Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Diabetologia ; 67(6): 1079-1094, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38512414

RESUMO

AIMS/HYPOTHESIS: Beta cells within the pancreatic islet represent a heterogenous population wherein individual sub-groups of cells make distinct contributions to the overall control of insulin secretion. These include a subpopulation of highly connected 'hub' cells, important for the propagation of intercellular Ca2+ waves. Functional subpopulations have also been demonstrated in human beta cells, with an altered subtype distribution apparent in type 2 diabetes. At present, the molecular mechanisms through which beta cell hierarchy is established are poorly understood. Changes at the level of the epigenome provide one such possibility, which we explore here by focusing on the imprinted gene Nnat (encoding neuronatin [NNAT]), which is required for normal insulin synthesis and secretion. METHODS: Single-cell RNA-seq datasets were examined using Seurat 4.0 and ClusterProfiler running under R. Transgenic mice expressing enhanced GFP under the control of the Nnat enhancer/promoter regions were generated for FACS of beta cells and downstream analysis of CpG methylation by bisulphite sequencing and RNA-seq, respectively. Animals deleted for the de novo methyltransferase DNA methyltransferase 3 alpha (DNMT3A) from the pancreatic progenitor stage were used to explore control of promoter methylation. Proteomics was performed using affinity purification mass spectrometry and Ca2+ dynamics explored by rapid confocal imaging of Cal-520 AM and Cal-590 AM. Insulin secretion was measured using homogeneous time-resolved fluorescence imaging. RESULTS: Nnat mRNA was differentially expressed in a discrete beta cell population in a developmental stage- and DNA methylation (DNMT3A)-dependent manner. Thus, pseudo-time analysis of embryonic datasets demonstrated the early establishment of Nnat-positive and -negative subpopulations during embryogenesis. NNAT expression is also restricted to a subset of beta cells across the human islet that is maintained throughout adult life. NNAT+ beta cells also displayed a discrete transcriptome at adult stages, representing a subpopulation specialised for insulin production, and were diminished in db/db mice. 'Hub' cells were less abundant in the NNAT+ population, consistent with epigenetic control of this functional specialisation. CONCLUSIONS/INTERPRETATION: These findings demonstrate that differential DNA methylation at Nnat represents a novel means through which beta cell heterogeneity is established during development. We therefore hypothesise that changes in methylation at this locus may contribute to a loss of beta cell hierarchy and connectivity, potentially contributing to defective insulin secretion in some forms of diabetes. DATA AVAILABILITY: The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the dataset identifier PXD048465.


Assuntos
Ilhas de CpG , Metilação de DNA , Células Secretoras de Insulina , Células Secretoras de Insulina/metabolismo , Animais , Camundongos , Ilhas de CpG/genética , Proteínas do Tecido Nervoso/metabolismo , Proteínas do Tecido Nervoso/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Transgênicos , DNA Metiltransferase 3A/metabolismo , Humanos , Insulina/metabolismo , Secreção de Insulina/fisiologia
2.
Epigenetics ; 19(1): 2293412, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38100614

RESUMO

Adverse childhood experiences (ACEs) contribute to numerous negative health outcomes across the life course and across generations. Here, we extend prior work by examining the association of maternal ACEs, and their interaction with financial stress and discrimination, with methylation status within eight differentially methylated regions (DMRs) in imprinted domains in newborns. ACEs, financial stress during pregnancy, and experience of discrimination were self-reported among 232 pregnant women. DNA methylation was assessed at PEG10/SGCE, NNAT, IGF2, H19, PLAGL1, PEG3, MEG3-IG, and DLK1/MEG3 regulatory sequences using pyrosequencing. Using multivariable linear regression models, we found evidence to suggest that financial stress was associated with hypermethylation of MEG3-IG in non-Hispanic White newborns; discrimination was associated with hypermethylation of IGF2 and NNAT in Hispanic newborns, and with hypomethylation of PEG3 in non-Hispanic Black newborns. We also found evidence that maternal ACEs interacted with discrimination to predict offspring PLAGL1 altered DMR methylation, in addition to interactions between maternal ACEs score and discrimination predicting H19 and SGCE/PEG10 altered methylation in non-Hispanic White newborns. However, these interactions were not statistically significant after multiple testing corrections. Findings from this study suggest that maternal ACEs, discrimination, and financial stress are associated with newborn aberrant methylation in imprinted gene regions.


Assuntos
Experiências Adversas da Infância , RNA Longo não Codificante , Humanos , Recém-Nascido , Feminino , Gravidez , Metilação de DNA , Impressão Genômica , RNA Longo não Codificante/genética
3.
Res Sq ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38883732

RESUMO

Background: NLRP2 belongs to the subcortical maternal complex (SCMC) of mammalian oocytes and preimplantation embryos. This multiprotein complex, encoded by maternal-effect genes, plays a pivotal role in the zygote-to-embryo transition, early embryogenesis, and epigenetic (re)programming. The maternal inactivation of genes encoding SCMC proteins has been linked to infertility and subfertility in mice and humans. However, the underlying molecular mechanisms for the diverse functions of the SCMC, particularly how this cytoplasmic structure influences DNA methylation, which is a nuclear process, are not fully understood. Results: We undertook joint transcriptome and DNA methylome profiling of pre-ovulatory germinal-vesicle oocytes from Nlrp2-null, heterozygous (Het), and wild-type (WT) female mice. We identified numerous differentially expressed genes (DEGs) in Het and Nlrp2-null when compared to WT oocytes. The genes for several crucial factors involved in oocyte transcriptome modulation and epigenetic reprogramming, such as DNMT1, UHRF1, KDM1B and ZFP57 were overexpressed in Het and Nlrp2-null oocytes. Absence or reduction of Nlrp2, did not alter the distinctive global DNA methylation landscape of oocytes, including the bimodal pattern of the oocyte methylome. Additionally, although the methylation profile of germline differentially methylated regions (gDMRs) of imprinted genes was preserved in oocytes of Het and Nlrp2-null mice, we found altered methylation in oocytes of both genotypes at a small percentage of the oocyte-characteristic hyper- and hypomethylated domains. Through a tiling approach, we identified specific DNA methylation differences between the genotypes, with approximately 1.3% of examined tiles exhibiting differential methylation in Het and Nlrp2-null compared to WT oocytes. Conclusions: Surprisingly, considering the well-known correlation between transcription and DNA methylation in developing oocytes, we observed no correlation between gene expression differences and gene-body DNA methylation differences in Nlrp2-null versus WT oocytes or Het versus WT oocytes. We therefore conclude that post-transcriptional changes in the stability of transcripts rather than altered transcription is primarily responsible for transcriptome differences in Nlrp2-null and Het oocytes.

4.
Epigenomics ; : 1-11, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140401

RESUMO

DNA methylation is closely related to folate levels and acts as a mechanism linking developmental disorders to chronic diseases. Folic acid supplementation can impact DNA methylation levels of imprinted genes crucial for neonatal development. Imprinted genes are vital for regulating embryonic and postnatal fetal growth. This review summarizes imprinted genes, DNA methylation, folic acid's influence on growth and development and their correlation. It aims to provide a comprehensive overview of research advancements on imprinted genes, DNA methylation and folic acid regulation concerning growth and development.


[Box: see text].

5.
Front Genet ; 15: 1346150, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38444759

RESUMO

DNA methylation is influenced by various exogenous factors such as nutrition, temperature, toxicants, and stress. Bulls from the Pacific Northwest region of the United States and other northern areas are exposed to extreme cold temperatures during winter. However, the effects of cold exposure on the methylation patterns of bovine sperm remain unclear. To address, DNA methylation profiles of sperm collected during late spring and winter from the same bulls were analyzed using whole genome bisulfite sequencing (WGBS). Bismark (0.22.3) were used for mapping the WGBS reads and R Bioconductor package DSS was used for differential methylation analysis. Cold exposure induced 3,163 differentially methylated cytosines (DMCs) with methylation difference ≥10% and a q-value < 0.05. We identified 438 differentially methylated regions (DMRs) with q-value < 0.05, which overlapped with 186 unique genes. We also identified eight unique differentially methylated genes (DMGs) (Pax6, Macf1, Mest, Ubqln1, Smg9, Ctnnb1, Lsm4, and Peg10) involved in embryonic development, and nine unique DMGs (Prmt6, Nipal1, C21h15orf40, Slc37a3, Fam210a, Raly, Rgs3, Lmbr1, and Gan) involved in osteogenesis. Peg10 and Mest, two paternally expressed imprinted genes, exhibited >50% higher methylation. The differential methylation patterns of six distinct DMRs: Peg10, Smg9 and Mest related to embryonic development and Lmbr1, C21h15orf40 and Prtm6 related to osteogenesis, were assessed by methylation-specific PCR (MS-PCR), which confirmed the existence of variable methylation patterns in those locations across the two seasons. In summary, cold exposure induces differential DNA methylation patterns in genes that appear to affect embryonic development and osteogenesis in the offspring. Our findings suggest the importance of replicating the results of the current study with a larger sample size and exploring the potential of these changes in affecting offspring development.

6.
Front Neurosci ; 18: 1374781, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38595977

RESUMO

Introduction: Imprinted genes are expressed from one parental allele as a consequence of epigenetic processes initiated in the germline. Consequently, their ability to influence phenotype depends on their parent-of-origin. Recent research suggests that the sex of the individual expressing the imprinted gene is also important. We have previously reported that genetically wildtype (WT) dams carrying and caring for pups mutant for PEG3 exhibit anxiety-like behaviours and their mutant pups show a reduction in ultrasonic vocalisation when separated from their mothers. Sex-specificity was not examined. Methods: WT female mice were mated with WT, heterozygous Peg3-/+ or homozygous Peg3-/- studs to generate all WT (control), 50:50 mixed or 100% mutant litters, respectively, followed by behavioural assessment of both dams and their pups. Results: We reproduced our original finding that WT dams carrying and caring for 100% mutant litters exhibit postpartum anxiety-like symptoms and delayed pup retrieval. Additionally, these WT dams were found to allocate less time to pup-directed care behaviours relative to controls. Male Peg3-deficient pups demonstrated significantly reduced vocalisation with a more subtle communication deficit in females. Postweaning, male mutants exhibited deficits across a number of key social behaviours as did WT males sharing their environment with mutants. Only modest variations in social behaviour were detected in experimental females. Discussion: We have experimentally demonstrated that Peg3 deficiency confined to the offspring causes anxiety in mouse mothers and atypical behaviour including deficits in communication in their male offspring. A male-specific reduction in expression PEG3 in the fetally-derived placenta has previously been associated with maternal depression in human pregnancy. Maternal mood disorders such as depression and anxiety are associated with delays in language development and neuroatypical behaviour more common in sons. Peg3 deficiency could drive the association of maternal and offspring behavioural disorders reported in humans.

7.
Artigo em Chinês | WPRIM | ID: wpr-1022539

RESUMO

Objective:To study the clinical manifestations, genetic profiles and treatment of Kagami-Ogata syndrome (KOS).Methods:A neonate admitted to our hospital was genetically diagnosed of KOS from amniocentesis sampling. The phenotype, genotype and treatment of the neonate were analyzed. Multiple databases were searched using key words including "Kagami-Ogata syndrome", "14q32 microdeletion syndrome", "coat-hanger ribs", "paternal uniparental disomy (pUPD)(14) " from the inception of the databases to Jan. 23th 2023. The clinical features, genotype and treatment of patients from the literature were summarized.Results:The neonate in our hospital was born at 30 weeks gestational age with a birth weight of 2 035 g. Prenatal ultrasound indicated overgrowth, bilateral fetal renal pelvis dilatation (FRPD), dilatation of intestines in lower abdomen, clenched hands with overlapping fingers and polyhydramnios. After birth, the neonate showed progressively worsening respiratory distress, distinct facial features (small jaw, short neck, flat nasal bridge, upward-facing nostrils, small and malformed ears with auricular deformity and narrow external auditory canals), bell-shaped thorax, diastasis recti and abnormal posture (overlapping fingers, clenched fists), as well as feeding difficulties, recurrent fever and dependence of respiratory support. Whole exome sequencing (WES) revealed a 268.2Kb deletion (101034306_101302541) in 14q32.2 region on both the neonate and the mother and the father was otherwise normal. The prognosis was poor and the parents refused further treatment. The neonate died at one month of age after two days of palliative care. A total of 36 articles were identified in the literature review, including 78 KOS cases with complete clinical data (a total of 79 cases adding our case).The primary clinical manifestations included distinctive facial and thoracic abnormalities (79/79, 100%), polyhydramnios (71/75, 94.7%), feeding difficulties (55/63, 87.3%), abdominal wall defects (57/72, 79.2%), joint contractures (39/70, 55.7%) and dependence of respiratory support (29/56, 51.8%). Long-term follow-up revealed 86.8% (59/68) experienced physical, movement and intellectual development delay, 39.7% (25/63) died or gave up treatments within five years. Genetic testing showed pUPD in 44 cases (55.7%), maternal deletions in 23 cases (29.1%), epimutations in 8 cases (10.1%) and unreported variations in 4 cases (5.1%).Conclusions:KOS is a genetic imprinting disorder affecting multiple organs. Prenatal screening can detect abnormalities such as polyhydramnios. Specific clinical signs, radiological findings and 14q32 gene analysis are helpful for the diagnosis of the disease.

8.
Artigo em Chinês | WPRIM | ID: wpr-838367

RESUMO

Objective To study the effect of long non-coding RNAs (lncRNAs) maternally imprinted genes 3 (MEG3) on human abortion vilii development and to explore the related molecular mechanisms. Methods We collected the vilii samples from 15 spontaneous abortion (SA) and 15 induced abortion (IA) patients. Immunohistochemistry was applied to detect the expressions of apoptosis factor Bax and apoptosis inhibitory factor Bcl-2 in vilii samples. Real-time quantitative polymerase chain reaction (qPCR) was used to analyze the levels of MEG3 of vilii samples. Overexpression of MEG3 in human trophoblast cell line HTR-8/SVneo was identified by qPCR; the invasion ability of HTR-8/SVneo cells was examined by matrigel invasion assay in MEG3 overexpression and control groups. Results Immunohistochemistry showed that the expression of Bax in IA group was lower than that in SA group, while the expression of Bcl-2 was higher (P<0.01). The level of MEG3 in IA group was significantly higher than that in SA group (P<0.01). The expression of MEG3 was obviously increased and invasion ability was inhibited in MEG3 overexpressed HTR-8/SVneo cells (P<0.01). Conclusion LncRNAs MEG3 may regulate the apoptosis and invasive ability of bizarre trophoblastic cells and influence on the development of human villi.

9.
Braz. j. med. biol. res ; 47(12): 1029-1035, 12/2014. graf
Artigo em Inglês | LILACS | ID: lil-727661

RESUMO

DNA methylation is essential in X chromosome inactivation and genomic imprinting, maintaining repression of XIST in the active X chromosome and monoallelic repression of imprinted genes. Disruption of the DNA methyltransferase genes DNMT1 and DNMT3B in the HCT116 cell line (DKO cells) leads to global DNA hypomethylation and biallelic expression of the imprinted gene IGF2 but does not lead to reactivation of XIST expression, suggesting that XIST repression is due to a more stable epigenetic mark than imprinting. To test this hypothesis, we induced acute hypomethylation in HCT116 cells by 5-aza-2′-deoxycytidine (5-aza-CdR) treatment (HCT116-5-aza-CdR) and compared that to DKO cells, evaluating DNA methylation by microarray and monitoring the expression of XIST and imprinted genes IGF2, H19, and PEG10. Whereas imprinted genes showed biallelic expression in HCT116-5-aza-CdR and DKO cells, the XIST locus was hypomethylated and weakly expressed only under acute hypomethylation conditions, indicating the importance of XIST repression in the active X to cell survival. Given that DNMT3A is the only active DNMT in DKO cells, it may be responsible for ensuring the repression of XIST in those cells. Taken together, our data suggest that XIST repression is more tightly controlled than genomic imprinting and, at least in part, is due to DNMT3A.


Assuntos
Humanos , Metilação de DNA/genética , Repressão Epigenética/genética , Genoma Humano , Genoma/genética , Impressão Genômica/genética , Fator de Crescimento Insulin-Like II/genética , RNA Longo não Codificante/genética , Azacitidina/administração & dosagem , Azacitidina/análogos & derivados , /genética , Metilação de DNA/efeitos dos fármacos , Técnicas de Inativação de Genes , Genoma Humano/efeitos dos fármacos , Hibridização in Situ Fluorescente/métodos , Análise em Microsséries , Polimorfismo de Nucleotídeo Único , Proteínas/metabolismo , RNA Longo não Codificante/metabolismo , Reação em Cadeia da Polimerase em Tempo Real/métodos , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos
10.
Genomics & Informatics ; : 32-35, 2008.
Artigo em Inglês | WPRIM | ID: wpr-142402

RESUMO

Little evidence supports the existence of imprinted genes in chicken. Imprinted genes are thought to be intimately connected with the acquisition of parental resources in mammals; thus, the predicted lack of this type of gene in chicken is not surprising, given that they leave their offspring to their own heritance after conception. In this study, we identified several imprinted genes and their orthologs in human, mouse, and zebrafish, including 30 previously identified human and mouse imprinted genes. Next, using the HomoloGene database, we identified six orthologous genes in human, mouse, and chicken; however, no orthologs were identified for SLC22A18, and mouse Ppp1r9a was not included in the HomoloGene database. Thus, from our analysis, four candidate chicken imprinted genes (IGF2, UBE3A, PHLDA2, and GRB10) were identified. To expand our analysis, zebrafish was included, but no probe ID for UBE3A exists in this species. Thus, ultimately, three candidate imprinted genes (IGF2, PHLDA2, and GRB10) in chicken were identified. GRB10 was not significant in chicken and zebrafish based on the Wilcoxon-Mann-Whitney test, whereas a weak correlation between PHLDA2 in chicken and human was identified from the Spearman's rank correlation coefficient. Significant associations between human, mouse, chicken, and zebrafish were found for IGF2 and GRB10 using the Friedman's test. Based on our results, IGF2, PHLDA2, and GRB10 are candidate imprinted genes in chicken. Importantly, the strongest candidate was PHLDA2.


Assuntos
Animais , Humanos , Camundongos , Galinhas , Fertilização , Pais , Peixe-Zebra
11.
Genomics & Informatics ; : 32-35, 2008.
Artigo em Inglês | WPRIM | ID: wpr-142403

RESUMO

Little evidence supports the existence of imprinted genes in chicken. Imprinted genes are thought to be intimately connected with the acquisition of parental resources in mammals; thus, the predicted lack of this type of gene in chicken is not surprising, given that they leave their offspring to their own heritance after conception. In this study, we identified several imprinted genes and their orthologs in human, mouse, and zebrafish, including 30 previously identified human and mouse imprinted genes. Next, using the HomoloGene database, we identified six orthologous genes in human, mouse, and chicken; however, no orthologs were identified for SLC22A18, and mouse Ppp1r9a was not included in the HomoloGene database. Thus, from our analysis, four candidate chicken imprinted genes (IGF2, UBE3A, PHLDA2, and GRB10) were identified. To expand our analysis, zebrafish was included, but no probe ID for UBE3A exists in this species. Thus, ultimately, three candidate imprinted genes (IGF2, PHLDA2, and GRB10) in chicken were identified. GRB10 was not significant in chicken and zebrafish based on the Wilcoxon-Mann-Whitney test, whereas a weak correlation between PHLDA2 in chicken and human was identified from the Spearman's rank correlation coefficient. Significant associations between human, mouse, chicken, and zebrafish were found for IGF2 and GRB10 using the Friedman's test. Based on our results, IGF2, PHLDA2, and GRB10 are candidate imprinted genes in chicken. Importantly, the strongest candidate was PHLDA2.


Assuntos
Animais , Humanos , Camundongos , Galinhas , Fertilização , Pais , Peixe-Zebra
12.
Artigo em Chinês | WPRIM | ID: wpr-545280

RESUMO

Objective To investigate the expression of H19 imprinted genes in the villus tissues of women with spontaneous abortion.Methods Reverse transcription-polymerse chain reaction method(RT-PCR) was employed to detect H19 imprinted genes allele-specific expression levels of the villus tissues extracted from 45 cases of spontaneous abortion and 30 cases of normal pregnancy.Results Nineteen cases of 21 heterozygous cases in spontaneous abortion samples showed billelic expression of H19(19/21),whereas no billelic expression was found in the normal pregnancy samples(0/13)(P

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa