Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.467
Filtrar
1.
Cell ; 179(4): 964-983.e31, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31675502

RESUMO

To elucidate the deregulated functional modules that drive clear cell renal cell carcinoma (ccRCC), we performed comprehensive genomic, epigenomic, transcriptomic, proteomic, and phosphoproteomic characterization of treatment-naive ccRCC and paired normal adjacent tissue samples. Genomic analyses identified a distinct molecular subgroup associated with genomic instability. Integration of proteogenomic measurements uniquely identified protein dysregulation of cellular mechanisms impacted by genomic alterations, including oxidative phosphorylation-related metabolism, protein translation processes, and phospho-signaling modules. To assess the degree of immune infiltration in individual tumors, we identified microenvironment cell signatures that delineated four immune-based ccRCC subtypes characterized by distinct cellular pathways. This study reports a large-scale proteogenomic analysis of ccRCC to discern the functional impact of genomic alterations and provides evidence for rational treatment selection stemming from ccRCC pathobiology.


Assuntos
Carcinoma de Células Renais/genética , Proteínas de Neoplasias/genética , Proteogenômica , Transcriptoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/imunologia , Carcinoma de Células Renais/imunologia , Carcinoma de Células Renais/patologia , Intervalo Livre de Doença , Exoma/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Genoma Humano/genética , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas de Neoplasias/imunologia , Fosforilação Oxidativa , Fosforilação/genética , Transdução de Sinais/genética , Transcriptoma/imunologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Sequenciamento do Exoma
2.
Cell ; 171(4): 950-965.e28, 2017 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-29100075

RESUMO

Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (TP53, ATRX, RB1) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types.


Assuntos
Sarcoma/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Análise por Conglomerados , Variações do Número de Cópias de DNA , Epigenômica , Genoma Humano , Estudo de Associação Genômica Ampla , Humanos , Pessoa de Meia-Idade , Mutação , Sarcoma/diagnóstico , Sarcoma/patologia , Adulto Jovem
3.
Brief Bioinform ; 25(3)2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38701421

RESUMO

Cancer is a complex cellular ecosystem where malignant cells coexist and interact with immune, stromal and other cells within the tumor microenvironment (TME). Recent technological advancements in spatially resolved multiplexed imaging at single-cell resolution have led to the generation of large-scale and high-dimensional datasets from biological specimens. This underscores the necessity for automated methodologies that can effectively characterize molecular, cellular and spatial properties of TMEs for various malignancies. This study introduces SpatialCells, an open-source software package designed for region-based exploratory analysis and comprehensive characterization of TMEs using multiplexed single-cell data. The source code and tutorials are available at https://semenovlab.github.io/SpatialCells. SpatialCells efficiently streamlines the automated extraction of features from multiplexed single-cell data and can process samples containing millions of cells. Thus, SpatialCells facilitates subsequent association analyses and machine learning predictions, making it an essential tool in advancing our understanding of tumor growth, invasion and metastasis.


Assuntos
Análise de Célula Única , Software , Microambiente Tumoral , Análise de Célula Única/métodos , Humanos , Neoplasias/patologia , Aprendizado de Máquina , Biologia Computacional/métodos
4.
Brief Bioinform ; 24(2)2023 03 19.
Artigo em Inglês | MEDLINE | ID: mdl-36882021

RESUMO

Immune checkpoint inhibitor (ICI) treatment has created the opportunity of improved outcome for patients with hepatocellular carcinoma (HCC). However, only a minority of HCC patients benefit from ICI treatment owing to poor treatment efficacy and safety concerns. There are few predictive factors that precisely stratify HCC responders to immunotherapy. In this study, we developed a tumour microenvironment risk (TMErisk) model to divide HCC patients into different immune subtypes and evaluated their prognosis. Our results indicated that virally mediated HCC patients who had more common tumour protein P53 (TP53) alterations with lower TMErisk scores were appropriate for ICI treatment. HCC patients with alcoholic hepatitis who more commonly harboured catenin beta 1 (CTNNB1) alterations with higher TMErisk scores could benefit from treatment with multi-tyrosine kinase inhibitors. The developed TMErisk model represents the first attempt to anticipate tumour tolerance of ICIs in the TME through the degree of immune infiltration in HCCs.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/tratamento farmacológico , Inibidores de Checkpoint Imunológico/uso terapêutico , Microambiente Tumoral , Neoplasias Hepáticas/tratamento farmacológico , Imunoterapia
5.
Brief Bioinform ; 25(1)2023 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-38171932

RESUMO

N6-methyladenosine (m6A) RNA methylation is the predominant epigenetic modification for mRNAs that regulates various cancer-related pathways. However, the prognostic significance of m6A modification regulators remains unclear in glioma. By integrating the TCGA lower-grade glioma (LGG) and glioblastoma multiforme (GBM) gene expression data, we demonstrated that both the m6A regulators and m6A-target genes were associated with glioma prognosis and activated various cancer-related pathways. Then, we paired m6A regulators and their target genes as m6A-related gene pairs (MGPs) using the iPAGE algorithm, among which 122 MGPs were significantly reversed in expression between LGG and GBM. Subsequently, we employed LASSO Cox regression analysis to construct an MGP signature (MrGPS) to evaluate glioma prognosis. MrGPS was independently validated in CGGA and GEO glioma cohorts with high accuracy in predicting overall survival. The average area under the receiver operating characteristic curve (AUC) at 1-, 3- and 5-year intervals were 0.752, 0.853 and 0.831, respectively. Combining clinical factors of age and radiotherapy, the AUC of MrGPS was much improved to around 0.90. Furthermore, CIBERSORT and TIDE algorithms revealed that MrGPS is indicative for the immune infiltration level and the response to immune checkpoint inhibitor therapy in glioma patients. In conclusion, our study demonstrated that m6A methylation is a prognostic factor for glioma and the developed prognostic model MrGPS holds potential as a valuable tool for enhancing patient management and facilitating accurate prognosis assessment in cases of glioma.


Assuntos
Glioblastoma , Glioma , Humanos , Glioma/genética , Adenina , Adenosina/genética
6.
Int Immunol ; 36(1): 17-32, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37878760

RESUMO

Chronic obstructive pulmonary disease (COPD) is closely related to innate and adaptive inflammatory immune responses. It is increasingly becoming evident that metabolic syndrome (MetS) affects a significant portion of COPD patients. Through this investigation, we identify shared immune-related candidate biological markers. The Weighted Gene Co-Expression Network Analysis (WGCNA) was utilized to reveal the co-expression modules linked to COPD and MetS. The commonly expressed genes in the COPD and MetS were utilized to conduct an enrichment analysis. We adopted machine-learning to screen and validate hub genes. We also assessed the relationship between hub genes and immune cell infiltration in COPD and MetS, respectively. Moreover, associations across hub genes and metabolic pathways were also explored. Finally, we chose a single-cell RNA sequencing (scRNA-seq) dataset to investigate the hub genes and shared mechanisms at the level of the cells. We also applied cell trajectory analysis and cell-cell communication analysis to focus on the vital immune cell we were interested in. As a result, we selected and validated 13 shared hub genes for COPD and MetS. The enrichment analysis and immune infiltration analysis illustrated strong associations between hub genes and immunology. Additionally, we applied metabolic pathway enrichment analysis, indicating the significant role of reactive oxygen species (ROS) in COPD with MetS. Through scRNA-seq analysis, we found that ROS might accumulate the most in the alveolar macrophages. In conclusion, the 13 hub genes related to the immune response and metabolism may serve as diagnostic biomarkers and treatment targets of COPD with MetS.


Assuntos
Síndrome Metabólica , Doença Pulmonar Obstrutiva Crônica , Humanos , Síndrome Metabólica/genética , Espécies Reativas de Oxigênio , Comunicação Celular , Doença Pulmonar Obstrutiva Crônica/genética , Análise de Sequência de RNA
7.
Hum Genomics ; 18(1): 65, 2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38886862

RESUMO

BACKGROUND: Human cytomegalovirus (HCMV) is a herpesvirus that can infect various cell types and modulate host gene expression and immune response. It has been associated with the pathogenesis of various cancers, but its molecular mechanisms remain elusive. METHODS: We comprehensively analyzed the expression of HCMV pathway genes across 26 cancer types using the Cancer Genome Atlas (TCGA) and The Genotype-Tissue Expression (GTEx) databases. We also used bioinformatics tools to study immune invasion and tumor microenvironment in pan-cancer. Cox regression and machine learning were used to analyze prognostic genes and their relationship with drug sensitivity. RESULTS: We found that HCMV pathway genes are widely expressed in various cancers. Immune infiltration and the tumor microenvironment revealed that HCMV is involved in complex immune processes. We obtained prognostic genes for 25 cancers and significantly found 23 key genes in the HCMV pathway, which are significantly enriched in cellular chemotaxis and synaptic function and may be involved in disease progression. Notably, CaM family genes were up-regulated and AC family genes were down-regulated in most tumors. These hub genes correlate with sensitivity or resistance to various drugs, suggesting their potential as therapeutic targets. CONCLUSIONS: Our study has revealed the role of the HCMV pathway in various cancers and provided insights into its molecular mechanism and therapeutic significance. It is worth noting that the key genes of the HCMV pathway may open up new doors for cancer prevention and treatment.


Assuntos
Biologia Computacional , Citomegalovirus , Neoplasias , Microambiente Tumoral , Humanos , Citomegalovirus/genética , Citomegalovirus/patogenicidade , Biologia Computacional/métodos , Neoplasias/genética , Neoplasias/virologia , Microambiente Tumoral/genética , Microambiente Tumoral/imunologia , Regulação Neoplásica da Expressão Gênica/genética , Infecções por Citomegalovirus/genética , Infecções por Citomegalovirus/virologia , Prognóstico , Redes Reguladoras de Genes/genética , Perfilação da Expressão Gênica , Bases de Dados Genéticas
8.
FASEB J ; 38(5): e23523, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38457275

RESUMO

Zinc and ring finger 3 (ZNRF3) is a negative suppressor of Wnt signal and newly identified as an important regulator in tumorigenesis and development. However, the pan-cancer analysis of ZNRF3 has not been reported. We found that ZNRF3 was significantly decreased in six tumors including CESC, KIRP, KIRC, SKCM, OV, and ACC, but increased in twelve tumors, namely LGG, ESCA, STES, COAD, STAD, LUSC, LIHC, THCA, READ, PAAD, TGCT, and LAML. Clinical outcomes of cancer patients were closely related to ZNRF3 expression in ESCA, GBM, KIRC, LUAD, STAD, UCEC, LGG, and SARC. The highest genetic alteration frequency of ZNRF3 occurred in ACC. Abnormal expression of ZNRF3 could be attributed to the differences of copy number variation (CNV) and DNA methylation as well as ZNRF3-interacting proteins. Besides, ZNRF3 were strongly associated with tumor heterogeneity, tumor stemness, immune score, stromal score and ESTIMATE score in certain cancers. In terms of immune cell infiltration, ZNRF3 was positively correlated to infiltration of cancer-associated fibroblasts in CESC, HNSC, OV, PAAD, PRAD, and THYM, but negatively associated with infiltration of CD8 T cells in HNSC, KIRC, KIRP and THYM. Moreover, ZNRF3 expression was correlated with most immune checkpoint genes in SARC, LUSC, LUAD, PRAD, THCA, UVM, TGCT, and OV, and associated with overwhelming majority of immunoregulatory genes in almost all cancers. Most RNA modification genes were also remarkably related to ZNRF3 level in KIRP, LUAD, LUSC, THYM, UVM, PRAD, and UCEC, indicating that ZNRF3 might have an important effect on cancer epigenetic regulation. Finally, we verified the expression and role of ZNRF3 in clinical specimens and cell lines of renal cancer and liver cancer. This study provides a comprehensive pan-cancer analysis of ZNRF3 and reveals the complexity of its carcinogenic effect.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , Humanos , Variações do Número de Cópias de DNA , Epigênese Genética , Prognóstico , Zinco
9.
FASEB J ; 38(13): e23802, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38979944

RESUMO

Intercellular adhesion molecule 1 (ICAM1) is a cell surface adhesion glycoprotein in the immunoglobulin supergene family. It is associated with several epithelial tumorigenesis processes, as well as with inflammation. However, the function of ICAM1 in the prognosis of tumor immunity is still unclear. This study aimed to examine the immune function of ICAM1 in 33 tumor types and to investigate the prognostic value of tumors. Using datasets from the Cancer Genome Atlas (TCGA), Genotype Tissue Expression (GTEx), Cancer Cell Lines Encyclopedia (CCLE), Human Protein Atlas (HPA), and cBioPortal, we investigated the role of ICAM1 in tumors. We explored the potential correlation between ICAM1 expression and tumor prognosis, gene mutations, microsatellite instability, and tumor immune cell levels in various cancers. We observed that ICAM1 is highly expressed in multiple malignant tumors. Furthermore, ICAM1 is negatively or positively associated with different malignant tumor prognoses. The expression levels of ICAM1 were correlated with the tumor mutation burden (TMB) in 11 tumors and with MSI in eight tumors. ICAM1 is a gene associated with immune infiltrating cells, such as M1 macrophages and CD8+ T cells in gastric and colon cancer. Meanwhile, the expression of ICAM1 is associated with several immune-related functions and immune-regulation-related signaling pathways, such as the chemokine signaling pathway. Our study shows that ICAM1 can be used as a prognostic biomarker in many cancer types because of its function in tumorigenesis and malignant tumor immunity.


Assuntos
Biomarcadores Tumorais , Molécula 1 de Adesão Intercelular , Neoplasias , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Molécula 1 de Adesão Intercelular/genética , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Prognóstico , Neoplasias/imunologia , Neoplasias/genética , Neoplasias/metabolismo , Mutação , Regulação Neoplásica da Expressão Gênica , Instabilidade de Microssatélites , Microambiente Tumoral/imunologia
10.
FASEB J ; 38(2): e23421, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38198194

RESUMO

Diabetic kidney disease (DKD) is the primary cause of end-stage renal disease, exhibiting high disability and mortality rates. Ferroptosis is vital for the progression of DKD, but the exact mechanism remains unclear. This study aimed to explore the potential mechanism of ferroptosis-related genes in DKD and their relationship with the immune and to identify new diagnostic biomarkers to help treat and diagnose DKD. GSE30122 and GSE47185 were obtained from the Gene Expression Omnibus database and were integrated into a merged dataset, followed by functional enrichment analysis. Then potential differentially expressed genes were screened. Ferroptosis-related differentially-expressed genes were identified, followed by gene ontology analysis. Protein-protein interaction networks were constructed and hub genes were screened. The immune cell-infiltrating state in the dataset was assessed using appropriate algorithms. Immune signature subtypes were constructed using the consensus clustering analysis. Hub gene expression was validated using qRT-PCR and immunohistochemistry. A total of Eleven screened ferroptosis-related differentially expressed genes were screened. Six potentially diagnostically favorable ferroptosis-related hub genes were identified. Significantly increased expression of γδT cells, resting mast cells, and macrophages infiltration was observed in the DKD group. Additionally, two distinct immune signature subgroups were identified. Ferroptosis-related hub genes were significantly correlated with differentially infiltrated immune cells. Six hub genes were significantly upregulated in HK-2 cells following high glucose treatment and in human kidney tissues of patients with DKD. Six ferroptosis-related hub genes were identified as potential biomarkers of diabetic kidney disease, but further validation is needed.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Ferroptose , Humanos , Nefropatias Diabéticas/genética , Ferroptose/genética , Marcadores Genéticos , Rim , Biologia Computacional
11.
Proc Natl Acad Sci U S A ; 119(46): e2214569119, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36343225

RESUMO

Immunocyte infiltration and cytotoxicity play critical roles in both inflammation and immunotherapy. However, current cancer immunotherapy screening methods overlook the capacity of the T cells to penetrate the tumor stroma, thereby significantly limiting the development of effective treatments for solid tumors. Here, we present an automated high-throughput microfluidic platform for simultaneous tracking of the dynamics of T cell infiltration and cytotoxicity within the 3D tumor cultures with a tunable stromal makeup. By recourse to a clinical tumor-infiltrating lymphocyte (TIL) score analyzer, which is based on a clinical data-driven deep learning method, our platform can evaluate the efficacy of each treatment based on the scoring of T cell infiltration patterns. By screening a drug library using this technology, we identified an epigenetic drug (lysine-specific histone demethylase 1 inhibitor, LSD1i) that effectively promoted T cell tumor infiltration and enhanced treatment efficacy in combination with an immune checkpoint inhibitor (anti-PD1) in vivo. We demonstrated an automated system and strategy for screening immunocyte-solid tumor interactions, enabling the discovery of immuno- and combination therapies.


Assuntos
Aprendizado Profundo , Neoplasias , Humanos , Microfluídica/métodos , Detecção Precoce de Câncer , Imunoterapia/métodos , Linfócitos do Interstício Tumoral , Fatores Imunológicos , Neoplasias/tratamento farmacológico , Microambiente Tumoral
12.
Genomics ; 116(2): 110797, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38262564

RESUMO

BACKGROUND: Hypertrophic scar (HTS) is a prevalent chronic inflammatory skin disorder characterized by abnormal proliferation and extracellular matrix deposition and the precise mechanisms underlying HTS remain elusive. This study aimed to identify and validate potential immune-related genes associated with hypertrophic scar formation. METHODS: Skin samples from normal (n = 12) and hypertrophic scar tissues (n = 12) were subjected to RNA-seq analysis. Differentially expressed genes (DEGs) and significant modular genes in Weighted gene Co-expression Network Analysis (WGCNA) were identified. Subsequently, functional enrichment analysis was performed on the intersecting genes. Additionally, eight immune-related genes were matched from the ImmPort database. Validation of NRG1 and CRLF1 was carried out using an external cohort (GSE136906). Furthermore, the association between these two genes and immune cells was assessed by Spearman correlation analysis. Finally, RNA was extracted from normal and hypertrophic scar samples, and RT-qPCR, Immunohistochemistry staining and Western Blot were employed to validate the expression of characteristic genes. RESULTS: A total of 940 DEGs were identified between HTS and normal samples, and 288 key module genes were uncovered via WGCNA. Enrichment analysis in key module revealed involvement in many immune-related pathways, such as Th17 cell differentiation, antigen processing and presentation and B cell receptor signaling pathway. The eight immune-related genes (IFI30, NR2F2, NRG1, ESM1, NFATC2, CRLF1, COLEC12 and IL6) were identified by matching from the ImmPort database. Notably, we observed that activated mast cell positively correlated with CRLF1 expression, while CD8 T cells exhibited a positive correlation with NRG1. The expression of NRG1 and CRLF1 was further validated in clinical samples. CONCLUSION: In this study, two key immune-related genes (CRLF1 and NRG1) were identified as characteristic genes associated with HTS. These findings provide valuable insights into the immune-related mechanisms underlying hypertrophic scar formation.


Assuntos
Cicatriz Hipertrófica , Neuregulina-1 , Receptores de Citocinas , Humanos , Diferenciação Celular , Cicatriz Hipertrófica/genética , Bases de Dados Factuais , Matriz Extracelular , Pele , Receptores de Citocinas/genética
13.
Genomics ; 116(1): 110762, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-38104669

RESUMO

Monoubiquitination of FANCD2 is a central step in the activation of the Fanconi anemia (FA) pathway after DNA damage. Defects in the FA pathway centered around FANCD2 not only lead to genomic instability but also induce tumorigenesis. At present, few studies have investigated FANCD2 in tumors, and no pan-cancer research on FANCD2 has been conducted. We conducted a comprehensive analysis of the role of FANCD2 in cancer using public databases and other published studies. Moreover, we evaluated the role of FANCD2 in the proliferation, migration and invasion of lung adenocarcinoma cells through in vitro and in vivo experiments, and explored the role of FANCD2 in cisplatin chemoresistance. We investigated the regulatory effect of FANCD2 on the cell cycle of lung adenocarcinoma cells by flow cytometry, and verified this effect by western blotting. FANCD2 expression is elevated in most TCGA tumors and shows a strong positive correlation with poor prognosis in tumor patients. In addition, FANCD2 expression shows strong correlations with immune infiltration, immune checkpoints, the tumor mutation burden (TMB), and microsatellite instability (MSI), which are immune-related features, suggesting that it may be a potential target of tumor immunotherapy. We further found that FANCD2 significantly promotes the proliferation, invasion, and migration abilities of lung adenocarcinoma cells and that its ability to promote cancer cell proliferation may be achieved by modulating the cell cycle. The findings indicate that FANCD2 is a potential biomarker and therapeutic target in cancer treatment by analyzing the oncogenic role of FANCD2 in different tumors.


Assuntos
Carcinogênese , Proteína do Grupo de Complementação D2 da Anemia de Fanconi , Neoplasias , Humanos , Adenocarcinoma de Pulmão/genética , Adenocarcinoma de Pulmão/patologia , Carcinogênese/genética , Dano ao DNA , Anemia de Fanconi/genética , Anemia de Fanconi/metabolismo , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/genética , Proteína do Grupo de Complementação D2 da Anemia de Fanconi/metabolismo , Neoplasias/genética , Neoplasias/patologia
14.
J Cell Mol Med ; 28(6): e18156, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38429902

RESUMO

This study aimed to identify genes shared by metabolic dysfunction-associated fatty liver disease (MASH) and diabetic nephropathy (DN) and the effect of extracellular matrix (ECM) receptor interaction genes on them. Datasets with MASH and DN were downloaded from the Gene Expression Omnibus (GEO) database. Pearson's coefficients assessed the correlation between ECM-receptor interaction genes and cross talk genes. The coexpression network of co-expression pairs (CP) genes was integrated with its protein-protein interaction (PPI) network, and machine learning was employed to identify essential disease-representing genes. Finally, immuno-penetration analysis was performed on the MASH and DN gene datasets using the CIBERSORT algorithm to evaluate the plausibility of these genes in diseases. We found 19 key CP genes. Fos proto-oncogene (FOS), belonging to the IL-17 signalling pathway, showed greater centrality PPI network; Hyaluronan Mediated Motility Receptor (HMMR), belonging to ECM-receptor interaction genes, showed most critical in the co-expression network map of 19 CP genes; Forkhead Box C1 (FOXC1), like FOS, showed a high ability to predict disease in XGBoost analysis. Further immune infiltration showed a clear positive correlation between FOS/FOXC1 and mast cells that secrete IL-17 during inflammation. Combining the results of previous studies, we suggest a FOS/FOXC1/HMMR regulatory axis in MASH and DN may be associated with mast cells in the acting IL-17 signalling pathway. Extracellular HMMR may regulate the IL-17 pathway represented by FOS through the Mitogen-Activated Protein Kinase 1 (ERK) or PI3K-Akt-mTOR pathway. HMMR may serve as a signalling carrier between MASH and DN and could be targeted for therapeutic development.


Assuntos
Nefropatias Diabéticas , Interleucina-17 , Humanos , Fosfatidilinositol 3-Quinases , Biologia Computacional , Aprendizado de Máquina
15.
J Cell Mol Med ; 28(7): 1-20, 2024 04.
Artigo em Inglês | MEDLINE | ID: mdl-38506098

RESUMO

YARS is responsible for catalysing the binding of tyrosine to its cognate tRNA and plays a crucial role in basic biosynthesis. However, its biological functions in bladder cancer remains to be proven. We analysed variations in YARS1 expression and survival in bladder cancer using multiple data sets, including TCGA-BLCA, GSE13507 and bladder cancer-specific tissue microarrays. Furthermore, we explored the biological functions of YARS1 using transcriptome data. Our findings revealed a noteworthy correlation between YARS1 and immune infiltration in bladder cancer, as determined using the XCELL algorithm and single-cell analysis. In addition, we employed the TIDE algorithm to evaluate the responsiveness of different cohorts to immune checkpoint therapy. We investigated the regulatory associations between YARS1 and various aspects of bladder cancer, including senescence, ferroptosis and stemness. Finally, we established a ceRNA network that is directly linked to the overall prognosis, YARS1 can serve as a prognostic biomarker for bladder cancer; its interaction with MYC has implications for bladder cancer cell senescence, ferroptosis and stemness. Moreover, the identified ceRNA network has potential as a therapeutic target in bladder cancer.


Assuntos
Neoplasias da Bexiga Urinária , Humanos , Prognóstico , Neoplasias da Bexiga Urinária/genética , Algoritmos , Catálise , RNA Endógeno Competitivo , Biomarcadores
16.
J Cell Mol Med ; 28(16): e70034, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39160643

RESUMO

Hypertrophic cardiomyopathy (HCM) is a hereditary cardiac disorder marked by anomalous thickening of the myocardium, representing a significant contributor to mortality. While the involvement of immune inflammation in the development of cardiac ailments is well-documented, its specific impact on HCM pathogenesis remains uncertain. Five distinct machine learning algorithms, namely LASSO, SVM, RF, Boruta and XGBoost, were utilized to discover new biomarkers associated with HCM. A unique nomogram was developed using two newly identified biomarkers and subsequently validated. Furthermore, samples of HCM and normal heart tissues were gathered from our institution to confirm the variance in expression levels and prognostic significance of GATM and MGST1. Five novel biomarkers (DARS2, GATM, MGST1, SDSL and ARG2) associated with HCM were identified. Subsequent validation revealed that GATM and MGST1 exhibited significant diagnostic utility for HCM in both the training and test cohorts, with all AUC values exceeding 0.8. Furthermore, a novel risk assessment model for HCM patients based on the expression levels of GATM and MGST1 demonstrated favourable performance in both the training (AUC = 0.88) and test cohorts (AUC = 0.9). Furthermore, our study revealed that GATM and MGST1 exhibited elevated expression levels in HCM tissues, demonstrating strong discriminatory ability between HCM and normal cardiac tissues (AUC of GATM = 0.79; MGST1 = 0.86). Our findings suggest that two specific cell types, monocytes and multipotent progenitors (MPP), may play crucial roles in the pathogenesis of HCM. Notably, GATM and MGST1 were found to be highly expressed in various tumours and showed significant prognostic implications. Functionally, GATM and MGST1 are likely involved in xenobiotic metabolism and epithelial mesenchymal transition in a wide range of cancer types. GATM and MGST1 have been identified as novel biomarkers implicated in the progression of both HCM and cancer. Additionally, monocytes and MPP may also play a role in facilitating the progression of HCM.


Assuntos
Biomarcadores , Cardiomiopatia Hipertrófica , Aprendizado de Máquina , Neoplasias , Humanos , Cardiomiopatia Hipertrófica/metabolismo , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/genética , Neoplasias/metabolismo , Neoplasias/diagnóstico , Neoplasias/genética , Neoplasias/patologia , Biomarcadores/metabolismo , Masculino , Feminino , Prognóstico , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Pessoa de Meia-Idade , Nomogramas
17.
J Cell Mol Med ; 28(8): e18260, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38520216

RESUMO

Ovarian cancer (OC) is a deadly disease with limited treatment options and poor overall survival rates. This study aimed to investigate the role of histone modification-related genes in predicting the prognosis of OC patients. Transcriptome data from multiple cohorts, including bulk RNA-Seq data and single-cell scRNA-Seq data, were collected. Gene set enrichment analysis was used to identify enriched gene sets in the histone modification pathway. Differentially expressed genes (DEGs) between histone modification-high and histone modification-low groups were identified using Lasso regression. A prognostic model was constructed using five selected prognostic genes from the DEGs in the TCGA-OV cohort. The study found enrichment of gene sets in the histone modification pathway and identified five prognostic genes associated with OC prognosis. The constructed risk score model based on histone modification-related genes was correlated with immune infiltration of T cells and M1 macrophages. Mutations are more prevalent in the high-risk group compared to the low-risk group. Several drugs were screened against the model genes. Through in vitro experiments, we confirmed the expression patterns of the model genes. LBX2 facilitates the proliferation of OC. Histone modification-related genes have the potential to serve as biomarkers for predicting OC prognosis. Targeting these genes may lead to the development of more effective therapies for OC. Additionally, LBX2 represents a novel cell proliferation promoter in OC carcinogenesis.


Assuntos
Código das Histonas , Neoplasias Ovarianas , Feminino , Humanos , Carcinogênese , Proliferação de Células/genética , Código das Histonas/genética , Neoplasias Ovarianas/genética , Prognóstico
18.
J Cell Mol Med ; 28(16): e70013, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39199011

RESUMO

Crohn's disease (CD) presents with diverse clinical phenotypes due to persistent inflammation of the gastrointestinal tract. Its global incidence is on the rise. Neutrophil extracellular traps (NETs) are networks released by neutrophils that capture microbicidal proteins and oxidases targeting pathogens. Research has shown that NETs are implicated in the pathogenesis of several immune-mediated diseases such as rheumatoid arthritis, systemic lupus erythematosus and inflammatory bowel disease. The goal of this study was to identify a panel of NET-related genes to construct a diagnostic and therapeutic model for CD. Through analysis of the GEO database, we identified 1950 differentially expressed genes (DEGs) associated with CD. Gene enrichment and immune cell infiltration analyses indicate that neutrophil infiltrates and chemokine-related pathways are predominantly involved in CD, with other immune cells such as CD4 and M1 macrophages also playing a role in disease progression. Utilizing weighted gene co-expression network analysis (WGCNA) and protein-protein interaction (PPI) networks, we identified six hub genes (SPP1, SOCS3, TIMP1, IRF1, CXCL2 and CD274). To validate the accuracy of our model, we performed external validation with statistical differences(p < 0.05). Additionally, immunohistochemical experiments demonstrated higher protein expression of the hub genes in colonic tissues from CD patients compared to healthy subjects (p < 0.05). In summary, we identified six effective hub genes associated with NETs as potential diagnostic markers for CD. These markers not only offer targets for future research but also hold promise for the development of novel therapeutic interventions for CD.


Assuntos
Biologia Computacional , Doença de Crohn , Armadilhas Extracelulares , Redes Reguladoras de Genes , Mapas de Interação de Proteínas , Humanos , Doença de Crohn/genética , Doença de Crohn/imunologia , Doença de Crohn/patologia , Biologia Computacional/métodos , Armadilhas Extracelulares/metabolismo , Armadilhas Extracelulares/genética , Mapas de Interação de Proteínas/genética , Perfilação da Expressão Gênica , Neutrófilos/metabolismo , Neutrófilos/imunologia , Regulação da Expressão Gênica , Biomarcadores , Bases de Dados Genéticas
19.
J Cell Mol Med ; 28(16): e70017, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39159071

RESUMO

Acute myeloid leukaemia (AML) is a common and highly aggressive haematological malignancy in adults. Senescence-associated secretory phenotype (SASP) plays important roles in tumorigenesis and progression of tumour. However, the prognostic value of SASP in patients with AML has not been clarified. The present study aims to explore the prognostic value of SASP and develop a prognostic risk signature for AML. The RNA-sequencing data was collected from the TCGA, GTEx and TARGET databases. Subsequently, differentially expressed gene analysis, univariate Cox regression and LASSO regression were applied to identified prognostic SASP-related genes and construct a prognostic risk-scoring model. The risk score of each patient were calculated and patients were divided into high- or low-risk groups by the median risk score. This novel prognostic signature included 11 genes: G6PD, CDK4, RPS6KA1, UBC, H2BC12, KIR2DL4, HSF1, IFIT3, PIM1, RUNX3 and TRIM21. The patients with AML in the high-risk group had shorter OS, demonstrating that the risk score acted as a prognostic predictor, which was validated in the TAGET-AML dataset. Univariate and multivariate analysis revealed the risk score was an independent prognostic factor in patients with AML. Furthermore, the present study revealed that the risk score was associated with immune landscape, immune checkpoint gene expression and chemotherapeutic efficacy. In the present study, we constructed and validated a unique SASP-related prognostic model to assess therapeutic effect and prognosis in patients with AML, which might contribute to understanding the role of SASP in AML and guiding the treatment for AML.


Assuntos
Biomarcadores Tumorais , Leucemia Mieloide Aguda , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia , Leucemia Mieloide Aguda/mortalidade , Prognóstico , Feminino , Biomarcadores Tumorais/genética , Masculino , Perfilação da Expressão Gênica , Pessoa de Meia-Idade , Regulação Leucêmica da Expressão Gênica , Transcriptoma/genética , Adulto , Fatores de Risco
20.
J Cell Mol Med ; 28(6): e18135, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38429900

RESUMO

Lung adenocarcinoma (LUAD) is characterized by a high incidence rate and mortality. Recently, POC1 centriolar protein A (POC1A) has emerged as a potential biomarker for various cancers, contributing to cancer onset and development. However, the association between POC1A and LUAD remains unexplored. We extracted The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) data sets to analyse the differential expression of POC1A and its relationship with clinical stage. Additionally, we performed diagnostic receiver operator characteristic (ROC) curve analysis and Kaplan-Meier (KM) survival analysis to assess the diagnostic and prognostic value of POC1A in LUAD. Furthermore, we investigated the correlation between POC1A expression and immune infiltration, tumour mutation burden (TMB), immune checkpoint expression and drug sensitivity. Finally, we verified POC1A expression using real-time quantitative polymerase chain reaction (RT-qPCR) and immunohistochemistry (IHC). Cell experiments were conducted to validate the effect of POC1A expression on the proliferation, migration and invasion of lung cancer cells. POC1A exhibited overexpression in most tumour tissues, and its overexpression in LUAD was significantly correlated with late-stage presentation and poor prognosis. The high POC1A expression group showed lower levels of immune infiltration but higher levels of immune checkpoint expression and TMB. Moreover, the high POC1A expression group demonstrated sensitivity to multiple drugs. In vitro experiments confirmed that POC1A knockdown led to decreased proliferation, migration, and invasion of lung cancer cells. Our findings suggest that POC1A may contribute to tumour development by modulating the cell cycle and immune cell infiltration. It also represents a potential therapeutic target and marker for the diagnosis and prognosis of LUAD.


Assuntos
Adenocarcinoma de Pulmão , Neoplasias Pulmonares , Humanos , Adenocarcinoma de Pulmão/genética , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Divisão Celular , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/metabolismo , Neoplasias Pulmonares/genética , Regulação para Cima/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa