Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 293
Filtrar
Mais filtros

Eixos temáticos
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell ; 83(14): 2434-2448.e7, 2023 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-37402370

RESUMO

Insertions and deletions (indels) are common sources of structural variation, and insertions originating from spontaneous DNA lesions are frequent in cancer. We developed a highly sensitive assay called insertion and deletion sequencing (Indel-seq) to monitor rearrangements in human cells at the TRIM37 acceptor locus that reports indels stemming from experimentally induced and spontaneous genome instability. Templated insertions, which derive from sequences genome wide, require contact between donor and acceptor loci, require homologous recombination, and are stimulated by DNA end-processing. Insertions are facilitated by transcription and involve a DNA/RNA hybrid intermediate. Indel-seq reveals that insertions are generated via multiple pathways. The broken acceptor site anneals with a resected DNA break or invades the displaced strand of a transcription bubble or R-loop, followed by DNA synthesis, displacement, and then ligation by non-homologous end joining. Our studies identify transcription-coupled insertions as a critical source of spontaneous genome instability that is distinct from cut-and-paste events.


Assuntos
Quebras de DNA de Cadeia Dupla , Reparo do DNA , Humanos , Reparo do DNA por Junção de Extremidades , DNA/genética , Instabilidade Genômica , Proteínas com Motivo Tripartido/genética , Ubiquitina-Proteína Ligases/metabolismo
2.
Hum Mol Genet ; 33(11): 1001-1014, 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38483348

RESUMO

The CEL gene encodes carboxyl ester lipase, a pancreatic digestive enzyme. CEL is extremely polymorphic due to a variable number tandem repeat (VNTR) located in the last exon. Single-base deletions within this VNTR cause the inherited disorder MODY8, whereas little is known about VNTR single-base insertions in pancreatic disease. We therefore mapped CEL insertion variants (CEL-INS) in 200 Norwegian patients with pancreatic neoplastic disorders. Twenty-eight samples (14.0%) carried CEL-INS alleles. Most common were insertions in repeat 9 (9.5%), which always associated with a VNTR length of 13 repeats. The combined INS allele frequency (0.078) was similar to that observed in a control material of 416 subjects (0.075). We performed functional testing in HEK293T cells of a set of CEL-INS variants, in which the insertion site varied from the first to the 12th VNTR repeat. Lipase activity showed little difference among the variants. However, CEL-INS variants with insertions occurring in the most proximal repeats led to protein aggregation and endoplasmic reticulum stress, which upregulated the unfolded protein response. Moreover, by using a CEL-INS-specific antibody, we observed patchy signals in pancreatic tissue from humans without any CEL-INS variant in the germline. Similar pancreatic staining was seen in knock-in mice expressing the most common human CEL VNTR with 16 repeats. CEL-INS proteins may therefore be constantly produced from somatic events in the normal pancreatic parenchyma. This observation along with the high population frequency of CEL-INS alleles strongly suggests that these variants are benign, with a possible exception for insertions in VNTR repeats 1-4.


Assuntos
Repetições Minissatélites , Pâncreas Exócrino , Humanos , Repetições Minissatélites/genética , Animais , Camundongos , Pâncreas Exócrino/metabolismo , Pâncreas Exócrino/enzimologia , Células HEK293 , Mutagênese Insercional/genética , Alelos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/enzimologia , Frequência do Gene , Masculino , Feminino , Lipase/genética
3.
Semin Cell Dev Biol ; 123: 115-123, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-33958284

RESUMO

Analysis of the genetic basis for multiple myeloma (MM) has informed many of our current concepts of the biology that underlies disease initiation and progression. Studying these events in further detail is predicted to deliver important insights into its pathogenesis, prognosis and treatment. Information from whole genome sequencing of structural variation is revealing the role of these events as drivers of MM. In particular, we discuss how the insights we have gained from studying chromothripsis suggest that it can be used to provide information on disease initiation and that, as a consequence, it can be used for the clinical classification of myeloma precursor diseases allowing for early intervention and prognostic determination. For newly diagnosed MM, the integration of information on the presence of chromothripsis has the potential to significantly enhance current risk prediction strategies and to better characterize patients with high-risk disease biology. In this article we summarize the genetic basis for MM and the role played by chromothripsis as a critical pathogenic factor active at early disease phases.


Assuntos
Cromotripsia , Mieloma Múltiplo , Humanos , Mieloma Múltiplo/diagnóstico , Mieloma Múltiplo/genética , Mieloma Múltiplo/patologia , Sequenciamento Completo do Genoma
4.
BMC Genomics ; 25(1): 404, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658857

RESUMO

Transposable elements (TEs) are a major force in the evolution of plant genomes. Differences in the transposition activities and landscapes of TEs can vary substantially, even in closely related species. Interspecific hybridization, a widely employed technique in tomato breeding, results in the creation of novel combinations of TEs from distinct species. The implications of this process for TE transposition activity have not been studied in modern cultivars. In this study, we used nanopore sequencing of extrachromosomal circular DNA (eccDNA) and identified two highly active Ty1/Copia LTR retrotransposon families of tomato (Solanum lycopersicum), called Salsa and Ketchup. Elements of these families produce thousands of eccDNAs under controlled conditions and epigenetic stress. EccDNA sequence analysis revealed that the major parts of eccDNA produced by Ketchup and Salsa exhibited low similarity to the S. lycopersicum genomic sequence. To trace the origin of these TEs, whole-genome nanopore sequencing and de novo genome assembly were performed. We found that these TEs occurred in a tomato breeding line via interspecific introgression from S. peruvianum. Our findings collectively show that interspecific introgressions can contribute to both genetic and phenotypic diversity not only by introducing novel genetic variants, but also by importing active transposable elements from other species.


Assuntos
DNA Circular , Genoma de Planta , Retroelementos , Solanum lycopersicum , Sequências Repetidas Terminais , Solanum lycopersicum/genética , DNA Circular/genética , Melhoramento Vegetal , Sequenciamento por Nanoporos/métodos , Introgressão Genética , Análise de Sequência de DNA/métodos , DNA de Plantas/genética
5.
Funct Integr Genomics ; 24(3): 104, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38764005

RESUMO

Accurate estimation of population allele frequency (AF) is crucial for gene discovery and genetic diagnostics. However, determining AF for frameshift-inducing small insertions and deletions (indels) faces challenges due to discrepancies in mapping and variant calling methods. Here, we propose an innovative approach to assess indel AF. We developed CRAFTS-indels (Calculating Regional Allele Frequency Targeting Small indels), an algorithm that combines AF of distinct indels within a given region and provides "regional AF" (rAF). We tested and validated CRAFTS-indels using three independent datasets: gnomAD v2 (n=125,748 samples), an internal dataset (IGM; n=39,367), and the UK BioBank (UKBB; n=469,835). By comparing rAF against standard AF, we identified rare indels with rAF exceeding standard AF (sAF≤10-4 and rAF>10-4) as "rAF-hi" indels. Notably, a high percentage of rare indels were "rAF-hi", with a higher proportion in gnomAD v2 (11-20%) and IGM (11-22%) compared to the UKBB (5-9% depending on the CRAFTS-indels' parameters). Analysis of the overlap of regions based on their rAF with low complexity regions and with ClinVar classification supported the pertinence of rAF. Using the internal dataset, we illustrated the utility of CRAFTS-indel in the analysis of de novo variants and the potential negative impact of rAF-hi indels in gene discovery. In summary, annotation of indels with cohort specific rAF can be used to handle some of the limitations of current annotation pipelines and facilitate detection of novel gene disease associations. CRAFTS-indels offers a user-friendly approach to providing rAF annotation. It can be integrated into public databases such as gnomAD, UKBB and used by ClinVar to revise indel classifications.


Assuntos
Frequência do Gene , Mutação INDEL , Humanos , Algoritmos
6.
Am J Hum Genet ; 108(11): 2186-2194, 2021 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-34626536

RESUMO

Structural variation (SV) describes a broad class of genetic variation greater than 50 bp in size. SVs can cause a wide range of genetic diseases and are prevalent in rare developmental disorders (DDs). Individuals presenting with DDs are often referred for diagnostic testing with chromosomal microarrays (CMAs) to identify large copy-number variants (CNVs) and/or with single-gene, gene-panel, or exome sequencing (ES) to identify single-nucleotide variants, small insertions/deletions, and CNVs. However, individuals with pathogenic SVs undetectable by conventional analysis often remain undiagnosed. Consequently, we have developed the tool InDelible, which interrogates short-read sequencing data for split-read clusters characteristic of SV breakpoints. We applied InDelible to 13,438 probands with severe DDs recruited as part of the Deciphering Developmental Disorders (DDD) study and discovered 63 rare, damaging variants in genes previously associated with DDs missed by standard SNV, indel, or CNV discovery approaches. Clinical review of these 63 variants determined that about half (30/63) were plausibly pathogenic. InDelible was particularly effective at ascertaining variants between 21 and 500 bp in size and increased the total number of potentially pathogenic variants identified by DDD in this size range by 42.9%. Of particular interest were seven confirmed de novo variants in MECP2, which represent 35.0% of all de novo protein-truncating variants in MECP2 among DDD study participants. InDelible provides a framework for the discovery of pathogenic SVs that are most likely missed by standard analytical workflows and has the potential to improve the diagnostic yield of ES across a broad range of genetic diseases.


Assuntos
Deficiências do Desenvolvimento/diagnóstico , Deficiências do Desenvolvimento/genética , Sequenciamento do Exoma/métodos , Criança , Feminino , Humanos , Masculino , Proteína 2 de Ligação a Metil-CpG/genética
7.
BMC Cancer ; 24(1): 1010, 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39143560

RESUMO

INTRODUCTION: This retrospective study aimed to investigate treatment patterns and outcomes in patients with NSCLC harboring EGFR20ins in China. EGFR20ins mutations are associated with poor responses to EGFR-TKIs, and limited real-world data exist regarding the efficacy of various treatment modalities. METHODS: In this retrospective, single-center study, treatment outcomes, including PFS and ORR, were evaluated for different treatment regimens based on imaging assessments. The impact of mutation heterogeneity on treatment efficacy was also explored. RESULTS: Data from 302 patients diagnosed with NSCLC with EGFR20ins were analyzed. EGFR-TKI monotherapy demonstrated suboptimal PFS compared to platinum-based chemotherapy in the first-line setting (3.00 m vs. 6.83 m, HR = 3.674, 95%CI = 2.48-5.44, p < 0.001). Platinum plus pemetrexed plus bevacizumab combination therapy showed improved PFS and ORR compared to platinum plus pemetrexed (7.50m vs. 5.43 m, HR = 0.593, 95%CI = 0.383-0.918, p = 0.019). In later-line treatments, monotherapy with EGFR-TKIs or ICIs exhibited suboptimal efficacy. The specific EGFR20ins subtype, A763_Y764insFQEA, showed favorable responses to EGFR-TKIs in real-world settings. CONCLUSIONS: This large-scale real-world study provides valuable insights into the treatment patterns and outcomes of NSCLC patients with EGFR20ins mutations in China. These findings contribute to the understanding of EGFR20ins treatment and provide real-world benchmark for future clinical trials and drug development.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Éxons , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Masculino , Feminino , Receptores ErbB/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/patologia , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , China , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Resultado do Tratamento , Adulto , Pemetrexede/uso terapêutico , Pemetrexede/administração & dosagem , Inibidores de Proteínas Quinases/uso terapêutico , Mutagênese Insercional , Mutação , Idoso de 80 Anos ou mais , População do Leste Asiático
8.
Mov Disord ; 39(1): 164-172, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37994247

RESUMO

BACKGROUND: Benign adult familial myoclonic epilepsy (BAFME) is an autosomal dominant disorder characterized by cortical tremors and seizures. Six types of BAFME, all caused by pentanucleotide repeat expansions in different genes, have been reported. However, several other BAFME cases remain with no molecular diagnosis. OBJECTIVES: We aim to characterize clinical features and identify the mutation causing BAFME in a large Malian family with 10 affected members. METHODS: Long-read whole genome sequencing, repeat-primed polymerase chain reaction and RNA studies were performed. RESULTS: We identified TTTTA repeat expansions and TTTCA repeat insertions in intron 4 of the RAI1 gene that co-segregated with disease status in this family. TTTCA repeats were absent in 200 Malian controls. In the affected individuals, we found a read with only nine TTTCA repeat units and somatic instability. The RAI1 repeat expansions cause the only BAFME type in which the disease-causing repeats are in a gene associated with a monogenic disorder in the haploinsufficiency state (ie, Smith-Magenis syndrome [SMS]). Nevertheless, none of the Malian patients exhibited symptoms related to SMS. Moreover, leukocyte RNA levels of RAI1 in six Malian BAFME patients were no different from controls. CONCLUSIONS: These findings establish a new type of BAFME, BAFME8, in an African family and suggest that haploinsufficiency is unlikely to be the main pathomechanism of BAFME. © 2023 International Parkinson and Movement Disorder Society. This article has been contributed to by U.S. Government employees and their work is in the public domain in the USA.


Assuntos
Epilepsias Mioclônicas , Adulto , Humanos , Epilepsias Mioclônicas/genética , Íntrons , Repetições de Microssatélites , RNA , Convulsões/genética
9.
Hum Genomics ; 17(1): 21, 2023 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-36895025

RESUMO

BACKGROUND: Long-read sequencing technologies have the potential to overcome the limitations of short reads and provide a comprehensive picture of the human genome. However, the characterization of repetitive sequences by reconstructing genomic structures at high resolution solely from long reads remains difficult. Here, we developed a localized assembly method (LoMA) that constructs highly accurate consensus sequences (CSs) from long reads. METHODS: We developed LoMA by combining minimap2, MAFFT, and our algorithm, which classifies diploid haplotypes based on structural variants and CSs. Using this tool, we analyzed two human samples (NA18943 and NA19240) sequenced with the Oxford Nanopore sequencer. We defined target regions in each genome based on mapping patterns and then constructed a high-quality catalog of the human insertion solely from the long-read data. RESULTS: The assessment of LoMA showed a high accuracy of CSs (error rate < 0.3%) compared with raw data (error rate > 8%) and superiority to a previous study. The genome-wide analysis of NA18943 and NA19240 identified 5516 and 6542 insertions (≥ 100 bp), respectively. Most insertions (~ 80%) were derived from tandem repeats and transposable elements. We also detected processed pseudogenes, insertions in transposable elements, and long insertions (> 10 kbp). Finally, our analysis suggested that short tandem duplications are associated with gene expression and transposons. CONCLUSIONS: Our analysis showed that LoMA constructs high-quality sequences from long reads with substantial errors. This study revealed the true structures of the insertions with high accuracy and inferred the mechanisms for the insertions, thus contributing to future human genome studies. LoMA is available at our GitHub page: https://github.com/kolikem/loma .


Assuntos
Elementos de DNA Transponíveis , Genoma Humano , Humanos , Análise de Sequência de DNA/métodos , Genoma Humano/genética , Elementos de DNA Transponíveis/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Genômica
10.
Mutagenesis ; 39(1): 1-12, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-37804235

RESUMO

The translocation of mitochondrial DNA (mtDNA) sequences into the nuclear genome, resulted in the occurrence of nuclear sequences of mitochondrial origin (NUMTs) which can be detected in nearly all sequenced eukaryotes. However, de novo mtDNA insertions can contribute to the development of pathological conditions including cancer. Recent data indicate that de novo mtDNA translocation into chromosomes can occur due to genotoxic influence of DNA double-strand break-inducing environmental mutagens. This confirms the hypothesis of the involvement of genome instability in the occurrence of mtDNA fragments in chromosomes. Mounting evidence indicates that mitochondria can be transferred from normal cells to cancer cells and recover cellular respiration. These exchanged mitochondria can facilitate cancer progression and metastasis. This review article provides a comprehensive overview of the potential carcinogenicity of mtDNA insertions, and the relevance of mtDNA escape in cancer progression, metastasis, and treatment resistance in humans. Potential molecular targets involved in mtDNA escape and exchange of mitochondria that can be of possible clinical benefits are presented and discussed. Understanding these processes could lead to improved diagnostic approaches, novel therapeutic strategies, and a deeper understanding of the intricate relationship between mitochondria, nuclear DNA, and cancer biology.


Assuntos
Genoma Mitocondrial , Neoplasias , Humanos , Núcleo Celular/genética , Mitocôndrias/genética , Genoma , DNA Mitocondrial/genética , DNA Mitocondrial/metabolismo , Neoplasias/genética , Neoplasias/metabolismo , Carcinogênese/genética , Carcinogênese/metabolismo
11.
Cells Tissues Organs ; : 1-10, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39106842

RESUMO

INTRODUCTION: To date, there have been no studies conducted on the development of interosseous muscles (IO) in the human hand. This study aimed to investigate the development of these muscles in order to clarify their terminal insertions and their relationship with the metacarpophalangeal joints. METHODS: Serial sections of 25 human specimens (9 embryos and 16 fetuses) between the 7th and 14th weeks of development, sourced from the Collection of the Department of Anatomy and Embryology at UCM Faculty of Medicine, were analyzed bilaterally using a conventional optical microscope. RESULTS: Our findings revealed that, during the 7th week of development, the metacarpophalangeal interzone mesenchyme extended into the extensor apparatus of the fingers. Furthermore, we observed that the joint capsule and the tendon of the IO derive from the articular interzone mesenchyme. By the end of the 7th week, corresponding to Carnegie stage 21, the myotendinous junction appeared, initiating cavitation of the metacarpophalangeal joint. During the fetal period, the terminal insertions of the IO were identified: both the dorsal interosseous (DI) and palmar interosseous (PI) muscles insert into the metacarpophalangeal joint capsule and establish a connection with the volar plate located at the base of the proximal phalanx and the extensor apparatus. Some muscle fibers also attach to the joint capsule at the level of the proximal synovial cul-de-sac. The functional implications of these findings are discussed within this work. CONCLUSION: This study provides the first detailed description of the development of the interosseous muscles in the human hand.

12.
Cancer Control ; 31: 10732748241262190, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38857163

RESUMO

BACKGROUND: Epidermal growth factor receptor exon 20 insertion (EGFR ex20ins), an uncommon mutation in non-small cell lung cancer (NSCLC), can induce poor patient response to EGFR tyrosine kinase inhibitors (EGFR-TKI). However, the clinical features and prognosis of patients with EGFR ex20ins are not clearly understood. This study investigated the clinical characteristics and prognosis of advanced NSCLC patients with EGFR ex20ins. METHODS: Advanced NSCLC patients treated at Fujian Cancer Hospital were consecutively recruited from June 1, 2014 to December 20, 2021 and retrospectively examined. EGFR ex20ins was identified by polymerase chain reaction (PCR) or next-generation sequencing (NGS). The clinical characteristics, treatment methods, and patient outcomes were retrieved from the hospital database. The progression-free survival (PFS)  and overall survival (OS) were assessed by Kaplan-Meier analysis. RESULTS: Fourteen mutation subtypes of EGFR ex20ins were identified in the 24 enrolled patients, with EGFR ex20ins mutation more prevalent in non-smoking women. A763_Y764insFQEA and A767_V769dup (12.5% for both) were the most common mutation subtypes. Notably, no significant differences in PFS and OS were found between the first-line targeted therapy group [PFS: 257 days, 95% confidence interval (CI): 116-397 days; OS: not reached] and chemotherapy-based combination therapy group (PFS: 182 days, 95% CI: 156-207 days; OS: 998 days, 95% CI: 674-1321 days). TP53 mutation was the commonest concomitant mutation (62%), followed by EGFR amplification (25%). Chemotherapy combined with immunotherapy improved the prognosis of patients with high PD-L1 expression. CONCLUSION: For NSCLC patients with EGFR ex20ins, limited therapeutic benefits can be gleaned from either EGFR-TKIs or chemotherapy-based combination therapy.


EGFR-TKIs have limited efficacy in NSCLC patients with EGFR ex20ins. Combining chemotherapy with immunotherapy may represent a promising treatment approach for individuals with positive ex20ins and high PD-L1 expression.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Receptores ErbB , Éxons , Neoplasias Pulmonares , Humanos , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/patologia , Carcinoma Pulmonar de Células não Pequenas/mortalidade , Feminino , Masculino , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/mortalidade , Pessoa de Meia-Idade , Prognóstico , Receptores ErbB/genética , Estudos Retrospectivos , Idoso , Éxons/genética , Mutação , Adulto , Inibidores de Proteínas Quinases/uso terapêutico , Intervalo Livre de Progressão , Mutagênese Insercional
13.
Macromol Rapid Commun ; 45(15): e2400158, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38651593

RESUMO

Carbon-chain dendritic polymers hold unique properties and promising applications. However, synthesizing carbon-chain dendrimers, beyond conjugated ones, remains a challenge. Here, the use of the iterative single unit monomer insertion technique for synthesizing 2.5 generation partial-carbon-chain dendrimers (G2.5) is described, utilizing bismaleimide as the core, a maleimide-trithiocarbonate conjugate as the branching unit, and indene as the spacer unit, following a divergent growth strategy. The optimized conditions for synthesizing the maleimide-trithiocarbonate branching unit are a bismaleimide to trithiocarbonate ratio of 5:1 and a reaction time of 30 min. The structures are verified using 1H nuclear magnetic resonance, gel permeation chromatography, and matrix-assisted laser desorption/ionization-time of flight mass spectra. A four-arm star polymer is then synthesized using the G2.5 as the core. This synthesis of a partial-carbon-chain dendrimer establishes a foundational step toward creating all-carbon-chain ones and may open new application avenues in material science.


Assuntos
Carbono , Dendrímeros , Dendrímeros/química , Dendrímeros/síntese química , Carbono/química , Estrutura Molecular , Maleimidas/química , Maleimidas/síntese química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Polimerização , Polímeros/química , Polímeros/síntese química
14.
Int J Mol Sci ; 25(18)2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39337523

RESUMO

The disease caused by Largemouth bass ranavirus (LMBV) is one of the most severe viral diseases in largemouth bass (Micropterus salmoides). It is crucial to evaluate the genetic resistance of largemouth bass to LMBV and develop markers for disease-resistance breeding. In this study, 100 individuals (45 resistant and 55 susceptible) were sequenced and evaluated for resistance to LMBV and a total of 2,579,770 variant sites (SNPs-single-nucleotide polymorphisms (SNPs) and insertions-deletions (InDels)) were identified. A total of 2348 SNPs-InDels and 1018 putative candidate genes associated with LMBV resistance were identified by genome-wide association analyses (GWAS). Furthermore, GO and KEGG analyses revealed that the 10 candidate genes (MHC II, p38 MAPK, AMPK, SGK1, FOXO3, FOXO6, S1PR1, IL7R, RBL2, and GADD45) were related to intestinal immune network for IgA production pathway and FoxO signaling pathway. The acquisition of candidate genes related to resistance will help to explore the molecular mechanism of resistance to LMBV in largemouth bass. The potential polymorphic markers identified in this study are important molecular markers for disease resistance breeding in largemouth bass.


Assuntos
Bass , Infecções por Vírus de DNA , Resistência à Doença , Doenças dos Peixes , Estudo de Associação Genômica Ampla , Polimorfismo de Nucleotídeo Único , Ranavirus , Animais , Bass/genética , Bass/virologia , Bass/imunologia , Ranavirus/fisiologia , Doenças dos Peixes/virologia , Doenças dos Peixes/genética , Doenças dos Peixes/imunologia , Resistência à Doença/genética , Infecções por Vírus de DNA/veterinária , Infecções por Vírus de DNA/virologia , Infecções por Vírus de DNA/imunologia , Infecções por Vírus de DNA/genética , Mutação INDEL
15.
Surg Radiol Anat ; 46(2): 223-230, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38197959

RESUMO

BACKGROUND: Evaluation of the cystic duct anatomy prior to bile duct or gallbladder surgery is important, to decrease the risk of bile duct injury. This study aimed to clarify the frequency of cystic duct variations and the relationship between them. METHODS: Data of 205 patients who underwent cholecystectomy after imaging at Sada Hospital, Japan, were analyzed. The Chi-square test was used to analyze the relationships among variations. RESULTS: The lateral and posterior sides of the bile duct were the two most common insertion points (92 patients, 44.9%), and the middle height was the most common insertion height (135 patients, 65.9%). Clinically important variations (spiral courses, parallel courses, low insertions, and right hepatic duct draining) relating to the risk of bile duct injury were observed in 24 patients (11.7%). Regarding the relationship between the insertion sides and heights, we noticed that the posterior insertion frequently existed in low insertions (75.0%, P < 0.001) and did not exist in high insertions. In contrast, the anterior insertion coexisted with high and never low insertions. Spiral courses have two courses: anterior and posterior, and anterior ones were only found in high insertion cases. CONCLUSIONS: The insertion point of the cystic duct and the spiral courses tended to be anterior or lateral superiorly and posterior inferiorly. Clinically significant variations in cystic duct insertions are common and surgeons should be cautious about these variations to avoid complications.


Assuntos
Colecistectomia Laparoscópica , Ducto Cístico , Humanos , Ducto Cístico/diagnóstico por imagem , Colecistectomia Laparoscópica/efeitos adversos , Ductos Biliares/diagnóstico por imagem , Ductos Biliares/lesões , Ductos Biliares/cirurgia , Colecistectomia , Fígado
16.
Angew Chem Int Ed Engl ; 63(31): e202402265, 2024 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-38760991

RESUMO

The single-unit monomer insertion (SUMI), derived from living/controlled polymerization, can be directly functionalized at the end or within the chain of polymers prepared by living/controlled polymerization, offering potential applications in the preparation of polymers with complex architectures. Many scenarios demand the simultaneous incorporation of monomers suitable for different polymerization methods into complex polymers. Therefore, it becomes imperative to utilize SUMI technologies with diverse mechanisms, especially those that are compatible with each other. Here, we reported the orthogonal SUMI technique, seamlessly combining radical and cationic SUMI approaches. Through the careful optimization of monomer and chain transfer agent pairs and adjustments to reaction conditions, we can efficiently execute both radical and cationic SUMI processes in one pot without mutual interference. The utilization of orthogonal SUMI pairs facilitates the integration of radical and cationic reversible addition-fragmentation chain transfer (RAFT) polymerization in various configurations. This flexibility enables the synthesis of diblock, triblock, and star polymers that incorporate both cationically and radically polymerizable monomers. Moreover, we have successfully implemented a mixing mechanism of free radicals and cations in RAFT step-growth polymerization, resulting in the creation of a side-chain sequence-controlled polymer brushes.

17.
Curr Issues Mol Biol ; 45(7): 5776-5797, 2023 Jul 12.
Artigo em Inglês | MEDLINE | ID: mdl-37504281

RESUMO

Abaca (Musa textilis Née) is an economically important fiber crop in the Philippines. Its economic potential, however, is hampered by biotic and abiotic stresses, which are exacerbated by insufficient genomic resources for varietal identification vital for crop improvement. To address these gaps, this study aimed to discover genome-wide polymorphisms among abaca cultivars and other Musa species and analyze their potential as genetic marker resources. This was achieved through whole-genome Illumina resequencing of abaca cultivars and variant calling using BCFtools, followed by genetic diversity and phylogenetic analyses. A total of 20,590,381 high-quality single-nucleotide polymorphisms (SNP) and DNA insertions/deletions (InDels) were mined across 16 abaca cultivars. Filtering based on linkage disequilibrium (LD) yielded 130,768 SNPs and 13,620 InDels, accounting for 0.396 ± 0.106 and 0.431 ± 0.111 of gene diversity across these cultivars. LD-pruned polymorphisms across abaca, M. troglodytarum, M. acuminata and M. balbisiana enabled genetic differentiation within abaca and across the four Musa spp. Phylogenetic analysis revealed the registered varieties Abuab and Inosa to accumulate a significant number of mutations, eliciting further studies linking mutations to their advantageous phenotypes. Overall, this study pioneered in producing marker resources in abaca based on genome-wide polymorphisms vital for varietal authentication and comparative genotyping with the more studied Musa spp.

18.
Trends Genet ; 36(12): 905-914, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33039248

RESUMO

Genome editing has powerful applications in research, healthcare, and agriculture. However, the range of possible molecular events resulting from genome editing has been underestimated and the technology remains unpredictable on, and away from, the target locus. This has considerable impact in providing a safe approach for therapeutic genome editing, agriculture, and other applications. This opinion article discusses how to anticipate and detect those editing events by a combination of assays to capture all possible genomic changes. It also discusses strategies for preventing unwanted effects, critical to appraise the benefit or risk associated with the use of the technology. Anticipating and verifying the result of genome editing are essential for the success for all applications.


Assuntos
Sistemas CRISPR-Cas , Edição de Genes/normas , Genoma , Animais , Humanos , Medição de Risco
19.
Genet Med ; 25(3): 100348, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36571464

RESUMO

PURPOSE: RAS genes (HRAS, KRAS, and NRAS) are commonly found to be mutated in cancers, and activating RAS variants are also found in disorders of somatic mosaicism (DoSM). A survey of the mutational spectrum of RAS variants in DoSM has not been performed. METHODS: A total of 938 individuals with suspected DoSM underwent high-sensitivity clinical next-generation sequencing-based testing. We investigated the mutational spectrum and genotype-phenotype associations of mosaic RAS variants. RESULTS: In this article, we present a series of individuals with DoSM with RAS variants. Classic hotspots, including Gly12, Gly13, and Gln61 constituted the majority of RAS variants observed in DoSM. Furthermore, we present 12 individuals with HRAS and KRAS in-frame duplication/insertion (dup/ins) variants in the switch II domain. Among the 18.3% individuals with RAS in-frame dup/ins variants, clinical findings were mainly associated with vascular malformations. Hotspots were associated with a broad phenotypic spectrum, including vascular tumors, vascular malformations, nevoid proliferations, segmental overgrowth, digital anomalies, and combinations of these. The median age at testing was higher and the variant allelic fraction was lower in individuals with in-frame dup/ins variants than those in individuals with mosaic RAS hotspots. CONCLUSION: Our work provides insight into the allelic and clinical heterogeneity of mosaic RAS variants in nonmalignant conditions.


Assuntos
Mosaicismo , Malformações Vasculares , Humanos , Proteínas Proto-Oncogênicas p21(ras)/genética , Mutação , Alelos , Malformações Vasculares/genética
20.
Chemistry ; 29(24): e202300096, 2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-36730110

RESUMO

Skeletal editing via single-atom insertion reactions involving nitrogen heterocycles have been reported by two innovative and complementary methods for the conversion of pyrroles and indoles to pyridines, quinolines and quinazolines. The use of electrophilic carbonyl cation equivalents and in situ generated nitrenes enables molecular editing to transform heterocycles forming the foundation of best-selling pharmaceuticals. Considering the importance of heterocycles in medicinal chemistry, biology and natural products, these methods offer innovative approach to complex molecular structures by heterocycle diversification and peripheral editing.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa