16 : 1 ω7c) and C16 : 0; the common main polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol; the respiratory quinone was ubiquinone-8. The genomic DNA G+C contents of the three strains were 70.2, 70.1 and 69.7%, respectively. On the basis of the different genotypes and distinctive phenotypes such as the phosphatidylcholine and glycolipid only in 3Y2T and the utilization of malic acid and trisodium citrate only in 4Y11T, strains 3Y2T and 4Y11T are concluded to represent two novel species of the genus Ideonella, for which the names Ideonella alba sp. nov. (type strain 3Y2T = GDMCC 1.2584T = KCTC 82813T) and Ideonella aquatica sp. nov. (type strain 4Y11T = GDMCC 1.1935T = JCM 34285T) are proposed.


Assuntos
Burkholderiales , Ubiquinona , RNA Ribossômico 16S/genética , Filogenia , Composição de Bases , Ubiquinona/química , Fosfatidiletanolaminas , Catalase/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Cardiolipinas , Gelatina/genética , Esculina , Ácidos Graxos/química , Análise de Sequência de DNA , Fosfolipídeos/química , Burkholderiales/genética , Aquicultura , Fosfatidilcolinas , Nucleotídeos , Aminoácidos , Glicolipídeos
4.
Appl Microbiol Biotechnol ; 106(23): 7867-7878, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36289066

RESUMO

Poly(ethylene terephthalate) (PET)-degrading bacterium Ideonella sakaiensis produces hydrolytic enzymes that convert PET, via mono(2-hydroxyethyl) terephthalate (MHET), into the monomeric compounds, terephthalic acid (TPA), and ethylene glycol (EG). Understanding PET metabolism is critical if this bacterium is to be engineered for bioremediation and biorecycling. TPA uptake and catabolism in I. sakaiensis have previously been studied, but EG metabolism remains largely unexplored despite its importance. First, we identified two alcohol dehydrogenases (IsPedE and IsPedH) and one aldehyde dehydrogenase (IsPedI) in I. sakaiensis as the homologs of EG metabolic enzymes in Pseudomonas putida KT2440. IsPedE and IsPedH exhibited EG dehydrogenase activities with Ca2+ and a rare earth element (REE) Pr3+, respectively. We further found an upregulated dehydrogenase gene when the bacterium was grown on EG, whose gene product (IsXoxF) displays a minor EG dehydrogenase activity with Pr3+. IsPedE displayed a similar level of activity toward various alcohols. In contrast, IsPedH was more active toward small alcohols, whereas IsXoxF was the opposite. Structural analysis with homology models revealed that IsXoxF had a larger catalytic pocket than IsPedE and IsPedH, which could accommodate relatively bulkier substrates. Pr3+ regulated the protein expression of IsPedE negatively; IsPedH and IsXoxF were positively regulated. Taken together, these results indicated that the combination of IsPedH and IsXoxF complements the function of IsPedE in the presence of REEs. IsPedI exhibited dehydrogenase activity toward various aldehydes with the highest activity toward glycolaldehyde. This study demonstrated a unique alcohol oxidation pathway of I. sakaiensis, which could be efficient in EG utilization. KEY POINTS: • IsPedH and IsXoxF complement IsPedE function in the presence of REEs. • IsPedI displayed the highest dehydrogenase activity toward glycolaldehyde. • Unique alcohol oxidation pathway of I. sakaiensis identified for EG utilization.


Assuntos
Etilenoglicol , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Etilenoglicol/metabolismo , Etilenos , Oxirredutases/genética , Hidrolases/metabolismo
5.
Antonie Van Leeuwenhoek ; 115(9): 1113-1128, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35841500

RESUMO

In the present study, the bacterial community structure of enrichment cultures degrading benzene under microaerobic conditions was investigated through culturing and 16S rRNA gene Illumina amplicon sequencing. Enrichments were dominated by members of the genus Rhodoferax followed by Pseudomonas and Acidovorax. Additionally, a pale amber-coloured, motile, Gram-stain-negative bacterium, designated B7T was isolated from the microaerobic benzene-degrading enrichment cultures and characterized using a polyphasic approach to determine its taxonomic position. The 16S rRNA gene and whole genome-based phylogenetic analyses revealed that strain B7T formed a lineage within the family Comamonadaceae, clustered as a member of the genus Ideonella and most closely related to Ideonella dechloratans CCUG 30977T. The sole respiratory quinone is ubiquinone-8. The major fatty acids are C16:0 and summed feature 3 (C16:1 ω7c/iso-C15:0 2-OH). The DNA G + C content of the type strain is 68.8 mol%. The orthologous average nucleotide identity (OrthoANI) and in silico DNA-DNA hybridization (dDDH) relatedness values between strain B7T and closest relatives were below the threshold values for species demarcation. The genome of strain B7T, which is approximately 4.5 Mb, contains a phenol degradation gene cluster, encoding a multicomponent phenol hydroxylase (mPH) together with a complete meta-cleavage pathway including a I.2.C-type catechol 2,3-dioxygenase (C23O) gene. As predicted by the genome, the type strain is involved in aromatic hydrocarbon-degradation: benzene, toluene and ethylbenzene are degraded aerobically and also microaerobically as sole source of carbon and energy. Based on phenotypic characteristics and phylogenetic analysis, strain B7T is a member of the genus Ideonella and represents a novel species for which the name Ideonella benzenivorans sp. nov. is proposed. The type strain of the species is strain B7T (= LMG 32,345T = NCAIM B.02664T).


Assuntos
Benzeno , Comamonadaceae , Técnicas de Tipagem Bacteriana , Derivados de Benzeno , DNA Bacteriano/genética , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Tolueno
6.
Angew Chem Int Ed Engl ; 61(45): e202211057, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36103351

RESUMO

Ideonella sakaiensis (I. sakaiensis) can grow on polyethylene terephthalate (PET) as the major carbon and energy source. Previous work has shown that PET conversion in the presence of oxygen released carbon dioxide and water while yielding adenosine triphosphate (ATP) through oxidative phosphorylation. This study demonstrates that I. sakaiensis is a facultative anaerobe that ferments PET to the feedstock chemicals acetate and ethanol in the absence of oxygen. In addition to PET, the pure monomer ethylene glycol (EG), the intermediate product ethanol, and the carbohydrate fermentation test substance maltose can also serve as fermenting substrates. Co-culturing of I. sakaiensis with the electrogenic and acetate-consuming Geobacter sulfurreducens produced electricity from PET or EG. This newly identified plastic fermentation process by I. sakaiensis provides thus a novel biosynthetic route to produce high-value chemicals or electricity from plastic waste streams.


Assuntos
Plásticos , Polietilenotereftalatos , Polietilenotereftalatos/química , Plásticos/química , Fermentação , Eletricidade , Oxigênio , Etanol , Hidrolases/metabolismo
7.
Appl Environ Microbiol ; 87(18): e0002021, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34260304

RESUMO

Poly(ethylene terephthalate) (PET) is a commonly used synthetic plastic; however, its nonbiodegradability results in a large amount of waste accumulation that has a negative impact on the environment. Recently, a PET-degrading bacterium, Ideonella sakaiensis 201-F6 strain, was isolated, and the enzymes involved in PET digestion, PET hydrolase (PETase), and mono(2-hydroxyethyl) terephthalic acid (MHET) hydrolase (MHETase) were identified. Despite the great potentials of I. sakaiensis in bioremediation and biorecycling, approaches to studying this bacterium remain limited. In this study, to enable the functional analysis of PETase and MHETase genes in vivo, we have developed a gene disruption system in I. sakaiensis. The pT18mobsacB-based disruption vector harboring directly connected 5'- and 3'-flanking regions of the target gene for homologous recombination was introduced into I. sakaiensis cells via conjugation. First, we deleted the orotidine 5'-phosphate decarboxylase gene (pyrF) from the genome of the wild-type strain, producing the ΔpyrF strain with 5-fluoroorotic acid (5-FOA) resistance. Next, using the ΔpyrF strain as a parent strain and pyrF as a counterselection marker, we disrupted the genes for PETase and MHETase. The growth of both Δpetase and Δmhetase strains on terephthalic acid (TPA; one of the PET hydrolytic products) was comparable to that of the parent strain. However, these mutant strains dramatically decreased the growth level on PET to that on a no-carbon source. Moreover, the Δpetase strain completely abolished PET degradation capacity. These results demonstrate that PETase and MHETase are essential for I. sakaiensis metabolism of PET. IMPORTANCE The poly(ethylene terephthalate) (PET)-degrading bacterium Ideonella sakaiensis possesses two unique enzymes able to serve in PET hydrolysis. PET hydrolase (PETase) hydrolyzes PET into mono(2-hydroxyethyl) terephthalic acid (MHET), and MHET hydrolase (MHETase) hydrolyzes MHET into terephthalic acid (TPA) and ethylene glycol (EG). These enzymes have attracted global attention, as they have potential to be used for bioconversion of PET. Compared to many in vitro studies, including biochemical and crystal structure analyses, few in vivo studies have been reported. Here, we developed a targeted gene disruption system in I. sakaiensis, which was then applied for constructing Δpetase and Δmhetase strains. Growth of these disruptants revealed that PETase is the sole enzyme responsible for PET degradation in I. sakaiensis, while PETase and MHETase play essential roles in its PET assimilation.


Assuntos
Proteínas de Bactérias/genética , Burkholderiales/genética , Burkholderiales/metabolismo , Hidrolases/genética , Polietilenotereftalatos/metabolismo , Proteínas de Bactérias/metabolismo , Etilenoglicol/metabolismo , Genes Bacterianos , Hidrolases/metabolismo , Hidrólise , Engenharia Metabólica , Ácidos Ftálicos/metabolismo , Reciclagem
8.
Microb Cell Fact ; 20(1): 93, 2021 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-33933097

RESUMO

Poly(ethylene terephthalate) (PET) is the world's most abundant polyester plastic, and its ongoing accumulation in nature is causing a global environmental problem. Currently, the main recycling processes utilize thermomechanical or chemical means, resulting in the deterioration of the mechanical properties of PET. Consequently, polluting de novo synthesis remains preferred, creating the need for more efficient and bio-sustainable ways to hydrolyze the polymer. Recently, a PETase enzyme from the bacterium Ideonella sakaiensis was shown to facilitate PET biodegradation, albeit at slow rate. Engineering of more efficient PETases is required for industrial relevance, but progress is currently hampered by the dependency on intracellular expression in Escherichia coli. To create a more efficient screening platform in E. coli, we explore different surface display anchors for fast and easy assaying of PETase activity. We show that PETases can be functionally displayed on the bacterial cell surface, enabling screening of enzyme activity on PET microparticles - both while anchored to the cell and following solubilization of the enzymes.


Assuntos
Biodegradação Ambiental , Escherichia coli/genética , Escherichia coli/metabolismo , Hidrolases/genética , Hidrolases/metabolismo , Polietilenotereftalatos/metabolismo , Hidrólise , Propriedades de Superfície
9.
Int J Mol Sci ; 22(20)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34681915

RESUMO

Plastics are highly durable and widely used materials. Current methodologies of plastic degradation, elimination, and recycling are flawed. In recent years, biodegradation (the usage of microorganisms for material recycling) has grown as a valid alternative to previously used methods. The evolution of bioengineering techniques and the discovery of novel microorganisms and enzymes with degradation ability have been key. One of the most produced plastics is PET, a long chain polymer of terephthalic acid (TPA) and ethylene glycol (EG) repeating monomers. Many enzymes with PET degradation activity have been discovered, characterized, and engineered in the last few years. However, classification and integrated knowledge of these enzymes are not trivial. Therefore, in this work we present a summary of currently known PET degrading enzymes, focusing on their structural and activity characteristics, and summarizing engineering efforts to improve activity. Although several high potential enzymes have been discovered, further efforts to improve activity and thermal stability are necessary.


Assuntos
Enzimas/metabolismo , Plásticos/análise , Polietilenotereftalatos/análise , Biocatálise , Biodegradação Ambiental , Enzimas/química , Engenharia de Proteínas
10.
Int J Syst Evol Microbiol ; 70(9): 4942-4950, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32749952

RESUMO

A novel bacterial strain, designated TBM-1T, isolated from a freshwater lake in Taiwan, was characterized using a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences and coding sequences of 92 protein clusters indicated that strain TBM-1T formed a phylogenetic lineage in the genus Ideonella. Analysis of 16S rRNA gene sequences showed that strain TBM-1T was most closely related to Ideonella dechloratans CCUG 30898T with 98.4 % sequence similarity. The average nucleotide identity, average amino acid identity and digital DNA-DNA hybridization values between strain TBM-1T and closely related strains of the genus Ideonella were 74.4-77.5 %, 69.7-75.4 % and 19.8-21.8 %, respectively, supporting that strain TBM-1T represents a novel species of the genus Ideonella. Cells were Gram-stain-negative, motile by means of a single polar flagellum, rod-shaped and formed blue colonies. Optimal growth occurred at 30 °C, pH 6 and 0 % NaCl. The predominant fatty acids of strain TBM-1T were summed feature 3 (C16 : 1 ω7c and/or C16 : 1 ω6c), C18 : 1 ω7c and C16 : 0. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol, two uncharacterized aminophospholipids and two uncharacterized phospholipids. The main polyamine was putrescine. The major isoprenoid quinone was Q-8. The estimated genome size was 5.26 Mb, with an average G+C content of 70.0 mol%. On the basis of phenotypic and genotypic properties and phylogenetic inference, strain TBM-1T should be classified in a novel species of the genus Ideonella, for which the name Ideonella livida sp. nov. is proposed. The type strain is TBM-1T (=BCRC 81199T =LMG 31339T).


Assuntos
Burkholderiales/classificação , Lagos/microbiologia , Filogenia , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderiales/isolamento & purificação , DNA Bacteriano/genética , Ácidos Graxos/química , Hibridização de Ácido Nucleico , Fosfolipídeos/química , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Taiwan , Ubiquinona/química
11.
Biochem Biophys Res Commun ; 508(1): 250-255, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30477746

RESUMO

Poly(ethylene terephthalate) (PET) is the most commonly used polyester polymer resin in fabrics and storage materials, and its accumulation in the environment is a global problem. The ability of PET hydrolase from Ideonella sakaiensis 201-F6 (IsPETase) to degrade PET at moderate temperatures has been studied extensively. However, due to its low structural stability and solubility, it is difficult to apply standard laboratory-level IsPETase expression and purification procedures in industry. To overcome this difficulty, the expression of IsPETase can be improved by using a secretion system. This is the first report on the production of an extracellular IsPETase, active against PET film, using Sec-dependent translocation signal peptides from E. coli. In this work, we tested the effects of fusions of the Sec-dependent and SRP-dependent signal peptides from E. coli secretory proteins into IsPETase, and successfully produced the extracellular enzyme using pET22b-SPMalE:IsPETase and pET22b-SPLamB:IsPETase expression systems. We also confirmed that the secreted IsPETase has PET-degradation activity. The work will be used for development of a new E. coli strain capable of degrading and assimilating PET in its culture medium.


Assuntos
Burkholderiales/enzimologia , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Hidrolases/biossíntese , Polietilenotereftalatos/metabolismo , Sinais Direcionadores de Proteínas
12.
Arch Microbiol ; 200(5): 811-817, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29442129

RESUMO

Strain TTM-94T, isolated from a water sample taken from the Caohu River in Taiwan, was characterized using a polyphasic taxonomic approach. Cells of strain TTM-94T were Gram-staining-negative, aerobic, poly-ß-hydroxybutyrate-accumulating, motile by a single polar flagellum, short rod-shaped and surrounded by a thick capsule and it formed cream colored colonies. Growth occurred at 20-30 °C (optimum, 30 °C), at pH 6.0-8.0 (optimum, pH 6.0), and in the presence of 0-2% NaCl (optimum 0.5%). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain TTM-94T belonged to the genus Aquincola in the Rubrivivax-Roseateles-Leptothrix-Ideonella-Aquabacterium branch of the class Betaproteobacteria and its most closely related neighbour was Aquincola tertiaricarbonis L10T with sequence similarity of 97.0%. Strain TTM-94T contained summed feature 3 (comprising C16:1ω7c and/or C16:1ω6c), C16:0 and C18:1ω7c as the predominant fatty acids. The polar lipid profile consisted of phosphatidylethanolamine, phosphatidylglycerol, diphosphatidylglycerol and several uncharacterized lipids. The major respiratory quinone was Q-8. Genomic DNA G + C content of strain TTM-94T was 70.7 mol%. Strain TTM-94T exhibited less than 30% DNA-DNA relatedness with A. tertiaricarbonis L10T. Differential phenotypic properties, together with the phylogenetic inference, demonstrate that strain TTM-94T should be classified as a novel species of the genus Aquincola, for which the name Aquincola amnicola sp. nov. is presented. The type strain is TTM-94T (= BCRC 80890T = LMG 28709T).


Assuntos
Betaproteobacteria/isolamento & purificação , Microbiologia da Água , Composição de Bases , Betaproteobacteria/genética , DNA Bacteriano/genética , Tipagem Molecular , Filogenia , RNA Ribossômico 16S/genética , Rios/microbiologia , Análise de Sequência de DNA , Taiwan
13.
3 Biotech ; 14(1): 31, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38178895

RESUMO

The flexibility and the low production costs offered by plastics have made them crucial to society. Unfortunately, due to their resistance to biological degradation, plastics remain in the environment for an extended period of time, posing a growing risk to life on earth. Synthetic treatments of plastic waste damage the environment and may cause damage to human health. Bacterial and fungal isolates have been reported to degrade plastic polymers in a logistic safe approach with the help of their microbial cell enzymes. Recently, the bacterial strain Ideonella sakaiensis (201-F6) was discovered to break down and assimilate polyethylene terephthalate (PET) plastic via metabolic processes at 30 °C to 37 °C. PETase and MHETase enzymes help the bacterium to accomplish such tremendous action at lower temperatures than previously discovered enzymes. In addition to functioning at low temperatures, the noble bacterium's enzymes have amazing qualities over pH and PET plastic degradation, including a shorter period of degradation. It has been proven that using the enzyme PETase, this bacterium hydrolyzes the ester linkages of PET plastic, resulting in production of terephthalic acid (TPA), nontoxic compound and mono-2-hydroxyethyl (MHET), along with further depolymerization of MHET to release ethylene glycogen (EG) and terephthalic acid (TPA) by the second enzyme MHETase. Enzymatic plastic degradation has been proposed as an environmentally friendly and long-term solution to plastic waste in the environment. As a result, this review focuses on the enzymes involved in hydrolyzing PET plastic polymers, as well as some of the other microorganisms involved in plastic degradation.

14.
Environ Sci Pollut Res Int ; 31(13): 20689-20697, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38393574

RESUMO

Poly(ethylene terephthalate) (PET) is a very valuable and beneficial material for industrial purposes, with various different applications. Due to the high annual production volume of over 50 million tons worldwide and the indiscriminate disposal by consumers, the polymers accumulate in the environment, causing negative effects on various ecosystems. Biodegradation via suitable enzymes represents a promising approach to combat the plastic waste issue so validated methods are required to measure the efficiency and efficacy of these enzymes. PETase and MHETase from Ideonella sakaiensis are suitable enzymes needed in combination to completely degrade PET into its environmentally friendly monomers. In this project, we compare and combine a previously described bulk absorbance measurement method with a newly established 1H NMR analysis method of the PET degradation products mono(2-hydroxyethyl) terephthalic acid, bis(2-hydroxyethyl) terephthalic acid and terephthalic acid. Both were optimized regarding different solvents, pH values and drying processes. The accuracy of the measurements can be confirmed with sensitivity limits of 2.5-5 µM for the absorption method and 5-10 µM for the 1H NMR analysis. The combination of the described methods therefore allows a quantitative analysis by using bulk absorption coupled with a qualitative analysis through 1H NMR. The methods established in our work can potentially contribute to the development of suitable recycling strategies of PET using recombinant enzymes.


Assuntos
Hidrolases , Ácidos Ftálicos , Hidrolases/química , Ecossistema , Espectroscopia de Prótons por Ressonância Magnética , Ácidos Ftálicos/química , Polietilenotereftalatos/química
15.
J Hazard Mater ; 459: 132297, 2023 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-37595467

RESUMO

The mesophilic PETase from Ideonella sakaiensis (IsPETase) has been shown to exhibit high PET hydrolysis activity, but its low stability limits its industrial applications. Here, we developed a variant, Z1-PETase, with enhanced soluble protein yield and durability while maintaining or improving activity at lower temperatures. The selected Z1-PETase not only exhibited a 20-fold improvement in soluble protein yield compared to the previously engineered IsPETaseS121E/D186H/S242T/N246D (4p) variant, but also demonstrated a 30% increase in low-temperature activity at 40 °C, along with an 11 °C increase in its TmD value. The PET depolymerization test across a temperature range low to high (30-70 °C) confirmed that Z1-PETase exhibits high accessibility of mesophilic PET hydrolase and rapid depolymerizing rate at higher temperature in accordance with the thermal behaviors of polymer and enzyme. Additionally, structural interpretation indicated that the stabilization of specific active site loops in Z1-PETase contributes to enhanced thermostability without adversely impacting enzymatic activity. In a pH-stat bioreactor, Z1-PETase depolymerized > 90% of both transparent and colored post-consumer PET powders within 24 and 8 h at 40 °C and 55 °C, respectively, demonstrating that the utility of this IsPETase variant in the bio-recycling of PET.


Assuntos
Reatores Biológicos , Hidrolases , Hidrólise , Polímeros , Pós
16.
Microorganisms ; 11(12)2023 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-38138035

RESUMO

Bisphenol A and its analogues represent a significant environmental and public health hazard, particularly affecting the endocrine systems of children and newborns. Due to the growing need for non-pathogenic biodegradation microbial agents as environmentally friendly and cost-effective solutions to eliminate endocrine disruptors, this study aimed to investigate the degradation of bisphenol A by Ideonella sakaiensis, based on its currently understood unique enzymatic machinery that is already well known for degrading polyethylene terephthalate. The present study provides novel insights into the metabolic competence and growth particularities of I. sakaiensis. The growth of I. sakaiensis exposed to bisphenol A exceeded that in the control conditions, starting with 72 h in a 70% nutrient-rich medium and starting with 48 h in a 100% nutrient-rich medium. Computational modeling showed that bisphenol A, as well as its analogue bisphenol S, are possible substrates of PETase and MHETase. The use of bisphenol A as a carbon and energy source through a pure I. sakaiensis culture expands the known substrate spectra and the species' potential as a new candidate for bisphenol A bioremediation processes.

17.
Int J Biol Macromol ; 243: 125252, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37295700

RESUMO

Ideonella sakaiensis is the bacterium that can survive by degrading polyethylene terephthalate (PET) plastic, and terephthalic acid (TPA) binding protein (IsTBP) is an essential periplasmic protein for uptake of TPA into the cytosol for complete degradation of PET. Here, we demonstrated that IsTBP has remarkably high specificity for TPA among 33 monophenolic compounds and two 1,6-dicarboxylic acids tested. Structural comparisons with 6-carboxylic acid binding protein (RpAdpC) and TBP from Comamonas sp. E6 (CsTphC) revealed the key structural features that contribute to high TPA specificity and affinity of IsTBP. We also elucidated the molecular mechanism underlying the conformational change upon TPA binding. In addition, we developed the IsTBP variant with enhanced TPA sensitivity, which can be expanded for the use of TBP as a biosensor for PET degradation.


Assuntos
Burkholderiales , Comamonas , Ácidos Ftálicos , Ácidos Ftálicos/química , Hidrolases/química
18.
Bioinformation ; 19(3): 255-259, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808376

RESUMO

An estimated 311 million tons of plastics are produced annually worldwide; 90% of these are derived from petrol. A considerable portion of these plastics is used for packaging (such as drinking bottles), but only ~14% is collected for recycling. Most plastics degrade extremely slowly, thus constituting a major environmental hazard, especially in the oceans, where microplastics are a matter of major concern. One potential solution for this problem is the synthesis of degradable plastics from renewable resources. From the microbial consortium, the researchers isolated a unique bacterium Ideonella sakaiensis 201-F6 that could almost completely degrade a thin film of PET in a short span of six weeks at 30°C. The objective of the present study is to identify the ligands that may be exploited to improve catalysis and expand substrate specificity and thus significantly advance enzymatic plastic polymer degradation.

19.
Chem Catal ; 2(12): 3573-3589, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37350932

RESUMO

Enzymatic hydrolysis holds great promise for plastic waste recycling and upcycling. The interfacial catalysis mode, and the variability of polymer specimen properties under different degradation conditions, add to the complexity and difficulty of understanding polymer cleavage and engineering better biocatalysts. We present a systemic approach to studying the enzyme-catalyzed surface erosion of poly(ethylene terephthalate) (PET) while monitoring/controlling operating conditions in real time with simultaneous detection of mass loss and changes in viscoelastic behavior. PET nanofilms placed on water showed a porous morphology and a thickness-dependent glass transition temperature (Tg) between 40°C and 44°C, which is >20°C lower than the Tg of bulk amorphous PET. Hydrolysis by a dual-enzyme system containing thermostabilized variants of Ideonella sakaiensis PETase and MHETase resulted in a maximum depolymerization of 70% in 1 h at 50°C. We demonstrate that increased accessible surface area, amorphization, and Tg reduction speed up PET degradation while simultaneously lowering the threshold for degradation-induced crystallization.

20.
Appl Biochem Biotechnol ; 193(8): 2699-2716, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33797026

RESUMO

Polyethylene terephthalate (PET) is extensively used in plastic products, and its accumulation in the environment has become a global concern. Being a non-degradable pollutant, a tremendous quantity of PET-bearing plastic materials have already accumulated in the environment, posing severe challenges towards the existence of various endangered species and consequently threatening the ecosystem and biodiversity. While conventional recycling and remediation methodologies so far have been ineffective in formulating a "green" degradation protocol, the bioremediation strategies-though nascent-are exhibiting greater promises towards achieving the target. Very recently, a novel bacterial strain called Ideonella sakaiensis 201-F6 has been discovered that produces a couple of unique enzymes, polyethylene terephthalate hydrolase and mono(2-hydroxyethyl) terephthalic acid hydrolase, enabling the bacteria to utilize PET as their sole carbon source. With a detailed understanding of the protein structure of these enzymes, possibilities for their optimization as PET degrading agents have started to emerge. In both proteins, several amino acids have been identified that are not only instrumental for catalysis but also provide avenues for the applications of genetic engineering strategies to improve the catalytic efficiencies of the enzymes. In this review, we focused on such unique structural features of these two enzymes and discussed their potential as molecular tools that can essentially become instrumental towards the development of sustainable bioremediation strategies. Degradation PET by wild type and genetically engineered PETase and MHETase. Effect of the MHETase-PETase chimeric protein and PETase expressed on the surface of yeast cells on PET degradation is also shown.


Assuntos
Proteínas de Bactérias/química , Burkholderiales/enzimologia , Hidrolases/química , Plásticos/química , Polietilenotereftalatos/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Biodegradação Ambiental , Burkholderiales/genética , Hidrolases/genética , Hidrolases/metabolismo
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa