Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 192
Filtrar
1.
Annu Rev Immunol ; 42(1): 179-206, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38166256

RESUMO

T cell responses must be balanced to ensure adequate protection against malignant transformation and an array of pathogens while also limiting damage to healthy cells and preventing autoimmunity. T cell exhaustion serves as a regulatory mechanism to limit the activity and effector function of T cells undergoing chronic antigen stimulation. Exhausted T cells exhibit poor proliferative potential; high inhibitory receptor expression; altered transcriptome, epigenome, and metabolism; and, most importantly, reduced effector function. While exhaustion helps to restrain damage caused by aberrant T cells in settings of autoimmune disease, it also limits the ability of cells to respond against persistent infection and cancer, leading to disease progression. Here we review the process of T cell exhaustion, detailing the key characteristics and drivers as well as highlighting our current understanding of the underlying transcriptional and epigenetic programming. We also discuss how exhaustion can be targeted to enhance T cell functionality in cancer.


Assuntos
Neoplasias , Linfócitos T , Humanos , Animais , Neoplasias/imunologia , Neoplasias/etiologia , Neoplasias/metabolismo , Linfócitos T/imunologia , Linfócitos T/metabolismo , Epigênese Genética , Ativação Linfocitária/imunologia , Doenças Autoimunes/imunologia , Doenças Autoimunes/metabolismo , Exaustão das Células T
2.
Annu Rev Immunol ; 37: 457-495, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-30676822

RESUMO

Exhausted CD8 T (Tex) cells are a distinct cell lineage that arise during chronic infections and cancers in animal models and humans. Tex cells are characterized by progressive loss of effector functions, high and sustained inhibitory receptor expression, metabolic dysregulation, poor memory recall and homeostatic self-renewal, and distinct transcriptional and epigenetic programs. The ability to reinvigorate Tex cells through inhibitory receptor blockade, such as αPD-1, highlights the therapeutic potential of targeting this population. Emerging insights into the mechanisms of exhaustion are informing immunotherapies for cancer and chronic infections. However, like other immune cells, Tex cells are heterogeneous and include progenitor and terminal subsets with unique characteristics and responses to checkpoint blockade. Here, we review our current understanding of Tex cell biology, including the developmental paths, transcriptional and epigenetic features, and cell intrinsic and extrinsic factors contributing to exhaustion and how this knowledge may inform therapeutic targeting of Tex cells in chronic infections, autoimmunity, and cancer.


Assuntos
Receptores Coestimuladores e Inibidores de Linfócitos T/metabolismo , Imunoterapia/métodos , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/fisiologia , Viroses/imunologia , Animais , Senescência Celular , Doença Crônica , Anergia Clonal , Epigênese Genética , Humanos , Neoplasias/terapia , Viroses/terapia
3.
Cell ; 175(7): 1731-1743.e13, 2018 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-30503213

RESUMO

Checkpoint inhibitors have revolutionized cancer treatment. However, only a minority of patients respond to these immunotherapies. Here, we report that blocking the inhibitory NKG2A receptor enhances tumor immunity by promoting both natural killer (NK) and CD8+ T cell effector functions in mice and humans. Monalizumab, a humanized anti-NKG2A antibody, enhanced NK cell activity against various tumor cells and rescued CD8+ T cell function in combination with PD-x axis blockade. Monalizumab also stimulated NK cell activity against antibody-coated target cells. Interim results of a phase II trial of monalizumab plus cetuximab in previously treated squamous cell carcinoma of the head and neck showed a 31% objective response rate. Most common adverse events were fatigue (17%), pyrexia (13%), and headache (10%). NKG2A targeting with monalizumab is thus a novel checkpoint inhibitory mechanism promoting anti-tumor immunity by enhancing the activity of both T and NK cells, which may complement first-generation immunotherapies against cancer.


Assuntos
Antineoplásicos Imunológicos/uso terapêutico , Carcinoma de Células Escamosas , Cetuximab/uso terapêutico , Imunidade Celular/efeitos dos fármacos , Imunoterapia , Células Matadoras Naturais/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK , Animais , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/patologia , Carcinoma de Células Escamosas/imunologia , Carcinoma de Células Escamosas/patologia , Carcinoma de Células Escamosas/terapia , Ensaios Clínicos Fase II como Assunto , Humanos , Células Matadoras Naturais/patologia , Camundongos , Subfamília C de Receptores Semelhantes a Lectina de Células NK/antagonistas & inibidores , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia
4.
Immunity ; 54(6): 1231-1244.e4, 2021 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-33887202

RESUMO

The conserved CD94/NKG2A inhibitory receptor is expressed by nearly all human and ∼50% of mouse uterine natural killer (uNK) cells. Binding human HLA-E and mouse Qa-1, NKG2A drives NK cell education, a process of unknown physiological importance influenced by HLA-B alleles. Here, we show that NKG2A genetic ablation in dams mated with wild-type males caused suboptimal maternal vascular responses in pregnancy, accompanied by perturbed placental gene expression, reduced fetal weight, greater rates of smaller fetuses with asymmetric growth, and abnormal brain development. These are features of the human syndrome pre-eclampsia. In a genome-wide association study of 7,219 pre-eclampsia cases, we found a 7% greater relative risk associated with the maternal HLA-B allele that does not favor NKG2A education. These results show that the maternal HLA-B→HLA-E→NKG2A pathway contributes to healthy pregnancy and may have repercussions on offspring health, thus establishing the physiological relevance for NK cell education. VIDEO ABSTRACT.


Assuntos
Células Matadoras Naturais/imunologia , Subfamília C de Receptores Semelhantes a Lectina de Células NK/imunologia , Subfamília D de Receptores Semelhantes a Lectina de Células NK/imunologia , Útero/imunologia , Animais , Feminino , Estudo de Associação Genômica Ampla/métodos , Antígenos HLA/imunologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Placenta/imunologia , Gravidez , Resultado da Gravidez
5.
Immunol Rev ; 314(1): 50-68, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36424898

RESUMO

Neutrophils are the first leukocytes recruited from the circulation in response to invading pathogens or injured cells. To eradicate pathogens and contribute to tissue repair, recruited neutrophils generate and release a host of toxic chemicals that can also damage normal cells. To avoid collateral damage leading to tissue injury and organ dysfunction, molecular mechanisms evolved that tightly control neutrophil response threshold to activating signals, the strength and location of the response, and the timing of response termination. One mechanism of response control is interruption of activating intracellular signaling pathways by the 20 inhibitory receptors expressed by neutrophils. The two inhibitory C-type lectin receptors expressed by neutrophils, CLEC12A and DCIR, exhibit both common and distinct molecular and functional mechanisms, and they are associated with different diseases. In this review, we use studies on CLEC12A as a model of inhibitory receptor regulation of neutrophil function and participation in disease. Understanding the molecular mechanisms leading to inhibitory receptor specificity offers the possibility of using physiologic control of neutrophil functions as a pharmacologic tool to control inflammatory diseases.


Assuntos
Neutrófilos , Transdução de Sinais , Humanos , Receptores Mitogênicos/metabolismo , Lectinas Tipo C/metabolismo
6.
Immunity ; 47(4): 776-788.e5, 2017 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-29045906

RESUMO

Antiretroviral therapy (ART) suppresses viral replication in HIV-infected individuals but does not eliminate the reservoir of latently infected cells. Recent work identified PD-1+ follicular helper T (Tfh) cells as an important cellular compartment for viral persistence. Here, using ART-treated, SIV-infected rhesus macaques, we show that CTLA-4+PD-1- memory CD4+ T cells, which share phenotypic markers with regulatory T cells, were enriched in SIV DNA in blood, lymph nodes (LN), spleen, and gut, and contained replication-competent and infectious virus. In contrast to PD-1+ Tfh cells, SIV-enriched CTLA-4+PD-1- CD4+ T cells were found outside the B cell follicle of the LN, predicted the size of the persistent viral reservoir during ART, and significantly increased their contribution to the SIV reservoir with prolonged ART-mediated viral suppression. We have shown that CTLA-4+PD-1- memory CD4+ T cells are a previously unrecognized component of the SIV and HIV reservoir that should be therapeutically targeted for a functional HIV-1 cure.


Assuntos
Antirretrovirais/uso terapêutico , Linfócitos T CD4-Positivos/efeitos dos fármacos , Antígeno CTLA-4/imunologia , Receptor de Morte Celular Programada 1/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/tratamento farmacológico , Vírus da Imunodeficiência Símia/efeitos dos fármacos , Animais , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Antígeno CTLA-4/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/imunologia , HIV-1/fisiologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Interações Hospedeiro-Patógeno/imunologia , Humanos , Memória Imunológica/efeitos dos fármacos , Memória Imunológica/imunologia , Hibridização In Situ , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Linfonodos/virologia , Macaca mulatta , Microscopia Confocal , Receptor de Morte Celular Programada 1/metabolismo , Síndrome de Imunodeficiência Adquirida dos Símios/imunologia , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia/imunologia , Vírus da Imunodeficiência Símia/fisiologia , Linfócitos T Auxiliares-Indutores/efeitos dos fármacos , Linfócitos T Auxiliares-Indutores/imunologia , Linfócitos T Auxiliares-Indutores/virologia , Linfócitos T Reguladores/efeitos dos fármacos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/virologia
7.
Immunity ; 44(5): 1190-203, 2016 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-27192578

RESUMO

Chronic viruses and cancers thwart immune responses in humans by inducing T cell dysfunction. Using a murine chronic virus that models human infections, we investigated the function of the adhesion molecule, P-selectin glycoprotein ligand-1 (PSGL-1), that is upregulated on responding T cells. PSGL-1-deficient mice cleared the virus due to increased intrinsic survival of multifunctional effector T cells that had downregulated PD-1 as well as other inhibitory receptors. Notably, this response resulted in CD4(+)-T-cell-dependent immunopathology. Mechanistically, PSGL-1 ligation on exhausted CD8(+) T cells inhibited T cell receptor (TCR) and interleukin-2 (IL-2) signaling and upregulated PD-1, leading to diminished survival with TCR stimulation. In models of melanoma cancer in which T cell dysfunction occurs, PSGL-1 deficiency led to PD-1 downregulation, improved T cell responses, and tumor control. Thus, PSGL-1 plays a fundamental role in balancing viral control and immunopathology and also functions to regulate T cell responses in the tumor microenvironment.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/imunologia , Melanoma/imunologia , Glicoproteínas de Membrana/metabolismo , Animais , Modelos Animais de Doenças , Humanos , Evasão da Resposta Imune , Interleucina-2/metabolismo , Ativação Linfocitária , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptor de Morte Celular Programada 1/genética , Receptor de Morte Celular Programada 1/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
8.
Eur J Immunol ; 53(5): e2250306, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36965113

RESUMO

Similar to immune cells, non-hematopoietic cells recognize microbial and endogenous threats. Their response to these stimuli is dependent on the environmental context. For example, intact intestinal epithelium expresses pattern recognition receptors (PRRs) but should tolerate commensal bacteria, while damaged epithelium should respond promptly to initiate an immune response. This indicates that non-hematopoietic cells possess mechanisms to sense environmental context and regulate their responses. Inhibitory receptors provide context sensing to immune cells. For instance, they raise the threshold for activation to prevent overzealous immune activation to harmless stimuli. Inhibitory receptors are typically studied on hematopoietic cells, but several of these receptors are expressed on non-hematopoietic cells. Here, we review evidence for the regulation of non-hematopoietic cells by inhibitory receptors, focusing on epithelial and endothelial cells. We explain that inhibitory receptors on these cells can sense a wide range of signals, including cell-cell adhesion, cell-matrix adhesion, and apoptotic cells. More importantly, they regulate various functions on these cells, including immune activation, proliferation, and migration. In conclusion, we propose that inhibitory receptors provide context to non-hematopoietic cells by fine tuning their response to endogenous or microbial stimuli. These findings prompt to investigate the functions of inhibitory receptors on non-hematopoietic cells more systematically.


Assuntos
Células Endoteliais , Receptores de Reconhecimento de Padrão , Mucosa Intestinal , Epitélio , Adesão Celular
9.
Clin Exp Immunol ; 217(2): 151-158, 2024 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-38767592

RESUMO

Natural killer (NK) cells play a crucial role in controlling viral infections. The ability to kill infected cells without prior immunization, yet being tolerant to self, healthy cells, depends on the balance of germ-line encoded surface receptors. NK-cell receptors are divided into either activating, leading to activation of NK cell and its cytotoxic and pro-inflammatory activity, or inhibitory, providing tolerance for a target cell. The signals from inhibitory receptors dominate and NK-cell activation requires stimulation of activating receptors. In viral infections, NK-cell interaction with infected cells can result in activation, memory-like NK-cell differentiation, or NK-cell exhaustion, which constitutes one of the viral immune evasion mechanisms. All of these states are associated with the modulation of NK-cell receptor expression. In this review, we summarize the current knowledge of NK-cell receptors and their role in viral infection control, as well as the alterations of their expression observed in acute or chronic infections. We present recently discovered SARS-CoV-2-mediated modulation of NK-cell receptor expression and compare them with other human viral infections. Finally, since modulation of NK-cell receptor activation gives a promising addition to currently used antiviral therapies, we briefly discuss the clinical significance and future perspective of the application of agonists or antagonists of activating and inhibitory receptors, respectively. In sum, our review shows that although much is known about NK-cell receptor biology, a deeper understanding of NK-cell receptors role in viral infections is still needed.


Assuntos
COVID-19 , Células Matadoras Naturais , Receptores de Células Matadoras Naturais , SARS-CoV-2 , Viroses , Humanos , Células Matadoras Naturais/imunologia , Receptores de Células Matadoras Naturais/imunologia , Receptores de Células Matadoras Naturais/metabolismo , SARS-CoV-2/imunologia , SARS-CoV-2/fisiologia , COVID-19/imunologia , Viroses/imunologia , Animais , Ativação Linfocitária/imunologia
10.
J Biomed Sci ; 31(1): 41, 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38650001

RESUMO

BACKGROUND: Systemic lupus erythematosus (SLE) is distinguished by an extensive range of clinical heterogeneity with unpredictable disease flares and organ damage. This research investigates the potential of aberrant signatures on T cell genes, soluble Co-IRs/ligands, and Co-IRs expression on T cells as biomarkers for lupus disease parameters. METHODS: Comparative transcriptome profiling analysis of non-renal and end-stage renal disease (ESRD) phenotypes of SLE was performed using CD4 + and CD8 + cDNA microarrays of sorted T cells. Comparing the expression of Co-IRs on T cells and serum soluble mediators among healthy and SLE phenotypes. RESULTS: SLE patients with ESRD were downregulated CD38, PLEK, interferon-γ, CX3CR1, FGFBP2, and SLCO4C1 transcripts on CD4 + and CD8 + T cells simultaneously and NKG7, FCRL6, GZMB/H, FcγRIII, ITGAM, Fas ligand, TBX21, LYN, granulysin, CCL4L1, CMKLR1, HLA-DRß, KIR2DL3, and KLRD1 in CD8 T cells. Pathway enrichment and PPI network analyses revealed that the overwhelming majority of Differentially Expressed Genes (DEGs) have been affiliated with novel cytotoxic, antigen presentation, and chemokine-cell migration signature pathways. CD8 + GZMK + T cells that are varied in nature, including CD161 + Mucosal-associated invariant T (MAIT) cells and CD161- aged-associated T (Taa) cells and CD161-GZMK + GZMB + T cells might account for a higher level of GZMK in CD8 + T cells associated with ESRD. SLE patients have higher TIGIT + , PD1 + , and lower CD127 + cell percentages on CD4 + T cells, higher TIM3 + , TIGIT + , HLA-DR + cell frequency, and lower MFI expression of CD127, CD160 in CD8 T cells. Co-IRs expression in T cells was correlated with soluble PD-1, PDL-2, and TIM3 levels, as well as SLE disease activity, clinical phenotypes, and immune-therapy responses. CONCLUSION: The signature of dysfunctional pathways defines a distinct immunity pattern in LN ESRD patients. Expression levels of Co-IRs in peripheral blood T cells and serum levels of soluble PD1/PDL-2/TIM3 can serve as biomarkers for evaluating clinical parameters and therapeutic responses.


Assuntos
Lúpus Eritematoso Sistêmico , Humanos , Feminino , Adulto , Lúpus Eritematoso Sistêmico/genética , Lúpus Eritematoso Sistêmico/imunologia , Transcriptoma , Masculino , Pessoa de Meia-Idade , Perfilação da Expressão Gênica , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/metabolismo , Biomarcadores/sangue , Falência Renal Crônica/imunologia , Falência Renal Crônica/genética
11.
Lupus ; 33(6): 587-597, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38506324

RESUMO

OBJECTIVE: Human gamma-delta T cells (γδ-T cells) play crucial roles in both innate and adaptive immune responses. However, much less is known about the immune status of γδT cells in systemic lupus erythematosus (SLE) patients. The objective of this study was to explore potential relationships between the frequency of γδ-T-cell subpopulations and disease activity, autoantibody titres and renal involvement in patients with SLE. METHODS: Circulating γδ-T cells and their subsets (Vδ1+ T cells, Vδ2+ T cells and γδ-T-cell subpopulations defined by expression of surface receptors, including NKG2D, NKp30, NKp46 and PD-1), were identified via flow cytometry. Sixty active SLE patients were selected, including 41 new-onset and 19 relapsing cases. One hundred healthy controls (HCs) were enrolled as the control group. Percentages of these cell subsets in SLE patients and HCs and their relationships with disease activity were analysed. Twenty-two of the 41 new-onset SLE patients were assessed before and after treatment. Changes in the frequencies of these cell subsets and their relationships with renal involvement were also analysed. RESULTS: Compared with that in HCs, the percentage of total γδ-T cells among CD3+ T cells in SLE patients was significantly lower. An imbalance in the proportions of Vδ1+ and Vδ2+ T cells among γδ-T cells was observed. The proportion of Vδ1+ T cells among γδ-T cells was significantly greater in SLE patients than in HCs, while the proportion of Vδ2+ T cells was significantly lower. Expression levels of PD-1, NKG2D, NKp30 and NKp46 in Vδ1+ T cells and Vδ2+ T cells from SLE patients were generally significantly increased, except for expression of NKG2D in Vδ2+ T cells. Moreover, Vδ2+ T cells, Vδ1+ T cells and Vδ1+PD-1+ T cells were associated with disease activity, and an increase in Vδ2+ T-cell frequency and a decrease in PD-1 expression by γδ-T cells might be associated with effective treatment. Interestingly, our results indicated that Vδ2+ T cells and their Vδ2+NKp30+ T-cell subpopulation might be associated with renal involvement in SLE. CONCLUSION: A broad range of anomalies in the proportions of γδ-T-cell subsets and γδ-T cells in SLE patients may be involved in the pathogenesis of SLE. There is a strong association between Vδ2+ T cells and their Vδ2+NKp30+ T-cell subpopulation and LN occurrence. Our results indicate that γδ-T cells and their subpopulations might be key players in disease immunopathology and renal involvement in SLE.


Assuntos
Lúpus Eritematoso Sistêmico , Receptores de Antígenos de Linfócitos T gama-delta , Humanos , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Subfamília K de Receptores Semelhantes a Lectina de Células NK/metabolismo , Receptor de Morte Celular Programada 1/metabolismo , Subpopulações de Linfócitos T , Fenótipo
12.
Semin Immunol ; 49: 101436, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-33288379

RESUMO

T cells play a critical role in promoting tumor regression in both experimental models and humans. Yet, T cells that are chronically exposed to tumor antigen during cancer progression can become dysfunctional/exhausted and fail to induce tumor destruction. Such tumor-induced T cell dysfunction may occur via multiple mechanisms. In particular, immune checkpoint inhibitory receptors that are upregulated by tumor-infiltrating lymphocytes in many cancers limit T cell survival and function. Overcoming this inhibitory receptor-mediated T cell dysfunction has been a central focus of recent developments in cancer immunotherapy. Immunotherapies targeting inhibitory receptor pathways such as programmed cell death 1 (PD-1)/programmed death ligand 1 and cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), alone or in combination, confer significant clinical benefits in multiple tumor types. However, many patients with cancer do not respond to immune checkpoint blockade, and dual PD-1/CTLA-4 blockade may cause serious adverse events, which limits its indications. Targeting novel non-redundant inhibitory receptor pathways contributing to tumor-induced T cell dysfunction in the tumor microenvironment may prove efficacious and non-toxic. This review presents preclinical and clinical findings supporting the roles of two key pathways-T-cell immunoglobulin and mucin-domain containing-3 (TIM-3) and T cell immunoreceptor with Ig and ITIM domain (TIGIT)/CD226/CD96/CD112R-in cancer immunotherapy.


Assuntos
Receptores Coestimuladores e Inibidores de Linfócitos T/metabolismo , Neoplasias/imunologia , Neoplasias/metabolismo , Subpopulações de Linfócitos T/imunologia , Subpopulações de Linfócitos T/metabolismo , Animais , Biomarcadores Tumorais , Humanos , Proteínas de Checkpoint Imunológico/metabolismo , Imunoterapia , Ativação Linfocitária , Linfócitos do Interstício Tumoral/efeitos dos fármacos , Linfócitos do Interstício Tumoral/imunologia , Linfócitos do Interstício Tumoral/metabolismo , Terapia de Alvo Molecular , Neoplasias/patologia , Neoplasias/terapia , Transdução de Sinais , Subpopulações de Linfócitos T/efeitos dos fármacos , Microambiente Tumoral/efeitos dos fármacos , Microambiente Tumoral/imunologia
13.
J Helminthol ; 98: e13, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38263743

RESUMO

To investigate the effects of co-infection with Clonorchis sinensis (C. sinensis) on T cell exhaustion levels in patients with chronic hepatitis B, we enrolled clinical cases in this study, including the patients with concomitant C. sinensis and HBV infection. In this study, we detected inhibitory receptors and cytokine expression in circulating CD4+ and CD8+ T cells by flow cytometry. PD-1 and TIM-3 expression levels were significantly higher on CD4+ T and CD8+ T cells from co-infected patients than on those from the HBV patients. In addition, CD4+ T cells and CD8+ T cells function were significantly inhibited by C. sinensis and HBV co-infection compared with HBV single infection, secreting lower levels of Interferon gamma (IFN-γ), Interleukin-2 (IL-2), and TNF-α. Our current results suggested that C. sinensis co-infection could exacerbate T cell exhaustion in patients with chronic hepatitis B. PD-1 and TIM-3 could be novel biomarkers for T cell exhaustion in patients with Clonorchis sinensis and chronic hepatitis B co-infection. Furthermore, it may be one possible reason for the weaker response to antiviral therapies and the chronicity of HBV infection in co-infected patients. We must realize the importance of C. sinensis treatment for HBV-infected patients. It might provide useful information for clinical doctors to choose the right treatment plans.


Assuntos
Clonorquíase , Clonorchis sinensis , Coinfecção , Hepatite B Crônica , Animais , Humanos , Receptor Celular 2 do Vírus da Hepatite A , Receptor de Morte Celular Programada 1 , Exaustão das Células T
14.
Immunology ; 168(1): 30-48, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36190809

RESUMO

CD8+ T cells play a crucial role in anti-tumour immunity, but they often undergo exhaustion, which affects the anti-tumour activity of CD8+ T cells. The effect and mechanism of exhausted CD8+ T cells have become the focus of anti-tumour immunity research. Recently, a large number of studies have confirmed that long-term antigen exposure can induce exhaustion. Cytokines previously have identified their effects (such as IL-2 and IL-10) may play a dual role in the exhaustion process of CD8+ T cells, suggesting a new mechanism of inducing exhaustion. This review just focuses our current understanding of the biology of exhausted CD8+ T cells, including differentiation pathways, cellular characteristics and signalling pathways involved in inducing exhaustion, and summarizes how these can be applied to tumour immunotherapy.


Assuntos
Linfócitos T CD8-Positivos , Neoplasias , Humanos , Exaustão das Células T , Imunoterapia , Neoplasias/terapia , Citocinas
15.
Eur J Immunol ; 52(2): 312-327, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34752634

RESUMO

Overwhelming activation of T cells in acute malaria is associated with severe outcomes. Thus, counter-regulation by anti-inflammatory mechanisms is indispensable for an optimal resolution of disease. Using Plasmodium berghei ANKA (PbA) infection of C57BL/6 mice, we performed a comprehensive analysis of co-inhibitory molecules expressed on CD4+ and CD8+ T cells using an unbiased cluster analysis approach. We identified similar T cell clusters co-expressing several co-inhibitory molecules like programmed cell death protein 1 (PD-1) and lymphocyte activation gene 3 (LAG-3) in the CD4+ and the CD8+ T cell compartment. Interestingly, despite expressing co-inhibitory molecules, which are associated with T cell exhaustion in chronic settings, these T cells were more functional compared to activated T cells that were negative for co-inhibitory molecules. However, T cells expressing high levels of PD-1 and LAG-3 also conferred suppressive capacity and thus resembled type I regulatory T cells. To our knowledge, this is the first description of malaria-induced CD8+ T cells with suppressive capacity. Importantly, we found an induction of T cells with a similar co-inhibitory rich phenotype in Plasmodium falciparum-infected patients. In conclusion, we demonstrate that malaria-induced T cells expressing co-inhibitory molecules are not exhausted, but acquire additional suppressive capacity, which might represent an immune regulatory pathway to prevent further activation of T cells during acute malaria.


Assuntos
Antígenos CD/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Regulação da Expressão Gênica/imunologia , Tolerância Imunológica , Malária Falciparum/imunologia , Plasmodium berghei/imunologia , Plasmodium falciparum/imunologia , Receptor de Morte Celular Programada 1/imunologia , Adolescente , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Proteína do Gene 3 de Ativação de Linfócitos
16.
Cancer Immunol Immunother ; 72(6): 1429-1444, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36460868

RESUMO

Natural killer (NK) cells play a crucial role in the anti-tumor transaction through cytolytic activity with the help of proportionate expression of their activating receptors (ARs) and inhibitory receptors (IRs). The proliferation, differentiation, and effector's functions of NK cells were affected and regulated by CD4+CD25+ regulatory T (Treg) cells through the NKG2D receptor expressed on NK cells. It has not yet been established whether Treg cells also affects the expression and functions of other receptors of NK cell. Moreover, the effect of cyclophosphamide (CYP) treatment on the expression and functions of AR and IR receptors of NK cells regulated by Treg cells during cancer progression is not clearly understood. Therefore, we have used the metronomic dose of CYP and anti-CD25 and anti-TGF-ß to inhibit the effects of Treg cells in DL-induced tumor microenvironment and analyze the expression of ARs and IRs on NK cells and the FoxP3 level on Treg cells. It was observed that treatment of CYP and blocking antibodies not only affects the functions of tumor-associated NK cells (TANK cells) by modulating the expression of ARs and IRs in DL-induced tumor microenvironment, but also downregulates the functions of Treg cells. The findings of our study supported and suggested that the use of CYP in combination with other therapeutic approaches will effectively reduce tumor growth directly and/or indirectly by modulating the NK cell-mediated immune response of the host.


Assuntos
Células Matadoras Naturais , Linfoma , Humanos , Linfoma/metabolismo , Linfócitos T Reguladores , Fator de Crescimento Transformador beta/metabolismo , Linhagem Celular Tumoral , Microambiente Tumoral
17.
Cell Immunol ; 393-394: 104773, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37857190

RESUMO

Immunotherapy for prostate cancer (PCa) faces serious challenges. Therefore, the co-inhibitory receptors that regulate T cell function of PCa must be elucidated. Here we identified that the inhibitory receptor LAG3 was significantly induced in T cells from PCa patients. Gene array analysis revealed that insufficient ataxia telangiectasia mutated (ATM) gene expression in PCa T cells was responsible for the elevated LAG3 expression. Mechanistically, insufficient ATM expression impaired its ability to activate AMPKα signaling and CD4+ T cell functions, which further enhances the binding of the transcription factors XBP1 and EGR2 to LAG3 promoter. Reconstitution of ATM and inhibition of XBP1 or EGR2 in PCa T cells suppressed LAG3 expression and restored the effector function of CD4+ T cells from PCa. Our study revealed the mechanism of LAG3 upregulation in CD4+ T lymphocytes of PCa patients and may provide insights for the development of immunotherapeutic strategies for PCa treatment.


Assuntos
Neoplasias da Próstata , Linfócitos T , Masculino , Humanos , Linfócitos T/metabolismo , Transdução de Sinais , Regulação para Cima , Proteínas Mutadas de Ataxia Telangiectasia/genética , Proteínas Mutadas de Ataxia Telangiectasia/metabolismo
18.
Scand J Immunol ; 97(2): e13245, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36537046

RESUMO

Rheumatoid arthritis (RA) is an autoimmune disease characterized by joint inflammation and bone erosions. The glycosylated programmed death-1 (PD-1) receptor plays an important role in regulating immune responses and maintaining tolerance. In this study, we focus on two features observed in RA: impaired PD-1 signalling and Galectin-3 (Gal-3) upregulation. We hypothesize that Gal-3 binds PD-1 and PD-1 ligands, potentially contributing to impaired PD-1 signalling. PD-1 and Gal-3 levels in RA synovial fluid (SF) and plasma were evaluated by ELISA. PD-1 and Gal-3 interaction was examined by Surface Plasmon Resonance and ELISA. PD-1, PD-L1 and Gal-3 expression on mononuclear cells from SF and peripheral blood as well as fibroblast-like synoviocytes were examined by flow cytometry. Effects of Gal-3 and PD-L1 on osteoclast formation was evaluated by tartrate-resistant acid phosphatase assay. We show that Gal-3 binds PD-1 and PD-L1. Results demonstrated high expression of PD-1 and Gal-3 on mononuclear cells, especially from SF. Gal-3 inhibited PD-1 signalling when PD-L1 was present. Furthermore, a role of Gal-3 in osteoclast formation was observed in vitro, both directly but also through PD-1:PD-L1 inhibition. Effects of Gal-3 on the PD-1 signalling axis are proposed to be inhibitory, meaning high Gal-3 levels in the complex synovial microenvironment are not desirable in RA. Preventing Gal-3's inhibitory role on PD-1 signalling could, therefore, be a therapeutic target in RA by affecting inflammatory T cell responses and osteoclasts.


Assuntos
Artrite Reumatoide , Galectina 3 , Receptor de Morte Celular Programada 1 , Linfócitos T , Humanos , Artrite Reumatoide/metabolismo , Artrite Reumatoide/patologia , Antígeno B7-H1/metabolismo , Galectina 3/metabolismo , Osteoclastos/metabolismo , Osteoclastos/patologia , Receptor de Morte Celular Programada 1/metabolismo , Linfócitos T/metabolismo , Linfócitos T/patologia
19.
Parasite Immunol ; 45(3): e12966, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36601688

RESUMO

The aim of this work was to define the population of regulatory T cells (Tregs) which are circulating in the blood of Leishmania infected individuals clinically displaying a lesion (active disease-AD) and sub-clinical (SC) ones. We have individually collected blood samples, processed the PBMC and stained with fluorochrome-conjugated antibodies against CD3, CD4, Foxp3, CD25, CTLA-4, Ki-67, CCR4, CCR5, and CCR7. Cells were analyzed by flow cytometry. Our results suggest that CD25 and CTLA-4 are upregulated in Tregs of AD patients when compared to SC and uninfected (UN) controls. Moreover, Tregs proliferate upon infection based on Ki-67 nuclear antigen staining. Finally, we have observed that these Tregs of SC and AD patients upregulate CCR4, but not CCR5 and CCR7. There is an increase in the number of circulating Tregs in the blood of Leishmania infected individuals. These cells are potentially more suppressive based on the increased upregulation of CD25 and CTLA-4 during clinical infection (AD) when compared to SC infection. Tregs of both SC and AD cohorts are proliferating and express CCR4, which potentially guide them to the skin, but do not upregulate CCR5 and CCR7.


Assuntos
Leishmania , Leishmaniose Cutânea , Humanos , Linfócitos T Reguladores , Antígeno CTLA-4 , Leucócitos Mononucleares , Receptores CCR7 , Antígeno Ki-67 , Fatores de Transcrição Forkhead
20.
Immunology ; 166(3): 341-356, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35404483

RESUMO

Defective immune regulation has been recognized in type 1 diabetes (T1D). Immune regulatory T cell check-point receptors, which are generally upregulated on activated T cells, have been the molecules of attention as therapeutic targets for enhancing immune response in tumour therapy. Here, we show that pancreatic ß-cell antigen (BcAg) presentation by engineered tolerogenic dendritic cells (tDCs) that express CTLA4 selective ligand (B7.1wa) or a combination of CTLA4, PD1 and BTLA selective ligands (B7.1wa, PD-L1 and HVEM-CRD1 respectively; multiligand-DCs) causes an increase in regulatory cytokine and T cell (Treg) responses and suppression of the effector T cell function as compared with engineered control-DCs. Non-obese diabetic mice treated with BcAg-pulsed CTLA4-ligand-DCs and multiligand-DCs at pre-diabetic and early-hyperglycaemic stages showed significantly lower degree of insulitis, higher frequencies of insulin-positive islets, profound delay in and reversal of hyperglycaemia for a significant duration. Immune cells from the tDC-treated mice not only produced lower amounts of IFNγ and higher amounts of IL10 and TGFß1 upon BcAg challenge, but also failed to induce hyperglycaemia upon adoptive transfer. While both CTLA4-ligand-DCs and multiligand-DCs were effective in inducing tolerance, multiligand-DC treatment produced an overall higher suppressive effect on effector T cell function and disease outcome. These studies show that enhanced engagement of T cell checkpoint receptors during BcAg presentation can modulate T cell function and suppress autoimmunity and progression of the disease in T1D.


Assuntos
Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 1 , Hiperglicemia , Animais , Apresentação de Antígeno , Antígeno CTLA-4/metabolismo , Células Dendríticas , Diabetes Mellitus Experimental/patologia , Diabetes Mellitus Tipo 1/metabolismo , Hiperglicemia/metabolismo , Hiperglicemia/patologia , Tolerância Imunológica , Ligantes , Camundongos , Receptores Imunológicos , Linfócitos T Reguladores
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa