Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Ecotoxicol Environ Saf ; 275: 116263, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38547727

RESUMO

Anthropogenic emissions of polycyclic aromatic hydrocarbons (PAHs) cause severe ecological impacts by contaminating natural water bodies, affecting various biological groups, and altering interspecies relationships and ecological functions. This study examined the effects of two typical PAHs, phenanthrene (Phe) and naphthalene (Nap), on the anti-grazing defense mechanisms of Tetradesmus obliquus, a primary producer in freshwater food chains. Four non-lethal concentrations (0.01, 0.1, 1, and 10 mg L-1) of Phe and Nap were tested and the population growth, photosynthetic capacity, pigment content, and morphological defense of T. obliquus were analyzed. The results indicated that Phe and Nap inhibited both the growth rate and formation of defensive colonies of T. obliquus induced by Daphnia grazing cues, and the inhibition ratio increased with concentration. Phe and Nap significantly shortened the defense colony formation time of T. obliquus. Phe and Nap significantly suppressed photosynthesis in the early stages; however, the photosynthetic efficiency recovered over time. These findings highlight the high sensitivity of grazing-induced colony formation in T. obliquus to Phe and Nap at non-lethal concentrations, which could affect the interactions between phytoplankton and zooplankton in aquatic ecosystems. Our study underscores the influence of Phe and Nap on the defense mechanisms of phytoplankton and the consequential effects on ecological interactions within freshwater ecosystems, providing insight into the complex impacts of pollutants on phytoplankton-zooplankton relationships. Therefore, it is necessary to consider interspecific interactions when assessing the potential negative effects of environmental pollutants on aquatic ecosystems.


Assuntos
Poluentes Ambientais , Fenantrenos , Hidrocarbonetos Policíclicos Aromáticos , Animais , Hidrocarbonetos Policíclicos Aromáticos/toxicidade , Ecossistema , Naftalenos , Zooplâncton
2.
Microb Ecol ; 86(3): 2173-2182, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37154919

RESUMO

Insect-associated bacteria can mediate the intersection of insect and plant immunity. In this study, we aimed to evaluate the effects of single isolates or communities of gut-associated bacteria of Helicoverpa zea larvae on herbivore-induced defenses in tomato. We first identified bacterial isolates from the regurgitant of field-collected H. zea larvae by using a culture-dependent method and 16S rRNA gene sequencing. We identified 11 isolates belonging to the families Enterobacteriaceae, Streptococcaceae, Yersiniaceae, Erwiniaceae, and unclassified Enterobacterales. Seven different bacterial isolates, namely Enterobacteriaceae-1, Lactococcus sp., Klebsiella sp. 1, Klebsiella sp. 3, Enterobacterales, Enterobacteriaceae-2, and Pantoea sp., were selected based on their phylogenetic relationships to test their impacts on insect-induced plant defenses. We found that the laboratory population of H. zea larvae inoculated with individual isolates did not induce plant anti-herbivore defenses, whereas larvae inoculated with a bacterial community (combination of the 7 bacterial isolates) triggered increased polyphenol oxidase (PPO) activity in tomato, leading to retarded larval development. Additionally, field-collected H. zea larvae with an unaltered bacterial community in their gut stimulated higher plant defenses than the larvae with a reduced gut microbial community. In summary, our findings highlight the importance of the gut microbial community in mediating interactions between herbivores and their host plants.


Assuntos
Mariposas , Solanum lycopersicum , Humanos , Animais , Zea mays , Defesa das Plantas contra Herbivoria , Filogenia , RNA Ribossômico 16S/genética , Larva/microbiologia , Bactérias/genética , Enterobacteriaceae , Herbivoria
3.
Oecologia ; 202(4): 655-667, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37615742

RESUMO

Predator-prey interactions are a key feature of ecosystems and often chemically mediated, whereby individuals detect molecules in their environment that inform whether they should attack or defend. These molecules are largely unidentified, and their discovery is important for determining their ecological role in complex trophic systems. Homarine and trigonelline are two previously identified blue crab (Callinectes sapidus) urinary metabolites that cause mud crabs (Panopeus herbstii) to seek refuge, but it was unknown whether these molecules influence other species within this oyster reef system. In the current study, homarine, trigonelline, and blue crab urine were tested on juvenile oysters (Crassostrea virginica) to ascertain if the same molecules known to alter mud crab behavior also affect juvenile oyster morphology, thus mediating interactions between a generalist predator, a mesopredator, and a basal prey species. Oyster juveniles strengthened their shells in response to blue crab urine and when exposed to homarine and trigonelline in combination, especially at higher concentrations. This study builds upon previous work to pinpoint specific molecules from a generalist predator's urine that induce defensive responses in two marine prey from different taxa and trophic levels, supporting the hypothesis that common fear molecules exist in ecological systems.


Assuntos
Ecossistema , Medo , Humanos , Estado Nutricional
4.
BMC Plant Biol ; 22(1): 400, 2022 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-35974331

RESUMO

BACKGROUND: While it is known that arbuscular mycorrhizal fungi (AMF) can improve nutrient acquisition and herbivore resistance in crops, the mechanisms by which AMF influence plant defense remain unknown. Plants respond to herbivory with a cascade of gene expression and phytochemical biosynthesis. Given that the production of defensive phytochemicals requires nutrients, a commonly invoked hypothesis is that the improvement to plant defense when grown with AMF is simply due to an increased availability of nutrients. An alternative hypothesis is that the AMF effect on herbivory is due to changes in plant defense gene expression that are not simply due to nutrient availability. In this study, we tested whether changes in plant defenses are regulated by nutritional provisioning alone or the response of plant to AMF associations. Maize plants grown with or without AMF and with one of three fertilizer treatments (standard, 2 × nitrogen, or 2 × phosphorous) were infested with fall armyworm (Spodoptera frugiperda; FAW) for 72 h. We measured general plant characteristics (e.g. height, number of leaves), relative gene expression (rtPCR) of three defensive genes (lox3, mpi, and pr5), total plant N and P nutrient content, and change in FAW mass per plant. RESULTS: We found that AMF drove the defense response of maize by increasing the expression of mpi and pr5. Furthermore, while AMF increased the total phosphorous content of maize it had no impact on maize nitrogen. Fertilization alone did not alter upregulation of any of the 3 induced defense genes tested, suggesting the mechanism through which AMF upregulate defenses is not solely via increased N or P plant nutrition. CONCLUSION: This work supports that maize defense may be optimized by AMF associations alone, reducing the need for artificial inputs when managing FAW.


Assuntos
Micorrizas , Animais , Herbivoria , Micorrizas/fisiologia , Nitrogênio , Fósforo , Raízes de Plantas , Plantas , Spodoptera/fisiologia , Zea mays/fisiologia
5.
Int J Mol Sci ; 23(18)2022 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-36142369

RESUMO

How nitrogen (N) supply affects the induced defense of plants remains poorly understood. Here, we investigated the impacts of N supply on the defense induced in maize (Zea mays) against the fall armyworm (Spodoptera frugiperda). In the absence of herbivore attack or exogenous jasmonic acid (JA) application, N supply increased plant biomass and enhanced maize nutrient (soluble sugar and amino acid) contents and leaf area fed by S. frugiperda (the feeding leaf area of S. frugiperda larvae in maize supplemented with 52.2 and 156.6 mg/kg of N was 4.08 and 3.83 times that of the control, respectively). When coupled with herbivore attack or JA application, maize supplemented with 52.2 mg/kg of N showed an increased susceptibility to pests, while the maize supplemented with 156.6 mg/kg of N showed an improved defense against pests. The changes in the levels of nutrients, and the emissions of volatile organic compounds (VOCs) caused by N supply could explain the above opposite induced defense in maize. Compared with herbivore attack treatment, JA application enhanced the insect resistance in maize supplemented with 156.6 mg/kg of N more intensely, mainly reflecting a smaller feeding leaf area, which was due to indole emission and two upregulated defensive genes, MPI (maize proteinase inhibitor) and PAL (phenylalanine ammonia-lyase). Hence, the optimal N level and appropriate JA application can enhance plant-induced defense against pests.


Assuntos
Compostos Orgânicos Voláteis , Zea mays , Aminoácidos/metabolismo , Animais , Ciclopentanos , Herbivoria , Indóis/metabolismo , Larva , Nitrogênio/metabolismo , Oxilipinas , Peptídeo Hidrolases/metabolismo , Fenilalanina Amônia-Liase/metabolismo , Spodoptera , Açúcares/metabolismo , Compostos Orgânicos Voláteis/metabolismo , Zea mays/genética
6.
Int J Mol Sci ; 23(18)2022 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-36142802

RESUMO

The western flower thrips, Frankliniella occidentalis Pergande, is an invasive pest that damages agricultural and horticultural crops. The induction of plant defenses and RNA interference (RNAi) technology are potent pest control strategies. This study investigated whether the anti-adaptive ability of F. occidentalis to jasmonic acid (JA)- and methyl jasmonate (MeJA)-induced defenses in kidney bean plants was attenuated after glutathione S-transferase (GST) gene knockdown. The expression of four GSTs in thrips fed JA- and MeJA-induced leaves was analyzed, and FoGSTd1 and FoGSTs1 were upregulated. Exogenous JA- and MeJA-induced defenses led to increases in defensive secondary metabolites (tannins, alkaloids, total phenols, flavonoids, and lignin) in leaves. Metabolome analysis indicated that the JA-induced treatment of leaves led to significant upregulation of defensive metabolites. The activity of GSTs increased in second-instar thrips larvae fed JA- and MeJA-induced leaves. Co-silencing with RNAi simultaneously knocked down FoGSTd1 and FoGSTs1 transcripts and GST activity, and the area damaged by second-instar larvae feeding on JA- and MeJA-induced leaves decreased by 62.22% and 55.24%, respectively. The pupation rate of second-instar larvae also decreased by 39.68% and 39.89%, respectively. Thus, RNAi downregulation of FoGSTd1 and FoGSTs1 reduced the anti-adaptive ability of F. occidentalis to JA- or MeJA-induced defenses in kidney bean plants.


Assuntos
Phaseolus , Tisanópteros , Acetatos , Animais , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Flavonoides/metabolismo , Flores/metabolismo , Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Lignina/metabolismo , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Phaseolus/metabolismo , Fenóis/metabolismo , Interferência de RNA , Taninos/metabolismo , Tisanópteros/genética , Tisanópteros/metabolismo
7.
J Chem Ecol ; 47(8-9): 768-776, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34185213

RESUMO

In natural and agricultural ecosystems, plants are often simultaneously or sequentially exposed to combinations of stressors. Here we tested whether limited water availability (LWA) affects plant response to insect herbivory using two populations of Eruca sativa from desert and Mediterranean habitats that differ in their induced defenses. Considering that such differences evolved as responses to biotic and possibly abiotic stress factors, the two populations offered an opportunity to study ecological aspects in plant response to combined stresses. Analysis of chemical defense mechanisms showed that LWA significantly induced total glucosinolate concentrations in the Mediterranean plants, but their concentrations were reduced in the desert plants. However, LWA, with and without subsequent jasmonate elicitation, significantly induced the expression of proteinase inhibitor in the desert plants. Results of a no-choice feeding experiment showed that LWA significantly increased desert plant resistance to Spodoptera littoralis larvae, whereas it did not affect the relatively strong basal resistance of the Mediterranean plants. LWA and subsequent jasmonate elicitation increased resistance against the generalist insect in Mediterranean plants, possibly due to both increased proteinase inhibitor expression and glucosinolate accumulation. The effect of LWA on the expression of genes involved in phytohormone signaling, abscisic acid (ABA-1) and jasmonic acid (AOC1), and the jasmonate responsive PDF1.2, suggested the involvement of abscisic acid in the regulation of defense mechanisms in the two populations. Our results indicate that specific genotypic responses should be considered when estimating general patterns in plant response to herbivory under water deficiency conditions.


Assuntos
Brassicaceae/metabolismo , Ecossistema , Spodoptera/fisiologia , Água/química , Ácido Abscísico/metabolismo , Animais , Brassicaceae/química , Ciclopentanos/metabolismo , Defensinas/genética , Defensinas/metabolismo , Clima Desértico , Inibidores Enzimáticos/metabolismo , Expressão Gênica/efeitos dos fármacos , Glucosinolatos/análise , Glucosinolatos/metabolismo , Glucosinolatos/farmacologia , Herbivoria/efeitos dos fármacos , Larva/crescimento & desenvolvimento , Larva/fisiologia , Região do Mediterrâneo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Spodoptera/crescimento & desenvolvimento , Estresse Fisiológico , Água/metabolismo
8.
Bull Entomol Res ; : 1-11, 2021 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-34530947

RESUMO

Plants have a variety of defense mechanisms that are often induced following attacks by herbivores; this benefits those plants by decreasing performance or preference of herbivores that attack the plants later. We investigated the effects of previous exposure of plants to the safflower aphid, Uroleucon carthami, cotton bollworm, Helicoverpa armigera, and mechanical wounding on subsequent safflower aphid infestations using commercial safflower (Carthamus tinctorius) cultivars and wild safflower species (C. oxyacantha). The experiments were conducted in a greenhouse with two treatments: previously induced plants via direct herbivory or mechanical wounding, and control plants that had never experienced herbivory. To test the performance of safflower aphid on different plant treatments, five unwinged aphids were placed on each plant and allowed to reproduce for 14 days. Finally, the total numbers of aphids on each plant were counted and the percentage of produced winged individuals was calculated. The number of aphids on plants that were previously infested or injured was significantly lower than in control plants. Percentage of winged aphids was significantly higher on induced plants, which is an indicator for unsuitable conditions. Also, significant increase in total phenolic content and hydrogen peroxide was observed in induced plants, showing that the levels of these compounds were either treatment, cultivar and/or genotype × treatment dependent, highlighting the specificity of these interactions. Overall, among the safflower cultivars the lowest number of aphids and the highest percentage of winged aphid individuals were observed on Mahali-Isfahan cultivar and wild safflower, showing that this cultivar is more sensitive to herbivory and/or responds to it more than other cultivars. These findings could contribute to a better utilization of induced defense in the integrated pest management of safflower fields.

9.
Pestic Biochem Physiol ; 171: 104718, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33357540

RESUMO

Methyl salicylate (MeSA) is a volatile biological compound synthesized from salicylic acid (SA) and is a plant hormone that helps defend against pests and pathogens. A major bacterial pathogen of rice, Xanthomonas oryzae pv. oryzae (Xoo) causes severe disease. Seed and plant treatments with MeSA can stimulate the defense enzyme peroxidase (POD) in plants. Response of peroxidase activity in rice (Oryza sativa L) cultivars IR 20, IR 50, IR 64, ASD 16, ASD 19 and ADT 46 to MeSA were measured under greenhouse conditions. Treatments of rice seedlings with MeSA at 50 and 100 mg L-1 significantly upregulated POD expression in the plants. The activity of POD was also significantly upregulated when plants were inoculated with bacterial blight. Effects were stronger in ASD 16, ASD 19 and ADT 46 and were more pronounced in high dose treatment (100 mg L-1) when inoculated with bacterial blight condition and the effects were dose dependent, although the relationship between dose and rice varieties were not always linear. The pathogenic related (PR) protein bands at 33 kDa and 14 kDa were identified in treatments of 100 mg L-1 MeSA in the presence of bacterial blight disease. Band intensity was estimated to be twice that of those from pathogen induce MeSA levels in rice plants. These results suggest that treatment with MeSA can significantly increase the POD defense related enzyme by altering the plant physiology in ways that may be beneficial for crop protection.


Assuntos
Oryza , Xanthomonas , Mecanismos de Defesa , Doenças das Plantas , Salicilatos , Sementes
10.
Plant Dis ; 105(6): 1702-1710, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33190613

RESUMO

Diversifying disease control methods is a key strategy to sustainably reduce pesticides. Plant genetic resistance has long been used to create resistant varieties. Plant resistance inducers (PRI) are also considered to promote crop health, but their effectiveness is partial and can vary according to the environment and the plant genotype. We investigated the putative interaction between intrinsic (genetic) and PRI-induced resistance in apple when affected by scab and fire blight diseases. A large F1 mapping population was challenged by each disease after a pre-treatment with acibenzolar-S-methyl (ASM) and compared with the water control. Apple scab and fire blight resistance quantitative trait loci (QTLs) were detected in both conditions and compared. ASM exhibited a strong effectiveness in reducing both diseases. When combined, QTL-controlled and ASM-induced resistance acted complementarily to reduce the symptoms from 85 to 100%, depending on the disease. In our conditions, resistance QTLs were only slightly or rarely affected by ASM treatment, despite their probable implication in various stages of the resistance buildup. Implications of these results are discussed considering already known results, the underlying mechanisms, cross protection of both types of resistance against pathogen adaptation, and practical application in orchard conditions.


Assuntos
Ascomicetos , Erwinia amylovora , Malus , Erwinia amylovora/genética , Malus/genética , Doenças das Plantas/genética , Locos de Características Quantitativas/genética , Tiadiazóis
11.
Int J Mol Sci ; 22(22)2021 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-34830436

RESUMO

Laccase (LAC) plays important roles in different plant development and defense processes. In this study, we identified laccase genes (CsLACs) in Camellia sinensis cv 'Longjing43' cultivars, which were classified into six subclades. The expression patterns of CsLACs displayed significant spatiotemporal variations across different tissues and developmental stages. Most members in subclades II, IV and subclade I exhibited contrasting expression patterns during leaf development, consistent with a trade-off model for preferential expression in the early and late developmental stages. The extensive transcriptional changes of CsLACs under different phytohormone and herbivore treatment were observed and compared, with the expression of most genes in subclades I, II and III being downregulated but genes in subclades IV, V and VI being upregulated, suggesting a growth and defense trade-off model between these subclades. Taken together, our research reveal that CsLACs mediate multi-perspective trade-offs during tea plant development and defense processes and are involved in herbivore resistance in tea plants. More in-depth research of CsLACs upstream regulation and downstream targets mediating herbivore defense should be conducted in the future.


Assuntos
Camellia sinensis/genética , Lacase/genética , Desenvolvimento Vegetal/genética , Folhas de Planta/genética , Camellia sinensis/crescimento & desenvolvimento , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , Lacase/classificação , Família Multigênica/genética , Filogenia , Doenças das Plantas/genética , Reguladores de Crescimento de Plantas/genética , Folhas de Planta/crescimento & desenvolvimento , Proteínas de Plantas/genética , Estresse Fisiológico/genética , Distribuição Tecidual/genética
12.
Int J Mol Sci ; 22(22)2021 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-34830079

RESUMO

Salicylic acid (SA) and jasmonic acid (JA) are essential plant immune hormones, which could induce plant resistance to multiple pathogens. However, whether common components are employed by both SA and JA to induce defense is largely unknown. In this study, we found that the enhanced disease susceptibility 8 (EDS8) mutant was compromised in plant defenses to hemibiotrophic pathogen Pseudomonas syringae pv. maculicola ES4326 and necrotrophic pathogen Botrytis cinerea, and was deficient in plant responses to both SA and JA. The EDS8 was identified to be THO1, which encodes a subunit of the THO/TREX complex, by using mapping-by-sequencing. To check whether the EDS8 itself or the THO/TREX complex mediates SA and JA signaling, the mutant of another subunit of the THO/TREX complex, THO3, was tested. THO3 mutation reduced both SA and JA induced defenses, indicating that the THO/TREX complex is critical for plant responses to these two hormones. We further proved that the THO/TREX interacting protein SERRATE, a factor regulating alternative splicing (AS), was involved in plant responses to SA and JA. Thus, the AS events in the eds8 mutant after SA or JA treatment were determined, and we found that the SA and JA induced different alternative splicing events were majorly modulated by EDS8. In summary, our study proves that the THO/TREX complex active in AS is involved in both SA and JA induced plant defenses.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Complexos Multiproteicos/metabolismo , Oxilipinas/metabolismo , Ácido Salicílico/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Complexos Multiproteicos/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo
13.
Plant Cell Physiol ; 61(6): 1144-1157, 2020 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-32219438

RESUMO

Lipid droplets (LDs) have classically been viewed as seed storage particles, yet they are now emerging as dynamic organelles associated with developmental and stress responses. Nevertheless, their involvement in plant immunity has still been little studied. Here, we found LD accumulation in Arabidopsis thaliana leaves that induced a hypersensitive response (HR) after Pseudomonas infection. We established a protocol to reproducibly isolate LDs and to analyze their protein content. The expression of GFP fusion proteins in Nicotiana benthamiana and in transgenic Arabidopsis lines validated the LD localization of glycerol-3-phosphate acyltransferase 4 (GPAT4) and 8 (GPAT8), required for cutin biosynthesis. Similarly, we showed LD localization of α-dioxygenase1 (α-DOX1) and caleosin3 (CLO3), involved in the synthesis of fatty acid derivatives, and that of phytoalexin-deficient 3 (PAD3), which is involved in camalexin synthesis. We found evidence suggesting the existence of different populations of LDs, with varying protein contents and distributions. GPAT4 and GPAT8 were associated with LDs inside stomata and surrounding cells of untreated leaves, yet they were mainly confined to LDs in guard cells after bacterial inoculation. By contrast, α-DOX1 and PAD3 were associated with LDs in the epidermal cells of HR-responding leaves, with PAD3 mostly restricted to cells near dead tissue, while CLO3 had a more ubiquitous distribution. As such, the nature of the proteins identified, together with the phenotypic examination of selected mutants, suggests that LDs participate in lipid changes and in the production and transport of defense components affecting the interaction of plants with invading pathogens.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/imunologia , Proteínas Associadas a Gotículas Lipídicas/metabolismo , Doenças das Plantas/imunologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/análise , Proteínas de Fluorescência Verde , Proteínas Associadas a Gotículas Lipídicas/análise , Doenças das Plantas/microbiologia , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Plantas Geneticamente Modificadas , Pseudomonas , Proteínas Recombinantes , Nicotiana
14.
Planta ; 251(4): 89, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32232572

RESUMO

MAIN CONCLUSION: The study challenges the general belief that plants are highly sensitive to oral cues of herbivores and reveals the role of the damage level on the magnitude of defense induction. Many leaf-feeding caterpillars share similar feeding behaviors involving repeated removal of previously wounded leaf tissue (semicircle feeding pattern). We hypothesized that this behavior is a strategy to attenuate plant-induced defenses by removing both the oral cues and tissues that detect it. Using tobacco (Nicotiana tabacum) and the tobacco hornworm (Manduca sexta), we found that tobacco increased defensive responses during herbivory compared to mechanical wounding at moderate damage levels (30%). However, tobacco did not differentiate between mechanical wounding and herbivory when the level of leaf tissue loss was either small (4%) or severe (100%, whole leaf removal). Higher amounts of oral cues did not induce higher defenses when damage was small. Severe damage led to the highest level of systemic defense proteins compared to other levels of leaf tissue loss with or without oral cues. In conclusion, we did not find clear evidence that semicircle feeding behavior compromises plant defense induction. In addition, the level of leaf tissue loss and oral cues interact to determine the level of induced defensive responses in tobacco. Although oral cues play an important role in inducing defensive proteins, the level of induction depends more on the level of leaf tissue loss in tobacco.


Assuntos
Sinais (Psicologia) , Comportamento Alimentar/psicologia , Larva/fisiologia , Manduca/fisiologia , Mariposas/fisiologia , Nicotiana/fisiologia , Animais , Herbivoria , Interações Hospedeiro-Parasita , Folhas de Planta/metabolismo , Proteínas de Plantas/metabolismo , Inibidores de Proteases , Ferimentos e Lesões
15.
Oecologia ; 193(2): 273-283, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-32542471

RESUMO

The risk of consumption is a pervasive aspect of ecology and recent work has focused on synthesis of consumer-resource interactions (e.g., enemy-victim ecology). Despite this, theories pertaining to the timing and magnitude of defenses in animals and plants have largely developed independently. However, both animals and plants share the common dilemma of uncertainty of attack, can gather information from the environment to predict future attacks and alter their defensive investment accordingly. Here, we present a novel, unifying framework based on the way an organism's ability to defend itself during an attack can shape their pre-attack investment in defense. This framework provides a useful perspective on the nature of information use and variation in defensive investment across the sequence of attack-related events, both within and among species. It predicts that organisms with greater proportional fitness loss if attacked will gather and respond to risk information earlier in the attack sequence, while those that have lower proportional fitness loss may wait until attack is underway. This framework offers a common platform to compare and discuss consumer effects and provides novel insights into the way risk information can propagate through populations, communities, and ecosystems.


Assuntos
Ecossistema , Plantas , Animais , Herbivoria
16.
Int J Mol Sci ; 21(11)2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32532001

RESUMO

Insect desaturases are known to play an important role in chemical communication between individuals. However, their roles in insect growth, development and fecundity, and in regulating interactions of insects with plants, remain largely unknown. In this study, we explored the functions of Nlug-desatA2, a desaturase gene of the brown planthopper (BPH), Nilaparvata lugens (Stål). The RNA interference-based knockdown of Nlug-desatA2 decreased the ratio of monounsaturated fatty acids to saturated fatty acids, and the level of fatty acids and triglycerides in BPH. Nlug-desatA2-knockdown also reduced the food intake, body mass and fecundity of female BPH adults, and led to abdomen atrophy and ovarian agenesis. Nlug-desatA2-knockdown suppressed the transcription of TOR (target of rapamycin), Lpp (Lipophorin) and AKHR (adipokinetic hormone receptor) in female adults. Moreover, the corrected survival rate of BPH with Nlug-desatA2-knockdown fed an artificial diet was higher than the survival rate of those fed on rice plants. Higher levels of salicylic acid in rice infested by Nlug-desatA2-knockdown female BPH adults than in rice infested by control BPH may be the reason. These findings demonstrate that Nlug-desatA2 has an essential role in lipid metabolism and is involved in the food intake, survival, development and fecundity of BPH. In addition, this gene is likely involved in regulating the responses of rice to BPH infestation.


Assuntos
Ácidos Graxos Dessaturases/genética , Hemípteros/fisiologia , Proteínas de Insetos/genética , Oryza , Animais , Ingestão de Alimentos , Ácidos Graxos Dessaturases/metabolismo , Feminino , Fertilidade , Técnicas de Silenciamento de Genes , Hemípteros/genética , Herbivoria , Proteínas de Insetos/metabolismo , Metabolismo dos Lipídeos/genética , Oryza/metabolismo , Ovário/crescimento & desenvolvimento , Ácido Salicílico/metabolismo
17.
Plant Mol Biol ; 101(3): 315-323, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31392474

RESUMO

KEY MESSAGE: Pre-treatment of soybean seedlings with 200 µM salicylic acid before fungal inoculation significantly alleviated disease resistance in soybean seedlings against Fusarium solani infection. Sudden death syndrome of soybean is largely caused by Fusarium solani (F. solani). Salicylic acid (SA) has been reported to induce resistance in plants against many pathogens. However, the effect of exogenous SA application on F. solani infection of soybean is less reported. This study investigated the effect of foliar application of SA on soybean seedlings before F. solani infection. Seedlings were sprayed with 200 µM SA and inoculated with F. solani after 24 h of last SA application. After 3 days post-inoculation, seedlings treated with 200 µM SA showed significantly fewer disease symptoms with increased endogenous SA level, SA marker genes expression and antioxidant activities in the SA-treated seedlings more than the untreated control seedlings. Furthermore, the decrease in hydrogen peroxide (H2O2) and malondialdehyde (MDA) levels was observed in the SA-treated plants as compared to the untreated plants. Analysis of the effect of SA application on F. solani showed that the mycelia growth of F. solani was not affected by SA treatment. Further investigation in this study revealed a decreased in F. solani biomass content in the SA treated seedlings. Results from the present study show that pre-treatment of 200 µM SA can induce resistance of soybean seedlings against F. solani infection.


Assuntos
Resistência à Doença/efeitos dos fármacos , Fusarium/patogenicidade , Glycine max/microbiologia , Doenças das Plantas/microbiologia , Ácido Salicílico/farmacologia , Regulação da Expressão Gênica de Plantas , Peróxido de Hidrogênio/metabolismo , Raízes de Plantas/efeitos dos fármacos , Raízes de Plantas/microbiologia , Plântula/efeitos dos fármacos , Plântula/microbiologia , Glycine max/efeitos dos fármacos
18.
BMC Mol Biol ; 20(1): 7, 2019 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-30808304

RESUMO

BACKGROUND: A major cause of phytoplankton mortality is predation by zooplankton. Strategies to avoid grazers have probably played a major role in the evolution of phytoplankton and impacted bloom dynamics and trophic energy transport. Certain species of the genus Pseudo-nitzschia produce the neurotoxin, domoic acid (DA), as a response to the presence of copepod grazers, suggesting that DA is a defense compound. The biosynthesis of DA comprises fusion of two precursors, a C10 isoprenoid geranyl pyrophosphate and L-glutamate. Geranyl pyrophosphate (GPP) may derive from the mevalonate isoprenoid (MEV) pathway in the cytosol or from the methyl-erythritol phosphate (MEP) pathway in the plastid. L-glutamate is suggested to derive from the citric acid cycle. Fragilariopsis, a phylogenetically related but nontoxic genus of diatoms, does not appear to possess a similar defense mechanism. We acquired information on genes involved in biosynthesis, precursor pathways and regulatory functions for DA production in the toxigenic Pseudo-nitzschia seriata, as well as genes involved in responses to grazers to resolve common responses for defense strategies in diatoms. RESULTS: Several genes are expressed in cells of Pseudo-nitzschia when these are exposed to predator cues. No genes are expressed in Fragilariopsis when treated similarly, indicating that the two taxa have evolved different strategies to avoid predation. Genes involved in signal transduction indicate that Pseudo-nitzschia cells receive signals from copepods that transduce cascading molecular precursors leading to the formation of DA. Five out of seven genes in the MEP pathway for synthesis of GPP are upregulated, but none in the conventional MEV pathway. Five genes with known or suggested functions in later steps of DA formation are upregulated. We conclude that no gene regulation supports that L-glutamate derives from the citric acid cycle, and we suggest the proline metabolism to be a downstream precursor. CONCLUSIONS: Pseudo-nitzschia cells, but not Fragilariopsis, receive and respond to copepod cues. The cellular route for the C10 isoprenoid product for biosynthesis of DA arises from the MEP metabolic pathway and we suggest proline metabolism to be a downstream precursor for L-glutamate. We suggest 13 genes with unknown function to be involved in diatom responses to grazers.


Assuntos
Diatomáceas/genética , Diatomáceas/metabolismo , Ácido Caínico/análogos & derivados , Toxinas Marinhas/genética , Toxinas Marinhas/metabolismo , Redes e Vias Metabólicas/genética , Eritritol/análogos & derivados , Eritritol/metabolismo , Herbivoria , Ácido Caínico/metabolismo , Fosfatos de Poli-Isoprenil/metabolismo , Fosfatos Açúcares/metabolismo
19.
Am Nat ; 193(1): 125-139, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30624112

RESUMO

Time delays in plant responses to insect herbivory are thought to be the principal disadvantage of induced over constitutive defenses, suggesting that there should be strong selection for rapid responses. However, observed time delays between the onset of herbivory and defense induction vary considerably among plants. We postulate that strong competition with conspecifics is an important codeterminant of the cost-benefit balance for induced responses. There may be a benefit to the plant to delay mounting a full defense response until the herbivore larvae are mobile enough to leave and large enough to cause severe damage to neighboring plants. Thus, delayed responses could reduce the competitive pressure on the focal plant. To explore this idea, we developed an individual-based model using data from wild tobacco, Nicotiana attenuata, and its specialized herbivore, Manduca sexta. Chemical defense was assumed to be costly in terms of reduced plant growth. We used a genetic algorithm with the plant's delay time as a heritable trait. A stationary distribution of delay times emerged, which under high herbivore densities peaked at higher values, which were related to the time larvae need to grow large enough to severely damage neighboring plants. Plants may thus tip the competitive balance by expelling insect herbivores to move to adjacent plants when the herbivores are most damaging. Thus, herbivores become part of a plant's strategy for reducing competition and increasing fitness.


Assuntos
Ecossistema , Herbivoria , Manduca/fisiologia , Modelos Biológicos , Nicotiana/metabolismo , Algoritmos , Animais
20.
J Chem Ecol ; 45(2): 136-145, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30284188

RESUMO

In this study we investigated the effect of methyl jasmonate (MeJA) application on pyrrolizidine alkaloid (PA) concentration and composition of two closely related Jacobaea species. In addition, we examined whether MeJA application affected herbivory of the polyphagous leaf feeding herbivore Spodoptera exigua. A range of concentrations of MeJA was added to the medium of Jacobaea vulgaris and J. aquatica tissue culture plants grown under axenic conditions. PA concentrations were measured in roots and shoots using LC-MS/MS. In neither species MeJA application did affect the total PA concentration at the whole plant level. In J. vulgaris the total PA concentration decreased in roots but increased in shoots. In J. aquatica a similar non-significant trend was observed. In both Jacobaea species MeJA application induced a strong shift from senecionine- to erucifoline-like PAs, while the jacobine- and otosenine-like PAs remained largely unaffected. The results show that MeJA application does not necessarily elicits de novo synthesis, but rather leads to PA conversion combined with reallocation of certain PAs from roots to shoots. S. exigua preferred feeding on control leaves of J. aquatica over MeJA treated leaves, while for J. vulgaris both the control and MeJA treated leaves were hardly eaten. This suggests that the MeJA-induced increase of erucifoline-like PAs can play a role in resistance of J. aquatica to S. exigua. In J. vulgaris resistance to S. exigua may already be high due to the presence of jacobine-like PAs or other resistance factors.


Assuntos
Acetatos/química , Ciclopentanos/química , Oxilipinas/química , Alcaloides de Pirrolizidina/química , Acetatos/metabolismo , Acetatos/farmacologia , Animais , Asteraceae/química , Asteraceae/metabolismo , Cromatografia Líquida de Alta Pressão , Ciclopentanos/metabolismo , Ciclopentanos/farmacologia , Herbivoria/efeitos dos fármacos , Oxilipinas/metabolismo , Oxilipinas/farmacologia , Raízes de Plantas/química , Raízes de Plantas/metabolismo , Brotos de Planta/química , Brotos de Planta/metabolismo , Alcaloides de Pirrolizidina/metabolismo , Alcaloides de Pirrolizidina/farmacologia , Spodoptera/efeitos dos fármacos , Spodoptera/fisiologia , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa