Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Heliyon ; 9(9): e19254, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37662814

RESUMO

E-scooters as a mode of transportation is rapidly growing in popularity. This study evaluates head impact conditions and injury risk associated with E-scooter crashes. A multibody model of E-scooter falls induced by wheel-curb collision was built and compared with an experimental E-scooter crash test. A total of 162 crash scenarios were simulated to assess the effect of fall conditions (E-scooter initial speed and inclination, obstacle orientation, and user size) on the head impact kinematics. The forehead hit the ground first in 44% of simulations. The average tangential and normal impact speeds were 3.5 m/s and 4.8 m/s respectively. Nearly 100% of simulations identified a risk of concussion (linear acceleration peak >82 g and rotational acceleration peak >6383 rad/s2) and 90% of simulations suggested a risk of severe head injuries (HIC>700). This work provides preliminary data useful for the assessment and design of protective gears.

2.
Ann Biomed Eng ; 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36745294

RESUMO

Traumatic brain injury (TBI) is a common injury in the workplace. Trips and falls are the leading causes of TBI in the workplace. However, industrial safety helmets are not designed for protecting the head under these impact conditions. Instead, they are designed to pass the regulatory standards which test head protection against falling heavy and sharp objects. This is likely to be due to the limited understanding of head impact conditions from trips and falls in workplace. In this study, we used validated human multi-body models to predict the head impact location, speed and angle (measured from the ground) during trips, forward falls and backward falls. We studied the effects of worker size, initial posture, walking speed, width and height of the tripping barrier, bracing and falling height on the head impact conditions. Overall, we performed 1692 simulations. The head impact speed was over two folds larger in falls than trips, with backward falls producing highest impact speeds. However, the trips produced impacts with smaller impact angles to the ground. Increasing the walking speed increased the head impact speed but bracing reduced it. We found that 41% of backward falls and 19% of trips/forward falls produced head impacts located outside the region of helmet coverage. Next, we grouped all the data into three sub-groups based on the head impact angle: [0°, 30°], (30°, 60°] and (60°, 90°] and excluded groups with small number of cases. We found that most trips and forward falls lead to impact angles within the (30°, 60°] and (60°, 90°] groups while all backward falls produced impact angles within (60°, 90°] group. We therefore determined five representative head impact conditions from these groups by selecting the 75th percentile speed, mean value of angle intervals and median impact location (determined by elevation and azimuth angles) of each group. This led to two representative head impact conditions for trips: 2.7 m/s at 45° and 3.9 m/s at 75°, two for forward falls: 3.8 m/s at 45° and 5.5 m/s at 75° and one for backward falls: 9.4 m/s at 75°. These impact conditions can be used to improve industrial helmet standards.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa