Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.267
Filtrar
Mais filtros

Eixos temáticos
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(50): e2308832120, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38048461

RESUMO

Building conditions, outdoor climate, and human behavior influence residential concentrations of fine particulate matter (PM2.5). To study PM2.5 spatiotemporal variability in residences, we acquired paired indoor and outdoor PM2.5 measurements at 3,977 residences across the United States totaling >10,000 monitor-years of time-resolved data (10-min resolution) from the PurpleAir network. Time-series analysis and statistical modeling apportioned residential PM2.5 concentrations to outdoor sources (median residential contribution = 52% of total, coefficient of variation = 69%), episodic indoor emission events such as cooking (28%, CV = 210%) and persistent indoor sources (20%, CV = 112%). Residences in the temperate marine climate zone experienced higher infiltration factors, consistent with expectations for more time with open windows in milder climates. Likewise, for all climate zones, infiltration factors were highest in summer and lowest in winter, decreasing by approximately half in most climate zones. Large outdoor-indoor temperature differences were associated with lower infiltration factors, suggesting particle losses from active filtration occurred during heating and cooling. Absolute contributions from both outdoor and indoor sources increased during wildfire events. Infiltration factors decreased during periods of high outdoor PM2.5, such as during wildfires, reducing potential exposures from outdoor-origin particles but increasing potential exposures to indoor-origin particles. Time-of-day analysis reveals that episodic emission events are most frequent during mealtimes as well as on holidays (Thanksgiving and Christmas), indicating that cooking-related activities are a strong episodic emission source of indoor PM2.5 in monitored residences.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Crowdsourcing , Humanos , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Monitoramento Ambiental , Material Particulado/análise , Tamanho da Partícula
2.
Cancer Causes Control ; 35(2): 281-292, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37733135

RESUMO

PURPOSE: Gallbladder cancers (GBC), unique to certain geographical regions, are lethal digestive tract cancers, disproportionately affecting women, with limited information on risk factors. METHODS: We evaluated the association between household cooking fuel and GBC risk in a hospital-based case-control study conducted in the North-East and East Indian states of Assam and Bihar. We explored the potential mediation by diet, fire-vents, 'daily exposure duration' and parity (among women). We recruited biopsy-confirmed GBC (n = 214) men and women aged 30-69 years between 2019 and 2021, and controls frequency-matched by age, sex and region (n = 166). Information about cooking fuel, lifestyle, personal and family history, female reproductive factors, socio-demographics, and anthropometrics was collected. We tested associations using multivariable logistic regression analyses. RESULTS: All participants (73.4% women) were categorised based on predominant cooking fuel use. Group-1: LPG (Liquefied Petroleum Gas) users in the previous 20 years and above without concurrent biomass use (26.15%); Group-2: LPG users in the previous 20 years and above with concurrent secondary biomass use (15.9%); Group-3: Biomass users for ≥ 20 years (57.95%). Compared to group-1, accounting for confounders, GBC risk was higher in group-2 [OR: 2.02; 95% CI: 1.00-4.07] and group-3 [OR: 2.01; 95% CI: 1.08-3.73] (p-trend:0.020). These associations strengthened among women that attenuated with high daily consumption of fruits-vegetables but not with fire-vents, 'daily exposure duration' or parity. CONCLUSION: Biomass burning was associated with a high-risk for GBC and should be considered as a modifiable risk factor for GBC. Clean cooking fuel can potentially mitigate, and a healthy diet can partially reduce the risk among women.


Assuntos
Poluição do Ar em Ambientes Fechados , Neoplasias da Vesícula Biliar , Petróleo , Masculino , Gravidez , Humanos , Feminino , Neoplasias da Vesícula Biliar/epidemiologia , Neoplasias da Vesícula Biliar/etiologia , Poluição do Ar em Ambientes Fechados/efeitos adversos , Estudos de Casos e Controles , Culinária , Fatores de Risco , Índia/epidemiologia
3.
Curr Allergy Asthma Rep ; 24(5): 253-260, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38498229

RESUMO

PURPOSE OF REVIEW: Ubiquitous environmental exposures, including ambient air pollutants, are linked to the development and severity of childhood asthma. Advances in our understanding of these links have increasingly led to clinical interventions to reduce asthma morbidity. RECENT FINDINGS: We review recent work untangling the complex relationship between air pollutants, including particulate matter, nitrogen dioxide, and ozone and asthma, such as vulnerable windows of pediatric exposure and their interaction with other factors influencing asthma development and severity. These have led to interventions to reduce air pollutant levels in children's homes and schools. We also highlight emerging environmental exposures increasingly associated with childhood asthma. Growing evidence supports the present threat of climate change to children with asthma. Environmental factors play a large role in the pathogenesis and persistence of pediatric asthma; in turn, this poses an opportunity to intervene to change the course of disease early in life.


Assuntos
Poluentes Atmosféricos , Asma , Exposição Ambiental , Material Particulado , Humanos , Asma/etiologia , Criança , Exposição Ambiental/efeitos adversos , Poluentes Atmosféricos/efeitos adversos , Material Particulado/efeitos adversos , Poluição do Ar/efeitos adversos , Ozônio/efeitos adversos , Mudança Climática , Dióxido de Nitrogênio/efeitos adversos
4.
Environ Sci Technol ; 58(18): 7958-7967, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38656997

RESUMO

Because humans spend about one-third of their time asleep in their bedrooms and are themselves emission sources of volatile organic compounds (VOCs), it is important to specifically characterize the composition of the bedroom air that they experience during sleep. This work uses real-time indoor and outdoor measurements of volatile organic compounds (VOCs) to examine concentration enhancements in bedroom air during sleep and to calculate VOC emission rates associated with sleeping occupants. Gaseous VOCs were measured with proton-transfer reaction time-of-flight mass spectrometry during a multiweek residential monitoring campaign under normal occupancy conditions. Results indicate high emissions of nearly 100 VOCs and other species in the bedroom during sleeping periods as compared to the levels in other rooms of the same residence. Air change rates for the bedroom and, correspondingly, emission rates of sleeping-associated VOCs were determined for two bounding conditions: (1) air exchange between the bedroom and outdoors only and (2) air exchange between the bedroom and other indoor spaces only (as represented by measurements in the kitchen). VOCs from skin oil oxidation and personal care products were present, revealing that many emission pathways can be important occupant-associated emission factors affecting bedroom air composition in addition to direct emissions from building materials and furnishings.


Assuntos
Poluição do Ar em Ambientes Fechados , Sono , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Poluição do Ar em Ambientes Fechados/análise , Humanos , Monitoramento Ambiental , Habitação , Poluentes Atmosféricos/análise
5.
Environ Sci Technol ; 58(18): 7916-7923, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38683040

RESUMO

In response to the COVID-19 pandemic, air cleaning technologies were promoted as useful tools for disinfecting public spaces and combating airborne pathogen transmission. However, no standard method exists to assess the potentially harmful byproduct formation from air cleaners. Through a consensus standard development process, a draft standard test method to assess portable air cleaner performance was developed, and a suite of air cleaners employing seven different technologies was tested. The test method quantifies not only the removal efficiency of a challenge chemical suite and ultrafine particulate matter but also byproduct formation. Clean air delivery rates (CADRs) are used to quantify the chemical and particle removal efficiencies, and an emission rate framework is used to quantify the formation of formaldehyde, ozone, and other volatile organic compounds. We find that the tested photocatalytic oxidation and germicidal ultraviolet light (GUV) technologies produced the highest levels of aldehyde byproducts having emission rates of 202 and 243 µg h-1, respectively. Additionally, GUV using two different wavelengths, 222 and 254 nm, both produced ultrafine particulate matter.


Assuntos
COVID-19 , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Material Particulado/análise , Ozônio/análise , Formaldeído/análise , SARS-CoV-2 , Desinfecção , Poluentes Atmosféricos/análise , Raios Ultravioleta , Humanos
6.
Environ Sci Technol ; 58(9): 4056-4059, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38393774

RESUMO

Certain per- or polyfluoroalkyl substances [e.g., fluorotelomer alcohols (FtOHs), perfluorooctane sulfonamides (FOSAs), and perfluorooctane sulfonamidoethanols (FOSEs)] have sufficient volatility to merit investigation of the vapor intrusion pathway on a site-specific basis, when they occur as subsurface contaminants in sufficient concentrations near occupied buildings. This perspective summarizes some of the evidence that these categories of per- or polyfluoroalkyl substances are volatile and offers specific research questions and objectives, for purposes of further assessing whether FtOHs, FOSAs, and/or FOSEs can pose indoor exposures via soil vapor intrusion and under what circumstances.


Assuntos
Monitoramento Ambiental , Fluorocarbonos , Fluorocarbonos/análise , Gases
7.
Environ Sci Technol ; 58(18): 7986-7997, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38657129

RESUMO

The indoor environment is a typical source for organophosphorus flame retardants and plasticizers (OPFRs), yet the source characteristics of OPFRs in different microenvironments remain less clear. This study collected 109 indoor air samples and 34 paired indoor dust samples from 4 typical microenvironments within a university in Tianjin, China, including the dormitory, office, library, and information center. 29 target OPFRs were analyzed, and novel organophosphorus compounds (NOPs) were identified by fragment-based nontarget analysis. Target OPFRs exhibited the highest air and dust concentrations of 46.2-234 ng/m3 and 20.4-76.0 µg/g, respectively, in the information center, where chlorinated OPFRs were dominant. Triphenyl phosphate (TPHP) was the primary OPFR in office air, while tris(2-chloroethyl) phosphate dominated in the dust. TPHP was predominant in the library. Triethyl phosphate (TEP) was ubiquitous in the dormitory, and tris(2-butoxyethyl) phosphate was particularly high in the dust. 9 of 25 NOPs were identified for the first time, mainly from the information center and office, such as bis(chloropropyl) 2,3-dichloropropyl phosphate. Diphenyl phosphinic acid, two hydroxylated and methylated metabolites of tris(2,4-ditert-butylphenyl) phosphite (AO168), and a dimer phosphate were newly reported in the indoor environment. NOPs were widely associated with target OPFRs, and their human exposure risk and environmental behaviors warrant further study.


Assuntos
Poluição do Ar em Ambientes Fechados , Poeira , Retardadores de Chama , Compostos Organofosforados , Plastificantes , Retardadores de Chama/análise , Plastificantes/análise , Poluição do Ar em Ambientes Fechados/análise , Poeira/análise , China , Compostos Organofosforados/análise , Monitoramento Ambiental , Humanos , Poluentes Atmosféricos/análise
8.
Environ Sci Technol ; 58(19): 8207-8214, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38647545

RESUMO

Short-term exposure to air pollution is associated with a decline in cognitive function. Standardized test scores have been employed to evaluate the effects of air pollution exposure on cognitive performance. Few studies aimed to prove whether air pollution is responsible for reduced test scores; none have implemented a "gold-standard" method for assessing the association such as a randomized, double-blind intervention. This study used a "gold-standard" method─randomized, double-blind crossover─to assess whether reducing short-term indoor particle concentrations results in improved test scores in college students in Tianjin, China. Participants (n = 162) were randomly assigned to one of two similar classrooms and completed a standardized English test on two consecutive weekends. Air purifiers with active or sham (i.e., filter removed) particle filtration were placed in each classroom. The filtration mode was switched between the two test days. Linear mixed-effect models were used to evaluate the effect of the intervention mode on the test scores. The results show that air purification (i.e., reducing PM) was significantly associated with increases in the z score for combined (0.11 [95%CI: 0.02, 0.21]) and reading (0.11 [95%CI: 0.00, 0.22]) components. In conclusion, a short-term reduction in indoor particle concentration led to improved test scores in students, suggesting an improvement in cognitive function.


Assuntos
Poluição do Ar em Ambientes Fechados , Estudos Cross-Over , Material Particulado , Estudantes , Humanos , Método Duplo-Cego , Masculino , Feminino , China , Poluentes Atmosféricos/análise , Adulto Jovem , Poluição do Ar
9.
Environ Sci Technol ; 58(27): 12051-12061, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38922431

RESUMO

Germicidal ultraviolet light (GUV) systems are designed to control airborne pathogen transmission in buildings. However, it is important to acknowledge that certain conditions and system configurations may lead GUV systems to produce air contaminants including oxidants and secondary organic aerosols (SOA). In this study, we modeled the formation and dispersion of oxidants and secondary contaminants generated by the operation of GUV systems employing ultraviolet C 254 and 222 nm. Using a three-dimensional computational fluid dynamics model, we examined the breathing zone concentrations of chemical species in an occupied classroom. Our findings indicate that operating GUV 222 leads to an approximate increase of 10 ppb in O3 concentration and 5.2 µg·m-3 in SOA concentration compared to a condition without GUV operation, while GUV 254 increases the SOA concentration by about 1.2 µg·m-3, with a minimal impact on the O3 concentration. Furthermore, increasing the UV fluence rate of GUV 222 from 1 to 5 µW·cm-2 results in up to 80% increase in the oxidants and SOA concentrations. For GUV 254, elevating the UV fluence rate from 30 to 50 µW·cm-2 or doubling the radiating volume results in up to 50% increase in the SOA concentration. Note that indoor airflow patterns, particularly buoyancy-driven airflow (or displacement ventilation), lead to 15-45% lower SOA concentrations in the breathing zone compared to well-mixed airflow. The results also reveal that when the ventilation rate is below 2 h-1, operating GUV 254 has a smaller impact on human exposure to secondary contaminants than GUV 222. However, GUV 254 may generate more contaminants than GUV 222 when operating at high indoor O3 levels (>15 ppb). These results suggest that the design of GUV systems should consider indoor O3 levels and room ventilation conditions.


Assuntos
Raios Ultravioleta , Poluição do Ar em Ambientes Fechados , Aerossóis , Poluentes Atmosféricos , Ozônio , Humanos
10.
Environ Sci Technol ; 58(27): 12073-12081, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38923518

RESUMO

Ozone and its oxidation products result in negative health effects when inhaled. Despite painted surfaces being the most abundant surface in indoor spaces, surface loss remains one of the largest uncertainties in the indoor ozone budget. Here, ozone uptake coefficients (γO3) on painted surfaces were measured in a flow-through reactor where 79% of the inner surfaces were removable painted glass sheets. Flat white paint initially had a high uptake coefficient (8.3 × 10-6) at 20% RH which plateaued to 1.1 × 10-6 as the paint aged in an indoor office over weeks. Increasing the RH from 0 to 75% increased γO3 by a factor of 3.0, and exposure to 134 ppb of α-terpineol for 1 h increased γO3 by a factor of 1.6 at 20% RH. RH also increases α-terpineol partitioning to paint, further increasing ozone loss, but the type of paint (flat, eggshell, satin, semigloss) had no significant effect. A kinetic multilayer model captures the dependence of γO3 on RH and the presence of α-terpineol, indicating the reacto-diffusive depth for O3 is 1 to 2 µm. Given the similarity of the kinetics on aged surfaces across many paint types and the sustained reactivity during aging, these results suggest a mechanism for catalytic loss.


Assuntos
Ozônio , Pintura , Ozônio/química , Umidade , Compostos Orgânicos Voláteis , Poluição do Ar em Ambientes Fechados
11.
Environ Sci Technol ; 58(19): 8393-8403, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38691770

RESUMO

The chemistry of ozone (O3) on indoor surfaces leads to secondary pollution, aggravating the air quality in indoor environments. Here, we assess the heterogeneous chemistry of gaseous O3 with glass plates after being 1 month in two different kitchens where Chinese and Western styles of cooking were applied, respectively. The uptake coefficients of O3 on the authentic glass plates were measured in the dark and under UV light irradiation typical for indoor environments (320 nm < λ < 400 nm) at different relative humidities. The gas-phase product compounds formed upon reactions of O3 with the glass plates were evaluated in real time by a proton-transfer-reaction quadrupole-interface time-of-flight mass spectrometer. We observed typical aldehydes formed by the O3 reactions with the unsaturated fatty acid constituents of cooking oils. The formation of decanal, 6-methyl-5-hepten-2-one (6-MHO), and 4-oxopentanal (4-OPA) was also observed. The employed dynamic mass balance model shows that the estimated mixing ratios of hexanal, octanal, nonanal, decanal, undecanal, 6-MHO, and 4-OPA due to O3 chemistry with authentic grime-coated kitchen glass surfaces are higher in the kitchen where Chinese food was cooked compared to that where Western food was cooked. These results show that O3 chemistry on greasy glass surfaces leads to enhanced VOC levels in indoor environments.


Assuntos
Poluição do Ar em Ambientes Fechados , Culinária , Vidro , Ozônio , Compostos Orgânicos Voláteis , Ozônio/química , Vidro/química , Poluentes Atmosféricos
12.
Environ Sci Technol ; 58(19): 8326-8335, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38696616

RESUMO

China, especially the densely populated North China region, experienced severe haze events in the past decade that concerned the public. Although the most extreme cases have been largely eliminated through recent mitigation measures, severe outdoor air pollution persists and its environmental impact needs to be understood. Severe indoor pollution draws less public attention due to the short visible distance indoors, but its public health impacts cannot be ignored. Herein, we assess the trends and impacts of severe outdoor and indoor air pollution in North China from 2014 to 2021. Our results demonstrate the uneven contribution of severe hazy days to ambient and exposure concentrations of particulate matter with an aerodynamic diameter <2.5 (PM2.5). Although severe indoor pollution contributes to indoor PM2.5 concentrations (23%) to a similar extent as severe haze contributes to ambient PM2.5 concentrations (21%), the former's contribution to premature deaths was significantly higher. Furthermore, residential emissions contributed more in the higher PM2.5 concentration range both indoors and outdoors. Notably, severe haze had greater health impacts on urban residents, while severe indoor pollution was more impactful in rural areas. Our findings suggest that, besides reducing severe haze, mitigating severe indoor pollution is an important aspect of combating air pollution, especially toward improving public health.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental , Material Particulado , China , Material Particulado/análise , Poluentes Atmosféricos/análise , Poluição do Ar , Humanos
13.
Environ Sci Technol ; 58(19): 8444-8456, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38662989

RESUMO

Ultrafine particle (UFP) pollution should be controlled to reduce its effects on health. The design of control measures is limited owing to the uncertainty of source contributions in Chinese residences, where indoor UFP pollution is more severe than in Western residences. Herein, a source-specific, time-dependent UFP concentration model was developed by applying an infiltration factor model incorporating coagulation effects. A Monte Carlo framework with the UFP concentration model was employed to estimate the probabilistic distribution of source contributions in Chinese residences. The input parameter distributions were determined based on our survey and previous studies. The annually averaged indoor UFP concentration was estimated at (2.75 ± 1.71) × 104 #/cm3, ranging from 2.35 × 103 to 1.27 × 105 #/cm3 outside the kitchen, and at (5.48 ± 3.08) × 104 #/cm3, ranging from 2.90 × 103 to 1.94 × 105 #/cm3 in the kitchen. Indoor sources contributed more to indoor UFPs, accounting for 61% in the nonkitchen and 80% in the kitchen, surpassing their contribution to indoor PM2.5 in Chinese residences. Meanwhile, the indoor UFP emission contributions were higher than those in the United States, Canada, and Germany, owing to higher emissions from cooking and cigarette smoking. These results will aid in elucidating human exposure to UFPs and in designing more targeted control measures.


Assuntos
Poluição do Ar em Ambientes Fechados , Material Particulado , Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , China , Poluentes Atmosféricos/análise , Humanos , Monitoramento Ambiental , Habitação , Tamanho da Partícula , População do Leste Asiático
14.
Environ Sci Technol ; 58(1): 242-257, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38150532

RESUMO

This study presents a health-centered approach to quantify and compare the chronic harm caused by indoor air contaminants using disability-adjusted life-year (DALY). The aim is to understand the chronic harm caused by airborne contaminants in dwellings and identify the most harmful. Epidemiological and toxicological evidence of population morbidity and mortality is used to determine harm intensities, a metric of chronic harm per unit of contaminant concentration. Uncertainty is evaluated in the concentrations of 45 indoor air contaminants commonly found in dwellings. Chronic harm is estimated from the harm intensities and the concentrations. The most harmful contaminants in dwellings are PM2.5, PM10-2.5, NO2, formaldehyde, radon, and O3, accounting for over 99% of total median harm of 2200 DALYs/105 person/year. The chronic harm caused by all airborne contaminants in dwellings accounts for 7% of the total global burden from all diseases.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Radônio , Humanos , Poluição do Ar em Ambientes Fechados/análise , Radônio/análise , Poluentes Atmosféricos/análise
15.
Environ Sci Technol ; 58(1): 639-648, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38111142

RESUMO

Wildfire smoke contains PAHs that, after infiltrating indoors, accumulate on indoor materials through particle deposition and partitioning from air. We report the magnitude and persistence of select surface associated PAHs on three common indoor materials: glass, cotton, and mechanical air filter media. Materials were loaded with PAHs through both spiking with standards and exposure to a wildfire smoke proxy. Loaded materials were aged indoors over ∼4 months to determine PAH persistence. For materials spiked with standards, total PAH decay rates were 0.010 ± 0.002, 0.025 ± 0.005, and 0.051 ± 0.009 day-1, for mechanical air filter media, glass, and cotton, respectively. PAH decay on smoke-exposed samples is consistent with that predicated by decay constants from spiked materials. Decay curves of smoke loaded samples show that PAH surface concentrations are elevated above background for ∼40 days after the smoke clears. Cleaning processes efficiently remove PAHs, with reductions of 71% and 62% after cleaning smoke-exposed glass with ethanol and a commercial cleaner, respectively. Laundering smoke-exposed cotton in a washing machine and heated drying removed 48% of PAHs. An exposure assessment indicates that both inhalation and dermal PAH exposure pathways may be relevant following wildfire smoke events.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Hidrocarbonetos Policíclicos Aromáticos , Incêndios Florestais , Fumaça/análise , Poluição do Ar em Ambientes Fechados/análise , Poluentes Atmosféricos/análise , Monitoramento Ambiental
16.
Environ Sci Technol ; 58(11): 5058-5067, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38445590

RESUMO

In new buildings, nonoccupant VOC emissions are initially high but typically decrease within months. Increased ventilation is commonly used to improve indoor air quality, assuming it speeds up VOC off-gassing from materials. However, previous research presents inconsistent results. This review introduces a simplified analytical model to understand the ventilation-emission relationship. By combining factors such as diffusivity, emitting area, and time, the model suggests the existence of a theoretical ventilation threshold beyond which enhanced ventilation has no further influence on emission rates. A threshold of approximately 0.13 L s-1 m-2 emitting area has been found for various VOCs documented in the existing literature, with which the conflicting results are explained. It is also shown that the threshold remains notably consistent across different boundary conditions and model resolutions, indicating its suitability for real-world applications.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Compostos Orgânicos Voláteis/análise , Ventilação , Poluição do Ar em Ambientes Fechados/análise , Gases , Poluentes Atmosféricos/análise , Monitoramento Ambiental
17.
Environ Sci Technol ; 58(11): 5047-5057, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38437595

RESUMO

The chemical composition of incense-generated organic aerosol in residential indoor air has received limited attention in Western literature. In this study, we conducted incense burning experiments in a single-family California residence during vacancy. We report the chemical composition of organic fine particulate matter (PM2.5), associated emission factors (EFs), and gas-particle phase partitioning for indoor semivolatile organic compounds (SVOCs). Speciated organic PM2.5 measurements were made using two-dimensional gas chromatography coupled with high-resolution time-of-flight mass spectrometry (GC×GC-HR-ToF-MS) and semivolatile thermal desorption aerosol gas chromatography (SV-TAG). Organic PM2.5 EFs ranged from 7 to 31 mg g-1 for burned incense and were largely comprised of polar and oxygenated species, with high abundance of biomass-burning tracers such as levoglucosan. Differences in PM2.5 EFs and chemical profiles were observed in relation to the type of incense burned. Nine indoor SVOCs considered to originate from sources other than incense combustion were enhanced during incense events. Time-resolved concentrations of these SVOCs correlated well with PM2.5 mass (R2 > 0.75), suggesting that low-volatility SVOCs such as bis(2-ethylhexyl)phthalate and butyl benzyl phthalate partitioned to incense-generated PM2.5. Both direct emissions and enhanced partitioning of low-volatility indoor SVOCs to incense-generated PM2.5 can influence inhalation exposures during and after indoor incense use.


Assuntos
Poluentes Atmosféricos , Poluição do Ar em Ambientes Fechados , Compostos Orgânicos Voláteis , Poluentes Atmosféricos/análise , Poluição do Ar em Ambientes Fechados/análise , Material Particulado/análise , Compostos Orgânicos Voláteis/análise , California , Aerossóis/análise
18.
Environ Sci Technol ; 58(4): 1894-1907, 2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38241221

RESUMO

Hazardous chemicals in building and construction plastics can lead to health risks due to indoor exposure and may contaminate recycled materials. We systematically sampled new polyvinyl chloride floorings on the Swiss market (n = 151). We performed elemental analysis by X-ray fluorescence, targeted and suspect gas chromatography-mass spectrometry analysis of ortho-phthalates and alternative plasticizers, and bioassay tests for cytotoxicity and oxidative stress, and endocrine, mutagenic, and genotoxic activities (for selected samples). Surprisingly, 16% of the samples contained regulated chemicals above 0.1 wt %, mainly lead and bis(2-ethylhexyl) phthalate (DEHP). Their presence is likely related to the use of recycled PVC in new flooring, highlighting that uncontrolled recycling can delay the phase-out of hazardous chemicals. Besides DEHP, 29% of the samples contained other ortho-phthalates (mainly diisononyl and diisodecyl phthalates, DiNP and DiDP) above 0.1 wt %, and 17% of the samples indicated a potential to cause biological effects. Considering some overlap between these groups, they together make up an additional 35% of the samples of potential concern. Moreover, both suspect screening and bioassay results indicate the presence of additional potentially hazardous substances. Overall, our study highlights the urgent need to accelerate the phase-out of hazardous substances, increase the transparency of chemical compositions in plastics to protect human and ecosystem health, and enable the transition to a safe and sustainable circular economy.


Assuntos
Dietilexilftalato , Ácidos Ftálicos , Humanos , Plastificantes , Dietilexilftalato/análise , Ecossistema , Ácidos Ftálicos/análise , Plásticos , Substâncias Perigosas/análise
19.
Eur J Epidemiol ; 39(1): 51-65, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37865616

RESUMO

BACKGROUND: Many residential indoor environments may have an impact on children's respiratory health. OBJECTIVES: The aims of this study were to identify latent classes of children from the Danish National Birth Cohort (DNBC) who share similar patterns of exposure to indoor home characteristics, and to examine the association between membership in the latent classes and asthma in adolescence. METHODS: We included data on residential indoor characteristics of offspring from the DNBC whose mothers had responded to the child's 11-year follow-up and who had data on asthma from the 18-year follow-up. Number of classes and associations were estimated using latent class analysis. To account for sample selection, we applied inverse probability weighting. RESULTS: Our final model included five latent classes. The probability of current asthma at 18 years was highest among individuals in class one with higher clustering on household dampness (9, 95%CI 0.06-0.13). Individuals in class four (with higher clustering on pets ownership and living in a farm) had a lower risk of current asthma at age 18 compared to individuals in class one (with higher clustering on household dampness) (OR 0.53 (95%CI 0.32-0.88), p = .01). CONCLUSION: Our findings suggest that, in a high-income country such as Denmark, groups of adolescents growing up in homes with mold and moisture during mid-childhood might be at increased risk of current asthma at age 18. Adolescents who grew-up in a farmhouse and who were exposed to pets seem less likely to suffer from asthma by age 18.


Assuntos
Poluição do Ar em Ambientes Fechados , Asma , Humanos , Adolescente , Criança , Coorte de Nascimento , Análise de Classes Latentes , Asma/epidemiologia , Asma/etiologia , Características de Residência , Dinamarca/epidemiologia , Poluição do Ar em Ambientes Fechados/efeitos adversos
20.
Eur J Epidemiol ; 39(3): 299-311, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38393605

RESUMO

BACKGROUND: The burden of respiratory tract infections (RTIs) is high in childhood. Several residential exposures may affect relative rates. OBJECTIVES: To determine risk of RTIs in children ages 11 and 12 by residential exposures. METHODS: We included children in the Danish National Birth Cohort (DNBC) at ages 11 and 12. We estimated incidence risk ratios (IRR) and 95% confidence intervals (CI) for counts of RTIs within the last year by exposure to mold/dampness, gas stove usage, summer and winter candle-burning, fireplace usage, cats and dogs indoors, and farmhouse living. We also estimated IRR and 95% CI for RTIs for predicted scores of four extracted factors ('owned house', 'mold and dampness', 'candles', and 'density') from exploratory factor analyses (EFA). RESULTS: We included 42 720 children with complete data. Mold/dampness was associated with all RTIs (common cold: IRRadj 1.09[1.07, 1.12]; influenza: IRRadj 1.10 [1.05, 1.15]; tonsillitis: IRRadj 1.19 [1.10, 1.28]; conjunctivitis: IRRadj 1.16 [1.02, 1.32]; and doctor-diagnosed pneumonia: IRRadj 1.05 [0.90, 1.21]), as was the EFA factor 'mold/dampness' for several outcomes. Gas stove usage was associated with conjunctivitis (IRRadj 1.25 [1.05, 1.49]) and with doctor-diagnosed pneumonia (IRRadj 1.14 [0.93, 1.39]). Candle-burning during summer, but not winter, was associated with several RTIs, for tonsillitis in a dose-dependent fashion (increasing weekly frequencies vs. none: [IRRadj 1.06 [0.98, 1.14], IRRadj 1.16 [1.04, 1.30], IRRadj 1.23 [1.06, 1.43], IRRadj 1.29 [1.00, 1.67], and IRRadj 1.41 [1.12, 1.78]). CONCLUSION: Residential exposures, in particular to mold and dampness and to a lesser degree to indoor combustion sources, are related to the occurrence of RTIs in children.


Assuntos
Poluição do Ar em Ambientes Fechados , Conjuntivite , Pneumonia , Infecções Respiratórias , Tonsilite , Criança , Humanos , Animais , Gatos , Cães , Poluição do Ar em Ambientes Fechados/efeitos adversos , Coorte de Nascimento , Infecções Respiratórias/epidemiologia , Infecções Respiratórias/etiologia , Fungos , Dinamarca/epidemiologia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa