Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 378
Filtrar
1.
Am J Hum Genet ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39047729

RESUMO

Allele-specific expression plays a crucial role in unraveling various biological mechanisms, including genomic imprinting and gene expression controlled by cis-regulatory variants. However, existing methods for quantification from RNA-sequencing (RNA-seq) reads do not adequately and efficiently remove various allele-specific read mapping biases, such as reference bias arising from reads containing the alternative allele that do not map to the reference transcriptome or ambiguous mapping bias caused by reads containing the reference allele that map differently from reads containing the alternative allele. We present Ornaments, a computational tool for rapid and accurate estimation of allele-specific transcript expression at unphased heterozygous loci from RNA-seq reads while correcting for allele-specific read mapping biases. Ornaments removes reference bias by mapping reads to a personalized transcriptome and ambiguous mapping bias by probabilistically assigning reads to multiple transcripts and variant loci they map to. Ornaments is a lightweight extension of kallisto, a popular tool for fast RNA-seq quantification, that improves the efficiency and accuracy of WASP, a popular tool for bias correction in allele-specific read mapping. In experiments with simulated and human lymphoblastoid cell-line RNA-seq reads with the genomes of the 1000 Genomes Project, we demonstrate that Ornaments improves the accuracy of WASP and kallisto, is nearly as efficient as kallisto, and is an order of magnitude faster than WASP per sample, with the additional cost of constructing a personalized index for multiple samples. Additionally, we show that Ornaments finds imprinted transcripts with higher sensitivity than WASP, which detects imprinted signals only at gene level.

2.
Hum Genomics ; 18(1): 79, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-39010135

RESUMO

The analysis of genomic variations in offspring after implantation has been infrequently studied. In this study, we aim to investigate the extent of de novo mutations in humans from developing fetus to birth. Using high-depth whole-genome sequencing, 443 parent-offspring trios were studied to compare the results of de novo mutations (DNMs) between different groups. The focus was on fetuses and newborns, with DNA samples obtained from the families' blood and the aspirated embryonic tissues subjected to deep sequencing. It was observed that the average number of total DNMs in the newborns group was 56.26 (54.17-58.35), which appeared to be lower than that the multifetal reduction group, which was 76.05 (69.70-82.40) (F = 2.42, P = 0.12). However, after adjusting for parental age and maternal pre-pregnancy body mass index (BMI), significant differences were found between the two groups. The analysis was further divided into single nucleotide variants (SNVs) and insertion/deletion of a small number of bases (indels), and it was discovered that the average number of de novo SNVs associated with the multifetal reduction group and the newborn group was 49.89 (45.59-54.20) and 51.09 (49.22-52.96), respectively. No significant differences were noted between the groups (F = 1.01, P = 0.32). However, a significant difference was observed for de novo indels, with a higher average number found in the multifetal reduction group compared to the newborn group (F = 194.17, P < 0.001). The average number of de novo indels among the multifetal reduction group and the newborn group was 26.26 (23.27-29.05) and 5.17 (4.82-5.52), respectively. To conclude, it has been observed that the quantity of de novo indels in the newborns experiences a significant decrease when compared to that in the aspirated embryonic tissues (7-9 weeks). This phenomenon is evident across all genomic regions, highlighting the adverse effects of de novo indels on the fetus and emphasizing the significance of embryonic implantation and intrauterine growth in human genetic selection mechanisms.


Assuntos
Feto , Humanos , Feminino , Gravidez , Recém-Nascido , Masculino , Adulto , Polimorfismo de Nucleotídeo Único/genética , Implantação do Embrião/genética , Genoma Humano/genética , Mutação INDEL/genética , Genômica , Sequenciamento Completo do Genoma , Sequenciamento de Nucleotídeos em Larga Escala , Mutação/genética , Desenvolvimento Fetal/genética
3.
Proc Natl Acad Sci U S A ; 119(48): e2207965119, 2022 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-36417431

RESUMO

Nucleobase-containing coenzymes are hypothesized to be relics of an early RNA-based world that preceded the emergence of proteins. Despite the importance of coenzyme-protein synergisms, their emergence and evolution remain understudied. An excellent target to address this issue is the Rossmann fold, the most catalytically diverse and abundant protein architecture in nature. We investigated two main Rossmann lineages: the nicotinamide adenine dinucleotide phosphate (NAD(P)) and the S-adenosyl methionine (SAM)- binding superfamilies. To identify the evolutionary changes that lead to a coenzyme specificity switch on these superfamilies, we performed structural and sequence-based Hidden Markov model analysis to systematically search for key motifs in their coenzyme-binding pockets. Our analyses revealed that through insertions and deletions (InDels) and a residue substitution, the ancient ß1-loop-α1 coenzyme-binding structure of NAD(P) could be reshaped into the SAM-binding ß1-loop-α1 structure. To experimentally prove this obsevation, we removed three amino acids from the NAD(P)-binding pocket and solved the structure of the resulting mutant, revealing the characteristic loop features of the SAM-binding pocket. To confirm the binding to SAM, we performed isothermal titration calorimetry measurements. Molecular dynamics simulations also corroborated the role of InDels in abolishing NAD binding and acquiring SAM binding. Our results uncovered how nature may have utilized insertions and deletions to optimize the different coenzyme-binding pockets and the distinct functionalities observed for Rossmann superfamilies. This work also proposes a general mechanism by which protein templates could have been recycled through the course of evolution to adopt different coenzymes and confer distinct chemistries.


Assuntos
Coenzimas , NAD , NAD/metabolismo , Proteínas/química , NADP/metabolismo , S-Adenosilmetionina
4.
Ann Bot ; 133(4): 585-604, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38359907

RESUMO

BACKGROUND AND AIMS: Kalanchoideae is one of three subfamilies within Crassulaceae and contains four genera. Despite previous efforts, the phylogeny of Kalanchoideae remains inadequately resolved with persistent issues including low support, unstructured topologies and polytomies. This study aimed to address two central objectives: (1) resolving the pending phylogenetic questions within Kalanchoideae by using organelle-scale 'barcodes' (plastomes) and nuclear data; and (2) investigating interspecific diversity patterns among Kalanchoideae plastomes. METHODS: To explore the plastome evolution in Kalanchoideae, we newly sequenced 38 plastomes representing all four constituent genera (Adromischus, Cotyledon, Kalanchoe and Tylecodon). We performed comparative analyses of plastomic features, including GC and gene contents, gene distributions at the IR (inverted repeat) boundaries, nucleotide divergence, plastomic tRNA (pttRNA) structures and codon aversions. Additionally, phylogenetic inferences were inferred using both the plastomic dataset (79 genes) and nuclear dataset (1054 genes). KEY RESULTS: Significant heterogeneities were observed in plastome lengths among Kalanchoideae, strongly correlated with LSC (large single copy) lengths. Informative diversities existed in the gene content at SSC/IRa (small single copy/inverted repeat a), with unique patterns individually identified in Adromischus leucophyllus and one major Kalanchoe clade. The ycf1 gene was assessed as a shared hypervariable region among all four genera, containing nine lineage-specific indels. Three pttRNAs exhibited unique structures specific to Kalanchoideae and the genera Adromischus and Kalanchoe. Moreover, 24 coding sequences revealed a total of 41 lineage-specific unused codons across all four constituent genera. The phyloplastomic inferences clearly depicted internal branching patterns in Kalanchoideae. Most notably, by both plastid- and nuclear-based phylogenies, our research offers the first evidence that Kalanchoe section Eukalanchoe is not monophyletic. CONCLUSIONS: This study conducted comprehensive analyses on 38 newly reported Kalanchoideae plastomes. Importantly, our results not only reconstructed well-resolved phylogenies within Kalanchoideae, but also identified highly informative unique markers at the subfamily, genus and species levels. These findings significantly enhance our understanding of the evolutionary history of Kalanchoideae.


Assuntos
Crassulaceae , Filogenia , Crassulaceae/genética , Plastídeos/genética , Evolução Biológica , Evolução Molecular , Genomas de Plastídeos
5.
Artigo em Inglês | MEDLINE | ID: mdl-38319314

RESUMO

The family Peptostreptococcaceae, which contains 15 genera including Clostridioides, presently lacks proper circumscription. Using 52 available genomes for Peptostreptococcaceae species, we report comprehensive phylogenomic and comparative analyses to reliably discern their evolutionary relationships. In phylogenetic trees based on core genome proteins and 16S rRNA gene sequences, the examined species formed a strongly supported clade designated as Peptostreptococcaceae sensu stricto. This clade encompassed the genera Peptostreptococcus (type genus), Asaccharospora, Clostridioides, Intestinibacter, Paeniclostridium, Paraclostridium, Peptacetobacter, Romboutsia and Terrisporobacter, and two misclassified species (viz. Eubacterium tenue and 'Clostridium dakarense'). The distinctness of this clade is strongly supported by eight identified conserved signature indels (CSIs), which are specific for the species from this clade. Based on the robust evidence provided by presented studies, we are proposing the emendment of family Peptostreptococcaceae to only the genera within the Peptostreptococcaceae sensu stricto clade. We also report 67 other novel CSIs, which reliably demarcate different Peptostreptococcaceae species clades and clarify the classification of some misclassified species. Based on the consistent evidence obtained from different presented studies, we are making the following proposals to clarify the classification of Peptostreptococcaceae species: (i) transfer of Eubacterium tenue, Paeniclostridium ghonii and Paeniclostridium sordellii as comb. nov. into the genus Paraclostridium; (ii) transfer of Clostridioides mangenotii as a comb. nov. into Metaclostridioides gen. nov.; (iii) classification of 'Clostridium dakarense' as a novel species Faecalimicrobium dakarense gen. nov., sp. nov. (type strain FF1T; genome and 16S rRNA accession numbers GCA_000499525.1 and KC517358, respectively); (iv) transfer of two misclassified species, Clostridium paradoxum and Clostridium thermoalcaliphilum, into Alkalithermobacter gen. nov.; and (v) proposals for two novel families, Peptoclostridiaceae fam. nov. and Tepidibacteraceae fam. nov., to accommodate remaining unclassified Peptostreptococcaceae genera. The described CSIs specific for different families and genera provide novel and reliable means for the identification, diagnostics and biochemical studies on these bacteria.


Assuntos
Clostridiaceae , Clostridiales , Ácidos Graxos , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Eubacterium
6.
Int J Mol Sci ; 25(10)2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38791234

RESUMO

As a physical mutagen, carbon ion beam (CIB) irradiation can induce high-frequency mutation, which is user-friendly and environment-friendly in plant breeding. In this study, we resequenced eight mutant lines which were screened out from the progeny of the CIB-irradiated dehulled rice seeds. Among these mutants, CIB induced 135,535 variations, which include single base substitutions (SBSs), and small insertion and deletion (InDels). SBSs are the most abundant mutation, and account for 88% of all variations. Single base conversion is the main type of SBS, and the average ratio of transition and transversion is 1.29, and more than half of the InDels are short-segmented mutation (1-2 bp). A total of 69.2% of the SBSs and InDels induced by CIBs occurred in intergenic regions on the genome. Surprisingly, the average mutation frequency in our study is 9.8 × 10-5/bp and much higher than that of the previous studies, which may result from the relatively high irradiation dosage and the dehulling of seeds for irradiation. By analyzing the mutation of every 1 Mb in the genome of each mutant strain, we found some unusual high-frequency (HF) mutation regions, where SBSs and InDels colocalized. This study revealed the mutation mechanism of dehulled rice seeds by CIB irradiation on the genome level, which will enrich our understanding of the mutation mechanism of CIB radiation and improve mutagenesis efficiency.


Assuntos
Genoma de Planta , Mutação , Oryza , Sementes , Oryza/genética , Oryza/efeitos da radiação , Sementes/genética , Sementes/efeitos da radiação , Carbono , Mutação INDEL , Íons Pesados
7.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474042

RESUMO

Plants are continuously exposed to various environmental stresses. Because they can not escape stress, they have to develop mechanisms of remembering stress exposures somatically and passing it to the progeny. We studied the Arabidopsis thaliana ecotype Columbia plants exposed to cold stress for 25 continuous generations. Our study revealed that multigenerational exposure to cold stress resulted in the changes in the genome and epigenome (DNA methylation) across generations. Main changes in the progeny were due to the high frequency of genetic mutations rather than epigenetic changes; the difference was primarily in single nucleotide substitutions and deletions. The progeny of cold-stressed plants exhibited the higher rate of missense non-synonymous mutations as compared to the progeny of control plants. At the same time, epigenetic changes were more common in the CHG (C = cytosine, H = cytosine, adenine or thymine, G = guanine) and CHH contexts and favored hypomethylation. There was an increase in the frequency of C to T (thymine) transitions at the CHH positions in the progeny of cold stressed plants; because this type of mutations is often due to the deamination of the methylated cytosines, it can be hypothesized that environment-induced changes in methylation contribute to mutagenesis and may be to microevolution processes and that RNA-dependent DNA methylation plays a crucial role. Our work supports the existence of heritable stress response in plants and demonstrates that genetic changes prevail.


Assuntos
Arabidopsis , Arabidopsis/genética , Epigenômica/métodos , Resposta ao Choque Frio , Timina , Epigênese Genética , Metilação de DNA , Citosina
8.
Artigo em Inglês | MEDLINE | ID: mdl-38568352

RESUMO

There may be cases where malignant tumor samples can be used for forensic DNA profiling studies. STRs are the first systems preferred in forensic science laboratories for identification purposes. However, genetic instability in tumoral tissues causes STR polymorphism to change, leading to erroneous results. On the other hand, insertion/deletion polymorphism (InDels) are used as genetic markers in forensic science, as they have features that make both STR and SNPs preferable. Although previous studies approved that STR instability is observed in many different tumors, there are only a few studies that have displayed the instability of InDels in tumoral tissues before. In this study, it was aimed to determine whether instability is observed in formalin-fixed paraffin-embedded breast and thyroid tumoral tissues at 36plex InDel Panel. A total of 47 cases, 26 of which were diagnosed as breast cancer and 21 as thyroid cancer, were included in the study. In 21 of 26 (80.76%) breast cancers mutational changes were observed, however only 6 of 21 (28.57%) thyroid carcinoma cases displayed instability.Moreover, in these six cases, mutations were detected at only 1 or 2 loci. The most common change in both tissues was loss of heterozygosity. These findings suggest that paraffin embedded tissues of thyroid tumor can be used in cases of forensic genetic identification, however paraffin embedded breast cancer tissues should be examined with care. In conclusion, low InDel mutation rates compared to STR instability, make InDel analysis from paraffin blocks suitable for forensic genetic identification. However, researchers should keep in mind that there may be differences between the profiles of the tumoral tissues taken as reference and the actual case. In addition, by incorporating additional markers such as SNPs and microhaplotypes with low mutation rates into the study alongside Indels, researchers can significantly enhance the discrimination power in identification processes.

9.
Dev Biol ; 484: 22-29, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35149003

RESUMO

Targeted mutagenesis in zebrafish, fruit flies, and C. elegans has been significantly improved over the years through CRISPR technology. CRISPR enables researchers to efficiently examine cellular pathways by inducing small, targeted mutations in vivo. Though these mutations are commonly random insertions or deletions (indels), they often result in functionally disrupted alleles of a target gene if the CRISPR components are appropriately designed. However, current protocols used to identify the presence of CRISPR-generated indels are often labor intensive, time-consuming, or expensive. Here, we describe a straightforward, high-throughput method for identifying the presence of mutations by using a fragment analyzer platform which allows for DNA fragment sizing through high-resolution capillary gel-electrophoresis. Following this protocol, small indels-down to 2 base pairs-can be quickly and reliably identified, thus allowing for large-scale genotyping of newly-generated or stable mutant lines.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Peixe-Zebra , Animais , Sistemas CRISPR-Cas/genética , Caenorhabditis elegans/genética , Reação em Cadeia da Polimerase , Peixe-Zebra/genética
10.
BMC Genomics ; 24(1): 437, 2023 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537522

RESUMO

BACKGROUND: CD-1 is an outbred mouse stock that is frequently used in toxicology, pharmacology, and fundamental biomedical research. Although inbred strains are typically better suited for such studies due to minimal genetic variability, outbred stocks confer practical advantages over inbred strains, such as improved breeding performance and low cost. Knowledge of the full genetic variability of CD-1 would make it more useful in toxicology, pharmacology, and fundamental biomedical research. RESULTS: We performed deep genomic DNA sequencing of CD-1 mice and used the data to identify genome-wide SNPs, indels, and germline transposable elements relative to the mm10 reference genome. We used multiple genome-wide sequencing data types and previously published CD-1 SNPs to validate our called variants. We used the called variants to construct a strain-specific CD-1 reference genome, which we show can improve mappability and reduce experimental biases from genome-wide sequencing data derived from CD-1 mice. Based on previously published ChIP-seq and ATAC-seq data, we find evidence that genetic variation between CD-1 mice can lead to alterations in transcription factor binding. We also identified a number of variants in the coding region of genes which could have effects on translation of genes. CONCLUSIONS: We have identified millions of previously unidentified CD-1 variants with the potential to confound studies involving CD-1. We used the identified variants to construct a CD-1-specific reference genome, which can improve accuracy and reduce bias when aligning genomics data derived from CD-1 mice.


Assuntos
Genoma , Genômica , Camundongos , Animais , Mapeamento Cromossômico , Ligação Proteica , Polimorfismo de Nucleotídeo Único
11.
BMC Genomics ; 24(1): 586, 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37789301

RESUMO

BACKGROUND: Tall fescue (Festuca arundinacea Schreb.) is an important cool-season perennial grass species. Hexaploid tall fescue has three distinct morphotypes used either as forage or turf purposes. Its chloroplast genome is conserved due to it being maternally inherited to the next generation progenies. To identify morphotype-specific DNA markers and the genetic variations, plastid genomes of all three tall fescue morphotypes, i.e., Continental cv. Texoma MaxQ II, Rhizomatous cv. Torpedo, and Mediterranean cv. Resolute, have been sequenced using Illumina MiSeq sequencing platform. RESULTS: The plastid genomes of Continental-, Rhizomatous-, and Mediterranean tall fescue were assembled into circular master molecules of 135,283 bp, 135,336 bp, and 135,324 bp, respectively. The tall fescue plastid genome of all morphotypes contained 77 protein-coding, 20 tRNAs, four rRNAs, two pseudo protein-coding, and three hypothetical protein-coding genes. We identified 630 SNPs and 124 InDels between Continental and Mediterranean, 62 SNPs and 20 InDels between Continental and Rhizomatous, and 635 SNPs and 123 InDels between Rhizomatous and Mediterranean tall fescue. Only four InDels in four genes (ccsA, rps18, accD, and ndhH-p) were identified, which discriminated Continental and Rhizomatous plastid genomes from the Mediterranean plastid genome. Here, we identified and reported eight InDel markers (NRITCHL18, NRITCHL35, NRITCHL43, NRITCHL65, NRITCHL72, NRITCHL101, NRITCHL104, and NRITCHL110) from the intergenic regions that can successfully discriminate tall fescue morphotypes. Divergence time estimation revealed that Mediterranean tall fescue evolved approximately 7.09 Mya, whereas the divergence between Continental- and Rhizomatous tall fescue occurred about 0.6 Mya. CONCLUSIONS: To our knowledge, this is the first report of the assembled plastid genomes of Rhizomatous and Mediterranean tall fescue. Our results will help to identify tall fescue morphotypes at the time of pre-breeding and will contribute to the development of lawn and forage types of commercial varieties.


Assuntos
Festuca , Genomas de Plastídeos , Lolium , Festuca/genética , Melhoramento Vegetal , Poaceae/genética , Lolium/genética , DNA de Plantas/genética
12.
BMC Genomics ; 24(1): 302, 2023 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-37277710

RESUMO

BACKGROUND: In light of previous studies that profiled breed-specific traits or used genome-wide association studies to refine loci associated with characteristic morphological features in dogs, the field has gained tremendous genetic insights for known dog traits observed among breeds. Here we aim to address the question from a reserve perspective: whether there are breed-specific genotypes that may underlie currently unknown phenotypes. This study provides a complete set of breed-specific genetic signatures (BSGS). Several novel BSGS with significant protein-altering effects were highlighted and validated. RESULTS: Using the next generation whole-genome sequencing technology coupled with unsupervised machine learning for pattern recognitions, we constructed and analyzed a high-resolution sequence map for 76 breeds of 412 dogs. Genomic structures including novel single nucleotide polymorphisms (SNPs), SNP clusters, insertions, deletions (INDELs) and short tandem repeats (STRs) were uncovered mutually exclusively among breeds. We also partially validated some novel nonsense variants by Sanger sequencing with additional dogs. Four novel nonsense BSGS were found in the Bernese Mountain Dog, Samoyed, Bull Terrier, and Basset Hound, respectively. Four INDELs resulting in either frame-shift or codon disruptions were found in the Norwich Terrier, Airedale Terrier, Chow Chow and Bernese Mountain Dog, respectively. A total of 15 genomic regions containing three types of BSGS (SNP-clusters, INDELs and STRs) were identified in the Akita, Alaskan Malamute, Chow Chow, Field Spaniel, Keeshond, Shetland Sheepdog and Sussex Spaniel, in which Keeshond and Sussex Spaniel each carried one amino-acid changing BSGS in such regions. CONCLUSION: Given the strong relationship between human and dog breed-specific traits, this study might be of considerable interest to researchers and all. Novel genetic signatures that can differentiate dog breeds were uncovered. Several functional genetic signatures might indicate potentially breed-specific unknown phenotypic traits or disease predispositions. These results open the door for further investigations. Importantly, the computational tools we developed can be applied to any dog breeds as well as other species. This study will stimulate new thinking, as the results of breed-specific genetic signatures may offer an overarching relevance of the animal models to human health and disease.


Assuntos
Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Humanos , Cães , Animais , Melhoramento Vegetal , Genótipo , Fenótipo
13.
Mol Biol Evol ; 39(3)2022 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-35137193

RESUMO

Insertions and deletions of lengths not divisible by 3 in protein-coding sequences cause frameshifts that usually induce premature stop codons and may carry a high fitness cost. However, this cost can be partially offset by a second compensatory indel restoring the reading frame. The role of such pairs of compensatory frameshifting mutations (pCFMs) in evolution has not been studied systematically. Here, we use whole-genome alignments of protein-coding genes of 100 vertebrate species, and of 122 insect species, studying the prevalence of pCFMs in their divergence. We detect a total of 624 candidate pCFM genes; six of them pass stringent quality filtering, including three human genes: RAB36, ARHGAP6, and NCR3LG1. In some instances, amino acid substitutions closely predating or following pCFMs restored the biochemical similarity of the frameshifted segment to the ancestral amino acid sequence, possibly reducing or negating the fitness cost of the pCFM. Typically, however, the biochemical similarity of the frameshifted sequence to the ancestral one was not higher than the similarity of a random sequence of a protein-coding gene to its frameshifted version, indicating that pCFMs can uncover radically novel regions of protein space. In total, pCFMs represent an appreciable and previously overlooked source of novel variation in amino acid sequences.


Assuntos
Mutação INDEL , Proteínas , Sequência de Aminoácidos , Humanos , Mutação , Fases de Leitura Aberta , Proteínas/genética
14.
Curr Issues Mol Biol ; 45(7): 5776-5797, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37504281

RESUMO

Abaca (Musa textilis Née) is an economically important fiber crop in the Philippines. Its economic potential, however, is hampered by biotic and abiotic stresses, which are exacerbated by insufficient genomic resources for varietal identification vital for crop improvement. To address these gaps, this study aimed to discover genome-wide polymorphisms among abaca cultivars and other Musa species and analyze their potential as genetic marker resources. This was achieved through whole-genome Illumina resequencing of abaca cultivars and variant calling using BCFtools, followed by genetic diversity and phylogenetic analyses. A total of 20,590,381 high-quality single-nucleotide polymorphisms (SNP) and DNA insertions/deletions (InDels) were mined across 16 abaca cultivars. Filtering based on linkage disequilibrium (LD) yielded 130,768 SNPs and 13,620 InDels, accounting for 0.396 ± 0.106 and 0.431 ± 0.111 of gene diversity across these cultivars. LD-pruned polymorphisms across abaca, M. troglodytarum, M. acuminata and M. balbisiana enabled genetic differentiation within abaca and across the four Musa spp. Phylogenetic analysis revealed the registered varieties Abuab and Inosa to accumulate a significant number of mutations, eliciting further studies linking mutations to their advantageous phenotypes. Overall, this study pioneered in producing marker resources in abaca based on genome-wide polymorphisms vital for varietal authentication and comparative genotyping with the more studied Musa spp.

15.
Funct Integr Genomics ; 23(1): 58, 2023 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-36757519

RESUMO

In the present study, the re-sequencing of our previous whole-genome sequencing (WGS) for selected individuals of Dazu-black goat (DBG) and Inner-Mongolia Cashmere goat (IMCG) breeds was used to detect and compare the differentiation in Indels depending on the reference genome of goat. Then, three selected candidate Indels rs668795676, rs657996810, and rs669452874 of the three genes SUFU, SYCP2L and GLIPR1L1, respectively, have been chosen, based on the results of prior GWAS across the genome, and examined for their association with body weight and dimensions (body height, body length, heart girth, chest width, cannon circumference, and chest depth) by kompetitive allele specific PCR assay for 342 goats from the three studied goat breeds (DBG, n = 203; ♂99, ♀104), IMCG (n = 65; 15♂, 50♀), and Hechuan white goat (HWG, n = 74; 34♂, 40♀) breeds. The analysis of 192.747 Gb WGS revealed an average 334,151 Indels in the whole genome of DBG and IMCG breeds. Chromosome 1 had a maximum number of mutations (Indels) of 58,497 and 55,527 for IMCG and DBG, respectively, while chromosome 25 had the least number of mutations of 15,680 and 16,103 for IMCG and DBG, respectively. The majority of Indels were either Ins or Del of short fragments of 1-5 bp, which covered 79.06 and 71.78% of the total number of Indels mutations in IMCG and DBG, respectively. Comparing the differences of Indels between the studied goat breeds revealed 100 and 110 unique Indels for IMCG and DBG, respectively. The Indels loci in the intron region were unique for both studied goat breeds which were related to 30 and 38 candidate genes in IMCG and DBG, respectively, including SUFU, SYCP2L, and GLIPR1L1 genes. Concerning rs669452874 locus, body height and body length of Del/Del genotype in DBG were significantly higher (P < 0.05) than that of Ins/Del genotype, while body height and body length of Del/Del genotype in IMCG were significantly higher (P < 0.01) than those of Ins/Ins genotype, whereas body height and body length and heart girth of Del/Del genotype in HWG were significantly higher (P < 0.01) than those of the Ins/Del and Ins/Ins genotypes. Thus, Del/Del genotype of rs669452874 locus can be used as a candidate molecular marker related to the body dimensions in the studied goat breeds.


Assuntos
Cabras , Mutação INDEL , Animais , Alelos , Genoma , Genótipo , Cabras/genética , Fenótipo , Polimorfismo de Nucleotídeo Único , Cruzamento
16.
Mol Ecol ; 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-38078552

RESUMO

While chromosomal rearrangements are ubiquitous in all domains of life, very little is known about their evolutionary significance, mostly because, apart from a few specifically studied and well-documented mechanisms (interaction with recombination, gene duplication, etc.), very few models take them into account. As a consequence, we lack a general theory to account for their direct and indirect contributions to evolution. Here, we propose Aevol, a forward-in-time simulation platform specifically dedicated to unravelling the evolutionary significance of chromosomal rearrangements (CR) compared to local mutations (LM). Using the platform, we evolve populations of organisms in four conditions characterized by an increasing diversity of mutational operators-from substitutions alone to a mix of substitutions, InDels and CR-but with a constant global mutational rate. Despite being almost invisible in the phylogeny owing to the scarcity of their fixation in the lineages, we show that CR make a decisive contribution to the evolutionary dynamics by comparing the outcome in these four conditions. As expected, chromosomal rearrangements allow fast expansion of the gene repertoire through gene duplication, but they also reduce the effect of diminishing-returns epistasis, hence sustaining adaptation on the long-run. At last, we show that chromosomal rearrangements tightly regulate the size of the genome through indirect selection for reproductive robustness. Overall, these results confirm the need to improve our theoretical understanding of the contribution of chromosomal rearrangements to evolution and show that dedicated platforms like Aevol can efficiently contribute to this agenda.

17.
J Biomed Sci ; 30(1): 51, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37393268

RESUMO

Genome editing technologies hold great promise for numerous applications including the understanding of cellular and disease mechanisms and the development of gene and cellular therapies. Achieving high editing frequencies is critical to these research areas and to achieve the overall goal of being able to manipulate any target with any desired genetic outcome. However, gene editing technologies sometimes suffer from low editing efficiencies due to several challenges. This is often the case for emerging gene editing technologies, which require assistance for translation into broader applications. Enrichment strategies can support this goal by selecting gene edited cells from non-edited cells. In this review, we elucidate the different enrichment strategies, their many applications in non-clinical and clinical settings, and the remaining need for novel strategies to further improve genome research and gene and cellular therapy studies.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Edição de Genes
18.
Artigo em Inglês | MEDLINE | ID: mdl-37159410

RESUMO

Taxon-specific conserved signature indels (CSIs) in genes/proteins provide reliable molecular markers (synapomorphies) for unambiguous demarcation of taxa of different ranks in molecular terms and for genetic, biochemical and diagnostic studies. Because of their predictive abilities, the shared presence of known taxon-specific CSIs in genome sequences has proven useful for taxonomic purposes. However, the lack of a convenient method for identifying the presence of known CSIs in genome sequences has limited their utility for taxonomic and other studies. We describe here a web-based tool/server (AppIndels.com) that identifies the presence of known and validated CSIs in genome sequences and uses this information for predicting taxonomic affiliation. The utility of this server was tested by using a database of 585 validated CSIs, which included 350 CSIs specific for ≈45 Bacillales genera, with the remaining CSIs being specific for members of the orders Neisseriales, Legionellales and Chlorobiales, family Borreliaceae, and some Pseudomonadaceae species/genera. Using this server, genome sequences were analysed for 721 Bacillus strains of unknown taxonomic affiliation. Results obtained showed that 651 of these genomes contained significant numbers of CSIs specific for the following Bacillales genera/families: Alkalicoccus, 'Alkalihalobacillaceae', Alteribacter, Bacillus Cereus clade, Bacillus Subtilis clade, Caldalkalibacillus, Caldibacillus, Cytobacillus, Ferdinandcohnia, Gottfriedia, Heyndrickxia, Lederbergia, Litchfieldia, Margalitia, Mesobacillus, Metabacillus, Neobacillus, Niallia, Peribacillus, Priestia, Pseudalkalibacillus, Robertmurraya, Rossellomorea, Schinkia, Siminovitchia, Sporosarcina, Sutcliffiella, Weizmannia and Caryophanaceae. Validity of the taxon assignment made by the server was examined by reconstructing phylogenomic trees. In these trees, all Bacillus strains for which taxonomic predictions were made correctly branched with the indicated taxa. The unassigned strains likely correspond to taxa for which CSIs are lacking in our database. Results presented here show that the AppIndels server provides a useful new tool for predicting taxonomic affiliation based on shared presence of the taxon-specific CSIs. Some caveats in using this server are discussed.


Assuntos
Bacillaceae , Bacillus , Humanos , Bacillus/genética , Filogenia , Análise de Sequência de DNA , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana , Composição de Bases , Ácidos Graxos/química , Árvores , Internet
19.
Mol Breed ; 43(3): 21, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37313297

RESUMO

Haplotype blocks greatly assist association-based mapping of casual candidate genes by significantly reducing genotyping effort. The gene haplotype could be used to evaluate variants of affected traits captured from the gene region. While there is a rising interest in gene haplotypes, much of the corresponding analysis was carried out manually. CandiHap allows rapid and robust haplotype analysis and candidate identification preselection of candidate causal single-nucleotide polymorphisms and InDels from Sanger or next-generation sequencing data. Investigators can use CandiHap to specify a gene or linkage sites based on genome-wide association studies and explore favorable haplotypes of candidate genes for target traits. CandiHap can be run on computers with Windows, Mac, or UNIX platforms in a graphical user interface or command line, and applied to any species, such as plant, animal, and microbial. The CandiHap software, user manual, and example datasets are freely available at BioCode (https://ngdc.cncb.ac.cn/biocode/tools/BT007080) or GitHub (https://github.com/xukaili/CandiHap). Supplementary information: The online version contains supplementary material available at 10.1007/s11032-023-01366-4.

20.
Antonie Van Leeuwenhoek ; 116(10): 937-973, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37523090

RESUMO

The family Staphylococcacae and genus Gemella contain several organisms of clinical or biotechnological importance. We report here comprehensive phylogenomic and comparative analyses on 112 available genomes from species in these taxa to clarify their evolutionary relationships and classification. In a phylogenomic tree based on 678 core proteins, Gemella species were separated from Staphylococcacae by a long branch indicating that they constitute a distinct family (Gemellaceae fam. nov.). In this tree, Staphylococcacae species formed two main clades, one encompassing the genera Aliicoccus, Jeotgalicoccus, Nosocomiicoccus and Salinicoccus (Family "Salinicoccaceae"), while the other clade consisted of the genera Macrococcus, Mammaliicoccus and Staphylococcus (Family Staphylococcaceae emend.). In this tree, species from the genera Gemella, Jeotgalicoccus, Macrococcus and Salinicoccus each formed two distinct clades. Two species clades for these genera are also observed in 16S rRNA gene trees and supported by average amino acid identity analysis. We also report here detailed analyses on protein sequences from Staphylococcaceae and Gemella genomes to identify conserved signature indels (CSIs) which are specific for different genus and family-level clades. These analyses have identified 120 novel CSIs robustly demarcating different proposed families and genera. The identified CSIs provide independent evidence that the genera Gemella, Jeotgalicoccus, Macrococcus and Salinicoccus consist of two distinct clades, which can be reliably distinguished based on multiple exclusively shared CSIs. We are proposing transfers of the species from the novel clades of the above four genera into the genera Gemelliphila gen. nov., Phocicoccus gen. nov., Macrococcoides gen. nov. and Lacicoccus gen. nov., respectively. The identified CSIs also provide strong evidence for division of Staphylococcaceae into an emended family Staphylococcaceae and two new families, Abyssicoccaceae fam. nov. and Salinicoccaceae fam. nov. All of these families can be reliably demarcated based on several exclusively shared CSIs.


Assuntos
Gemella , Humanos , Gemella/genética , Análise de Sequência de DNA , Staphylococcaceae/genética , Filogenia , RNA Ribossômico 16S/genética , DNA Bacteriano/genética , Técnicas de Tipagem Bacteriana
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa