Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(7)2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38612894

RESUMO

With the ambition to identify novel chemical starting points that can be further optimized into small drug-like inhibitors of insulin-regulated aminopeptidase (IRAP) and serve as potential future cognitive enhancers in the clinic, we conducted an ultra-high-throughput screening campaign of a chemically diverse compound library of approximately 400,000 drug-like small molecules. Three biochemical and one biophysical assays were developed to enable large-scale screening and hit triaging. The screening funnel, designed to be compatible with high-density microplates, was established with two enzyme inhibition assays employing either fluorescent or absorbance readouts. As IRAP is a zinc-dependent enzyme, the remaining active compounds were further evaluated in the primary assay, albeit with the addition of zinc ions. Rescreening with zinc confirmed the inhibitory activity for most compounds, emphasizing a zinc-independent mechanism of action. Additionally, target engagement was confirmed using a complementary biophysical thermal shift assay where compounds causing positive/negative thermal shifts were considered genuine binders. Triaging based on biochemical activity, target engagement, and drug-likeness resulted in the selection of 50 qualified hits, of which the IC50 of 32 compounds was below 3.5 µM. Despite hydroxamic acid dominance, diverse chemotypes with biochemical activity and target engagement were discovered, including non-hydroxamic acid compounds. The most potent compound (QHL1) was resynthesized with a confirmed inhibitory IC50 of 320 nM. Amongst these compounds, 20 new compound structure classes were identified, providing many new starting points for the development of unique IRAP inhibitors. Detailed characterization and optimization of lead compounds, considering both hydroxamic acids and other diverse structures, are in progress for further exploration.


Assuntos
Aminopeptidases , Insulina , Ensaios de Triagem em Larga Escala , Insulina Regular Humana , Corantes , Ácidos Hidroxâmicos , Zinco
2.
J Biol Chem ; 296: 100637, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33872597

RESUMO

TBC1D4 is a 160 kDa multidomain Rab GTPase-activating protein (RabGAP) and a downstream target of the insulin- and contraction-activated kinases AKT and AMPK. Phosphorylation of TBC1D4 has been linked to translocation of GLUT4 from storage vesicles (GSVs) to the cell surface. However, its impact on enzymatic activity is not well understood, as previous studies mostly investigated the truncated GAP domain lacking the known phosphorylation sites. In the present study, we expressed and purified recombinant full-length TBC1D4 using a baculovirus system. Size-exclusion chromatography and coimmunoprecipitation experiments revealed that full-length TBC1D4 forms oligomers of ∼600 kDa. Compared with the truncated GAP domain, full-length TBC1D4 displayed similar substrate specificity, but had a markedly higher specific GAP activity toward Rab10. Using high-resolution mass spectrometry, we mapped 19 Ser/Thr phosphorylation sites in TBC1D4. We determined Michaelis-Menten kinetics using in vitro phosphorylation assays with purified kinases and stable isotope-labeled γ-[18O4]-ATP. These data revealed that Ser324 (KM ∼6 µM) and Thr649 (KM ∼25 µM) were preferential sites for phosphorylation by AKT, whereas Ser348, Ser577, Ser595 (KM ∼10 µM), Ser711 (KM ∼79 µM), and Ser764 were found to be preferred targets for AMPK. Phosphorylation of TBC1D4 by AKT or AMPK did not alter the intrinsic RabGAP activity, but did disrupt interaction with insulin-regulated aminopeptidase (IRAP), a resident protein of GSVs implicated in GLUT4 trafficking. These findings provide evidence that insulin and contraction may regulate TBC1D4 function primarily by disrupting the recruitment of the RabGAP to GLUT4 vesicles.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Aminopeptidases/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Insulina/farmacologia , Músculo Esquelético/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Aminopeptidases/genética , Animais , Proteínas Ativadoras de GTPase/genética , Hipoglicemiantes/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Músculo Esquelético/efeitos dos fármacos , Fosforilação , Proteínas Proto-Oncogênicas c-akt/genética
3.
Curr Issues Mol Biol ; 44(10): 5000-5012, 2022 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-36286055

RESUMO

Angiotensin IV (Ang IV), a metabolite of Angiotensin II, is a bioactive hexapeptide that inhibits the insulin-regulated aminopeptidase (IRAP). This transmembrane zinc metallopeptidase with many biological functions has in recent years emerged as a new pharmacological target. IRAP is expressed in a variety of tissues and can be found in high density in the hippocampus and neocortex, brain regions associated with cognition. Ang IV is known to improve memory tasks in experimental animals. One of the most potent IRAP inhibitors known today is the macrocyclic compound HA08 that is significantly more stable than the endogenous Ang IV. HA08 combines structural elements from Ang IV and the physiological substrates oxytocin and vasopressin, and binds to the catalytic site of IRAP. In the present study we evaluate whether HA08 can restore cell viability in rat primary cells submitted to hydrogen peroxide damage. After damaging the cells with hydrogen peroxide and subsequently treating them with HA08, the conceivable restoring effects of the IRAP inhibitor were assessed. The cellular viability was determined by measuring mitochondrial activity and lactate dehydrogenase (LDH) release. The mitochondrial activity was significantly higher in primary hippocampal cells, whereas the amount of LDH was unaffected. We conclude that the cell viability can be restored in this cell type by blocking IRAP with the potent macrocyclic inhibitor HA08, although the mechanism by which HA08 exerts its effects remains unclear.

4.
BMC Endocr Disord ; 18(1): 4, 2018 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-29378555

RESUMO

BACKGROUND: Gestational diabetes insipidus (GDI) is a rare endocrine complication during pregnancy that is associated with vasopressinase overproduction from the placenta. Although increased vasopressinase is associated with placental volume, the regulation of placental growth in the later stage of pregnancy is not well known. CASE PRESENTATION: A 16-year-old pregnant woman was urgently transferred to our hospital because of threatened premature labor when the Kumamoto earthquakes hit the area where she lived. During her hospitalization, she complained of gradually increasing symptoms of polyuria and polydipsia. The serum level of arginine vasopressin (AVP) was 1.7 pg/mL, which is inconsistent with central DI. The challenge of diagnostic treatment using oral 1-deamino-8-D-AVP (DDAVP) successfully controlled her urine and allowed for normal delivery. DDAVP tablets were not necessary to control her polyuria thereafter. Based on these observations, clinical diagnosis of GDI was confirmed. Pathophysiological analyses revealed that vasopressinase expression was more abundant in the GDI patient's syncytiotrophoblast in placenta compared with that in a control subject. Serum vasopressinase was also observed during gestation and disappeared soon after delivery. Vasopressinase is reportedly identical to oxytocinase or insulin regulated aminopeptidase (IRAP), which is an abundant cargo protein associated with the glucose transporter 4 (GLUT4) storage vesicle. Interestingly, the expression and subcellular localization of GLUT4 appeared to occur in a vasopressinase (IRAP)-dependent manner. CONCLUSION: Because placental volume may be associated with vasopressinase overproduction in GDI, vasopressinase (IRAP)/GLUT4 association appears to contribute to the growth of placenta in this case.


Assuntos
Antidiuréticos/uso terapêutico , Desamino Arginina Vasopressina/uso terapêutico , Diabetes Insípido/fisiopatologia , Neurofisinas/metabolismo , Complicações na Gravidez/prevenção & controle , Precursores de Proteínas/metabolismo , Vasopressinas/metabolismo , Adolescente , Diabetes Insípido/tratamento farmacológico , Diabetes Insípido/enzimologia , Feminino , Humanos , Gravidez , Complicações na Gravidez/etiologia , Prognóstico
5.
Neurobiol Dis ; 68: 126-36, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24807206

RESUMO

Angiotensin II (AngII) receptor blockers that bind selectively AngII type 1 (AT1) receptors may protect from Alzheimer's disease (AD). We studied the ability of the AT1 receptor antagonist losartan to cure or prevent AD hallmarks in aged (~18months at endpoint, 3months treatment) or adult (~12months at endpoint, 10months treatment) human amyloid precursor protein (APP) transgenic mice. We tested learning and memory with the Morris water maze, and evaluated neurometabolic and neurovascular coupling using [(18)F]fluoro-2-deoxy-D-glucose-PET and laser Doppler flowmetry responses to whisker stimulation. Cerebrovascular reactivity was assessed with on-line videomicroscopy. We measured protein levels of oxidative stress enzymes (superoxide dismutases SOD1, SOD2 and NADPH oxidase subunit p67phox), and quantified soluble and deposited amyloid-ß (Aß) peptide, glial fibrillary acidic protein (GFAP), AngII receptors AT1 and AT2, angiotensin IV receptor AT4, and cortical cholinergic innervation. In aged APP mice, losartan did not improve learning but it consolidated memory acquisition and recall, and rescued neurovascular and neurometabolic coupling and cerebrovascular dilatory capacity. Losartan normalized cerebrovascular p67phox and SOD2 protein levels and up-regulated those of SOD1. Losartan attenuated astrogliosis, normalized AT1 and AT4 receptor levels, but failed to rescue the cholinergic deficit and the Aß pathology. Given preventively, losartan protected cognitive function, cerebrovascular reactivity, and AT4 receptor levels. Like in aged APP mice, these benefits occurred without a decrease in soluble Aß species or plaque load. We conclude that losartan exerts potent preventive and restorative effects on AD hallmarks, possibly by mitigating AT1-initiated oxidative stress and normalizing memory-related AT4 receptors.


Assuntos
Doença de Alzheimer/complicações , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Circulação Cerebrovascular/efeitos dos fármacos , Transtornos Cognitivos/tratamento farmacológico , Transtornos Cognitivos/etiologia , Losartan/uso terapêutico , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/genética , Precursor de Proteína beta-Amiloide/genética , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Arginina/análogos & derivados , Arginina/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Pressão Sanguínea/genética , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Transtornos Cognitivos/patologia , Modelos Animais de Doenças , Endotelina-1/farmacologia , Inibidores Enzimáticos/farmacologia , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Losartan/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Mutação/genética
6.
Methods Mol Biol ; 2384: 1-27, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34550565

RESUMO

Oxytocin and oxytocin receptors are synthesized in the periphery where paracrine/autocrine actions have been described alongside endocrine actions effected by central release of oxytocin from the posterior pituitary. In the female reproductive system, classical actions of uterine contraction and milk ejection from mammary glands are accompanied by actions in the ovaries where roles in steroidogenesis, follicle recruitment and ovulation have been described. Steroidogenesis, contractile activity, and gamete health are similarly affected by oxytocin in the male reproductive tract. In the cardiovascular system, a local oxytocinergic system appears to play an important cardio-protective role. This role is likely associated with emerging evidence that peripheral oxytocin is an important hormone in the endocrinology of glucose homeostasis due to its actions in adipose, the pancreas, and the largely ignored oxytocinergic systems of the adrenal glands and liver. Gene polymorphisms are shown to be associated with a number of reported traits, not least factors associated with metabolic syndrome.


Assuntos
Ocitocina/análise , Cistinil Aminopeptidase , Feminino , Humanos , Masculino , Ovulação , Ocitocina/genética , Gravidez , Receptores de Ocitocina
7.
Front Mol Biosci ; 8: 625274, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33869280

RESUMO

Inhibition of the insulin-regulated aminopeptidase (IRAP) improves memory and cognition in animal models. The enzyme has recently been crystallized and several series of inhibitors reported. We herein focused on one series of benzopyran-based inhibitors of IRAP known as the HFI series, with unresolved binding mode to IRAP, and developed a robust computational model to explain the structure-activity relationship (SAR) and potentially guide their further optimization. The binding model here proposed places the benzopyran ring in the catalytic binding site, coordinating the Zn2+ ion through the oxygen in position 3, in contrast to previous hypothesis. The whole series of HFI compounds was then systematically simulated, starting from this binding mode, using molecular dynamics and binding affinity estimated with the linear interaction energy (LIE) method. The agreement with experimental affinities supports the binding mode proposed, which was further challenged by rigorous free energy perturbation (FEP) calculations. Here, we found excellent correlation between experimental and calculated binding affinity differences, both between selected compound pairs and also for recently reported experimental data concerning the site directed mutagenesis of residue Phe544. The computationally derived structure-activity relationship of the HFI series and the understanding of the involvement of Phe544 in the binding of this scaffold provide valuable information for further lead optimization of novel IRAP inhibitors.

8.
Biochem Biophys Rep ; 27: 101042, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34169156

RESUMO

Insulin-regulated aminopeptidase (IRAP) in humans is a membrane bound enzyme that has multiple functions. It was first described as a companion protein of the insulin-responsive glucose transporter, Glut4, in specialized vesicles. The protein has subsequently been shown to be identical to the oxytocinase/aminopeptidase or the angiotensin IV (Ang IV) receptor (AT4 receptor). Some AT4 ligand peptides, such as Ang IV and LVV-hemorphin-7, have been shown to act as IRAP inhibitors that exert memory-enhancing properties. As such IRAP has been a target for developing cognitive enhancers. To facilitate detailed mechanistic studies of IRAP catalysis and inhibition, and to pave the way for biophysical and structural studies of IRAP in complex with peptide inhibitors, we report here an optimized expression and purification system using High Five insect cells. We also report biochemical characterizations of the purified recombinant IRAP with a standard aminopeptidase substrate and an optimized IRAP peptide inhibitor with a Ki of 98 nM.

9.
J Alzheimers Dis ; 67(2): 469-480, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30664507

RESUMO

Alzheimer's disease (AD) is a neurodegenerative disease characterized by progressive neuron losses in memory-associated brain structures that rob patients of their dignity and quality of life. Five drugs have been approved by the FDA to treat AD but none modify or significantly slow disease progression. New therapies are needed to delay the course of this disease with the ultimate goal of preventing neuron losses and preserving memory functioning. In this review we describe the renin-angiotensin II (AngII) system (RAS) with specific regard to its deleterious contributions to hypertension, facilitation of neuroinflammation and oxidative stress, reduced cerebral blood flow, tissue remodeling, and disruption of memory consolidation and retrieval. There is evidence that components of the RAS, AngIV and Ang(1-7), are positioned to counter such damaging influences and these systems are detailed with the goal of drawing attention to their importance as drug development targets. Ang(1-7) binds at the Mas receptor, while AngIV binds at the AT4 receptor subtype, and these receptor numbers are significantly decreased in AD patients, accompanied by declines in brain aminopeptidases A and N, enzymes essential for the synthesis of AngIV. Potent analogs may be useful to counter these changes and facilitate neuronal functioning and reduce apoptosis in memory associated brain structures of AD patients.


Assuntos
Doença de Alzheimer/fisiopatologia , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Cognição/fisiologia , Memória/fisiologia , Sistema Renina-Angiotensina/fisiologia , Doença de Alzheimer/psicologia , Humanos , Receptores de Angiotensina/metabolismo , Receptores de Angiotensina/fisiologia
10.
ChemistryOpen ; 3(6): 256-63, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25558444

RESUMO

The inhibition of insulin-regulated aminopeptidase (IRAP, EC 3.4.11.3) by angiotenesin IV is known to improve memory and learning in rats. Screening 10 500 low-molecular-weight compounds in an enzyme inhibition assay with IRAP from Chinese Hamster Ovary (CHO) cells provided an arylsulfonamide (N-(3-(1H-tetrazol-5-yl)phenyl)-4-bromo-5-chlorothiophene-2-sulfonamide), comprising a tetrazole in the meta position of the aromatic ring, as a hit. Analogues of this hit were synthesized, and their inhibitory capacities were determined. A small structure-activity relationship study revealed that the sulfonamide function and the tetrazole ring are crucial for IRAP inhibition. The inhibitors exhibited a moderate inhibitory potency with an IC50=1.1±0.5 µm for the best inhibitor in the series. Further optimization of this new class of IRAP inhibitors is required to make them attractive as research tools and as potential cognitive enhancers.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa