Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38224901

RESUMO

Clogmia albipunctata (Williston, 1893) is a non-hematophagous insect belonging to the order Diptera, suborder Nematocera (Lower Diptera) and family Psychodidae. In the present work, we investigated how C. albipunctata control their midgut pH under different physiological conditions, comparing their midgut physiology with some nematoceran hematophagous species. The C. albipunctata midgut pH was measured after ingestion of sugar, protein and under the effect of the alkalinizing hormone released in the hemolymph of the hematophagous sand fly Lutzomyia longipalpis obtained just after a blood meal. The midgut pH of unfed or sugar-fed C. albipunctata is 5.5-6, and its midgut underwent alkalinization after protein ingestion or under treatment with hemolymph collected from blood fed L. longipalpis. These results suggested that in nematocerans, mechanisms for pH control seem shared between hematophagous and non-hematophagous species. This kind of pH control is convenient for successful blood digestion. The independent evolution of many hematophagous groups from the Lower Diptera suggests that characteristics involved in midgut pH control were already present in non-hematophagous species and represent a readiness for adaptation to this feeding mode.


Assuntos
Psychodidae , Animais , Psychodidae/fisiologia , Sistema Digestório , Concentração de Íons de Hidrogênio , Açúcares
2.
Artigo em Inglês | MEDLINE | ID: mdl-34793954

RESUMO

A nine-week feeding trial was conducted to comprehensively investigate the effects of different levels of dietary lipid on intestinal physiology of juvenile turbot. Three diets with different lipid levels (8%, 12% and 16%) were formulated, which were designated as the low-lipid group (LL), medium-lipid group (ML) and high-lipid group (HL), respectively. Each diet was fed to six replicate tanks, and each tank was stocked with 35 fish. The results revealed that medium dietary lipid (12%) increased the activities of intestinal digestive enzymes and brush border enzymes. Excessive dietary lipid (16%) decreased the intestinal antioxidative enzyme levels and increased the lipid peroxidation pressure. In addition, HL stimulated the occurrence of intestinal inflammation and significantly up-regulated the mRNA expression level of tumor necrosis factor-α (TNF-α), interleukin-1ß (IL-1ß), interferon-γ (IFN-γ) and transforming growth factor-ß (TGF-ß). Dietary LL and HL induced the apoptosis of intestinal epithelial cells. Sequencing of bacterial 16 s rRNA V4 region indicated that the abundance and diversity of intestinal microflora in fish fed with medium lipid diet (12%) were significantly higher than those in other groups, indicating the intestinal microflora ecology in group ML was more balanced. MetaStat analysis indicated that both low- and high-lipid diets significantly reduced the relative abundance of intestinal beneficial bacteria. In conclusion, results of this study demonstrated the sensitivity of intestinal health and microbiota to dietary lipid levels. From the perspective of microecological balance, medium dietary lipid (12%) was more conducive to maintaining the intestinal microflora stability of turbot.


Assuntos
Gorduras na Dieta/administração & dosagem , Linguados/metabolismo , Ração Animal/análise , Fenômenos Fisiológicos da Nutrição Animal , Animais , Antioxidantes/metabolismo , Apoptose/genética , Citocinas/genética , Proteínas de Peixes/genética , Linguados/genética , Linguados/microbiologia , Microbioma Gastrointestinal/genética , Inflamação/etiologia , Inflamação/metabolismo , Inflamação/patologia , Intestinos/metabolismo , Intestinos/patologia
3.
Annu Rev Physiol ; 79: 291-312, 2017 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-28192061

RESUMO

The lack of accessibility to normal and diseased human intestine and the inability to separate the different functional compartments of the intestine even when tissue could be obtained have held back the understanding of human intestinal physiology. Clevers and his associates identified intestinal stem cells and established conditions to grow "mini-intestines" ex vivo in differentiated and undifferentiated conditions. This pioneering work has made a new model of the human intestine available and has begun making contributions to the understanding of human intestinal transport in normal physiologic conditions and the pathophysiology of intestinal diseases. However, this model is reductionist and lacks many of the complexities of normal intestine. Consequently, it is not yet possible to predict how great the advances using this model will be for understanding human physiology and pathophysiology, nor how the model will be modified to include multiple other intestinal cell types and physical forces necessary to more closely approximate normal intestine. This review describes recent studies using mini-intestines, which have readdressed previously established models of normal intestinal transport physiology and newly examined intestinal pathophysiology. The emphasis is on studies with human enteroids grown either as three-dimensional spheroids or two-dimensional monolayers. In addition, comments are provided on mouse studies in cases when human studies have not yet been described.


Assuntos
Enteropatias/patologia , Intestinos/patologia , Intestinos/fisiologia , Animais , Diferenciação Celular/fisiologia , Humanos , Modelos Biológicos , Células-Tronco/patologia , Células-Tronco/fisiologia
4.
Arch Anim Nutr ; 75(4): 294-310, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34404277

RESUMO

The objective of this study was to determine the effects of silkworm pupae meal (SPM) and mealworm larvae meal (MLM) on the production results and function of the digestive system in rabbits. Thirty male New Zealand White growing rabbits were divided into three feeding groups: control (C) (10% soybean meal [SBM] in the diet), group SPM (5% SBM and 4% SPM) and group MLM (5% SBM and 4% MLM). Compared with group C, rabbits of groups SPM and MLM, were characterised by higher final body weight and daily body weight gains. They were also found to have better apparent total tract digestibility (ATTD) of ether extract, and acid detergent fibre (ADF) and acid detergent lignin (ADL). Increased digesta viscosity was observed in these rabbits, as well as reduced extracellular activity of bacterial α-glucosidase, ß-glucosidase, α-arabinofuranosidase and ß-xylosidase in the caecal digesta. Similar differences between groups were also noted for the intracellular activity of ß-glucuronidase, total activity of ß-xylosidase and α-glucosidase. The SPM and MLM treatments contributed to an increase in the extracellular and total activity of N-acetyl-ß-D-glucosaminidase (NAGase) in the caecal digesta. The SPM and MLM treatments were characterised by increased extracellular/total activity of colonic bacterial NAGase as well as increased release rates of NAGase and ß-cellobiosidase, compared with group C. The rabbits fed the MLM diet had the lowest caecal concentrations of acetic acid, propionic acid, and total short chain fatty acids (SCFA). The proportion of butyric acid in the caecal SCFA profile was significantly lower in group MLM than in group C. The SPM treatment reduced the colonic concentration of iso-valeric acid. Group C had the highest colonic SCFA pool. It can be concluded that an inclusion of 4% SPM and 4% MLM in rabbit diets improved their production results, as well as beneficially increased the ATTD of fat, ADF and ADL without compromising the ATTD of other nutrients and energy. Although both dietary insect-derived products caused a mobilisation of microbiota to utilise of chitin (see NAGase activity), they stifled the metabolism of large intestinal microbiota, as manifested by decreased enzyme activity and lower SCFA concentrations.


Assuntos
Bombyx , Tenebrio , Ração Animal/análise , Animais , Dieta/veterinária , Larva , Refeições , Pupa , Coelhos , Glycine max
5.
J Physiol ; 597(24): 5777-5797, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31652348

RESUMO

KEY POINTS: •Nucleotide binding oligomerization domain (Nod)-like receptors regulate cognition, anxiety and hypothalamic-pituitary-adrenal axis activation. •Nod-like receptors regulate central and peripheral serotonergic biology. •Nod-like receptors are important for maintenance of gastrointestinal physiology. •Intestinal epithelial cell expression of Nod1 receptors regulate behaviour. ABSTRACT: Gut-brain axis signalling is critical for maintaining health and homeostasis. Stressful life events can impact gut-brain signalling, leading to altered mood, cognition and intestinal dysfunction. In the present study, we identified nucleotide binding oligomerization domain (Nod)-like receptors (NLR), Nod1 and Nod2, as novel regulators for gut-brain signalling. NLR are innate immune pattern recognition receptors expressed in the gut and brain, and are important in the regulation of gastrointestinal physiology. We found that mice deficient in both Nod1 and Nod2 (NodDKO) demonstrate signs of stress-induced anxiety, cognitive impairment and depression in the context of a hyperactive hypothalamic-pituitary-adrenal axis. These deficits were coupled with impairments in the serotonergic pathway in the brain, decreased hippocampal cell proliferation and immature neurons, as well as reduced neural activation. In addition, NodDKO mice had increased gastrointestinal permeability and altered serotonin signalling in the gut following exposure to acute stress. Administration of the selective serotonin reuptake inhibitor, fluoxetine, abrogated behavioural impairments and restored serotonin signalling. We also identified that intestinal epithelial cell-specific deletion of Nod1 (VilCre+ Nod1f/f ), but not Nod2, increased susceptibility to stress-induced anxiety-like behaviour and cognitive impairment following exposure to stress. Together, these data suggest that intestinal epithelial NLR are novel modulators of gut-brain communication and may serve as potential novel therapeutic targets for the treatment of gut-brain disorders.


Assuntos
Encéfalo/metabolismo , Mucosa Intestinal/metabolismo , Proteína Adaptadora de Sinalização NOD1/metabolismo , Proteína Adaptadora de Sinalização NOD2/metabolismo , Serotonina/metabolismo , Transmissão Sináptica , Animais , Ansiedade/etiologia , Ansiedade/metabolismo , Encéfalo/fisiologia , Células Cultivadas , Cognição , Feminino , Sistema Hipotálamo-Hipofisário/metabolismo , Sistema Hipotálamo-Hipofisário/fisiologia , Absorção Intestinal , Mucosa Intestinal/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurogênese , Proteína Adaptadora de Sinalização NOD1/genética , Proteína Adaptadora de Sinalização NOD2/genética , Estresse Psicológico/etiologia , Estresse Psicológico/metabolismo
6.
J Nutr ; 146(8): 1499-505, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27358414

RESUMO

BACKGROUND: Understanding the influence of dietary iron deficiency and dietary iron oversupplementation on intestinal health is important for both animal production and human health. OBJECTIVE: The aim of this study was to determine whether dietary iron concentration influences intestinal physiology, morphology, and inflammation in the porcine duodenum. METHODS: Twenty-four male pigs (21 d old) were fed diets containing either 20 mg Fe/kg [low dietary iron (L-Fe)], 120 mg Fe/kg [adequate dietary iron (A-Fe); control], or 520 mg Fe/kg [high dietary iron (H-Fe)] by FeSO4 supplement (dry matter basis). After 32-36 d, the duodenum was harvested from pigs and mounted in Ussing chambers for the measurement of transepithelial electrical resistance (TER), short-circuit current, and (3)H-mannitol permeability. Intestinal morphology and inflammation were assessed by histologic examination, and proinflammatory gene expression was assessed by real-time polymerase chain reaction. RESULTS: Compared with A-Fe-fed pigs, pigs fed L-Fe diets exhibited reduced TER (by 30%; P < 0.05). Compared with that of A-Fe-fed controls, the paracellular flux of (3)H-mannitol across the duodenal mucosa was higher (P < 0.05) in L-Fe-fed (>100%) and H-Fe-fed (∼4-fold) pigs; the L-Fe-fed and H-Fe-fed groups did not differ significantly from one another. Compared with the L-Fe-fed pigs, the A-Fe-fed and H-Fe-fed pigs had malondialdehyde concentrations 1.4- and 2.5-fold higher in the duodenum and 4.4- and 6.6-fold higher in the liver, respectively (P < 0.05). Neutrophil counts were higher in both the L-Fe-fed (by 3-fold) and H-Fe-fed (by 3.3-fold) groups than in the A-Fe-fed group; the L-Fe-fed and H-Fe-fed groups did not significantly differ from one another. Duodenal mucosal tumor necrosis factor α (TNFA), interleukin (IL) 1ß, and IL6 relative gene expression was upregulated by 36%, 28%, and 45%, respectively, in H-Fe pigs (P < 0.05), but not in L-Fe pigs, compared with A-Fe pigs. CONCLUSION: These data suggest that adequate but not oversupplementation of dietary iron in pigs is required to maintain intestinal barrier health and function.


Assuntos
Dieta , Suplementos Nutricionais , Inflamação/etiologia , Mucosa Intestinal/fisiopatologia , Íons/metabolismo , Ferro da Dieta/administração & dosagem , Ferro/administração & dosagem , Animais , Transporte Biológico , Duodeno , Inflamação/metabolismo , Interleucina-1beta/metabolismo , Interleucina-5/metabolismo , Ferro/metabolismo , Deficiências de Ferro , Ferro da Dieta/metabolismo , Fígado , Masculino , Malondialdeído/metabolismo , Neutrófilos/metabolismo , Estado Nutricional , Hipernutrição , Permeabilidade , Suínos , Fator de Necrose Tumoral alfa/metabolismo
7.
Am J Physiol Cell Physiol ; 306(8): C715-20, 2014 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-24573083

RESUMO

An old proverb states "necessity is the mother of invention." This certainly holds true in science as one pursues research questions. Experimental techniques have evolved as scientists have asked more specific research questions. Indeed, techniques such as the Ussing chamber, the perfused renal tubule preparation, patch-clamp, polymerase chain reaction, and site-directed mutagenesis have been developed over the past 60 years. However, sometimes, simple techniques may be useful and still very informative, and this certainly applies to intestinal physiology. Indeed, Gerald Wiseman and Thomas Hastings Wilson described the intestinal everted sac preparation some 60 years ago. Since then, this technique has been used for numerous research purposes including determining ion, amino acid, water and solute transport across the intestinal epithelium; and drug metabolism, absorption, and interactions in pharmaceutical/pharmacological research and even in education. This article provides a historical review of the development of the in vitro intestinal preparation that led to the everted sac preparation and its use in science.


Assuntos
Pesquisa Biomédica/história , Absorção Intestinal/fisiologia , Mucosa Intestinal/fisiologia , Animais , Pesquisa Biomédica/métodos , História do Século XIX , História do Século XX , História do Século XXI
8.
Clin Exp Immunol ; 177(1): 30-7, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24628412

RESUMO

Few concepts in recent years have garnered more disease research attention than that of the intestinal (i.e. 'gut') microbiome. This emerging interest has included investigations of the microbiome's role in the pathogenesis of a variety of autoimmune disorders, including type 1 diabetes (T1D). Indeed, a growing number of recent studies of patients with T1D or at varying levels of risk for this disease, as well as in animal models of the disorder, lend increasing support to the notion that alterations in the microbiome precede T1D onset. Herein, we review these investigations, examining the mechanisms by which the microbiome may influence T1D development and explore how multi-disciplinary analysis of the microbiome and the host immune response may provide novel biomarkers and therapeutic options for prevention of T1D.


Assuntos
Diabetes Mellitus Tipo 1/imunologia , Diabetes Mellitus Tipo 1/microbiologia , Imunidade Inata , Intestinos/microbiologia , Microbiota , Animais , Terapia Biológica , Biomarcadores/metabolismo , Modelos Animais de Doenças , Humanos
9.
J Exp Biol ; 217(Pt 9): 1555-62, 2014 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-24501133

RESUMO

In marine fish, high epithelial bicarbonate secretion by the intestine generates luminal carbonate precipitates of divalent cations that play a key role in water and ion homeostasis. In vitro studies highlight the involvement of the calciotropic hormones PTHrP (parathyroid hormone-related protein) and stanniocalcin (STC) in the regulation of epithelial bicarbonate transport. The present study tested the hypothesis that calciotropic hormones have a regulatory role in carbonate precipitate formation in vivo. Sea bream (Sparus aurata) juveniles received single intraperitoneal injections of piscine PTHrP(1-34), the PTH/PTHrP receptor antagonist PTHrP(7-34) or purified sea bream STC, or were passively immunized with polyclonal rabbit antisera raised against sea bream STC (STC-Ab). Endocrine effects on the expression of the basolateral sodium bicarbonate co-transporter (Slc4a4.A), the apical anion exchangers Slc26a6.A and Slc26a3.B, and the V-type proton pump ß-subunit (Atp6v1b) in the anterior intestine were evaluated. In keeping with their calciotropic nature, the hypocalcaemic factors PTHrP(7-34) and STC up-regulated gene expression of all transporters. In contrast, the hypercalcaemic factor PTHrP(1-34) and STC antibodies down-regulated transporters involved in the bicarbonate secretion cascade. Changes in intestine luminal precipitate contents provoked by calcaemic endocrine factors validated these results: 24 h post-injection either PTHrP(1-34) or immunization with STC-Ab reduced the carbonate precipitate content in the sea bream intestine. In contrast, the PTH/PTHrP receptor antagonist PTHrP(7-34) increased not only the precipitated fraction but also the concentration of HCO3(-) equivalents in the intestinal fluid. These results confirm the hypothesis that calciotropic hormones have a regulatory role in carbonate precipitate formation in vivo in the intestine of marine fish. Furthermore, they illustrate for the first time in fish the counteracting effect of PTHrP and STC, and reveal an unexpected contribution of calcaemic factors to acid-base balance.


Assuntos
Glicoproteínas/metabolismo , Mucosa Intestinal/metabolismo , Proteína Relacionada ao Hormônio Paratireóideo/metabolismo , Fragmentos de Peptídeos/metabolismo , Dourada/metabolismo , Equilíbrio Ácido-Base , Animais , Carbonatos/metabolismo , Precipitação Química , Expressão Gênica , Glicoproteínas/fisiologia , Transporte de Íons , Proteína Relacionada ao Hormônio Paratireóideo/fisiologia , Fragmentos de Peptídeos/fisiologia
10.
Animal ; 17 Suppl 3: 100832, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37210231

RESUMO

With more efficient utilisation of dietary nutrients and energy, diversified production systems, modifications of diet composition with respect to feedstuffs included and the use of free amino acids, the negative impact of animal food production on the environment and climate can be reduced. Accurate requirements for nutrients and energy for animals with differing physiological needs, and the use of robust and accurate feed evaluation systems are key for more efficient feed utilisation. Data on CP and amino acid requirements in pigs and poultry indicate that it should be possible to implement indispensable amino acid-balanced diets with low- or reduced-protein content without any reduction in animal performance. Potential feed resources, not competing with human food security, can be derived from the traditional food- and agroindustry, such as various waste streams and co-products of different origins. In addition, novel feedstuffs emerging from aquaculture, biotechnology and innovative new technologies may have potential to provide the lack of indispensable amino acids in organic animal food production. High fibre content is a nutritional limitation of using waste streams and co-products as feed for monogastric animals as it is associated with decreased nutrient digestibility and reduced dietary energy values. However, minimum levels of dietary fibre are needed to maintain the normal physiological function of the gastro-intestinal tract. Moreover, there may be positive effects of fibre in the diet such as improved gut health, increased satiety, and an overall improvement of behaviour and well-being.


Assuntos
Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Suínos , Animais , Humanos , Ração Animal/análise , Nutrientes , Dieta/veterinária , Aves Domésticas/metabolismo , Aminoácidos/metabolismo , Digestão
11.
Front Physiol ; 14: 1266409, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37908333

RESUMO

The study objective was to evaluate the interaction between corticotrophin releasing factor (CRF) receptor signaling and prophylactic antibiotic administration on intestinal physiology in newly weaned and transported pigs. Pigs (n = 56; 5.70 ± 1.05 kg) were weaned (20.49 ± 0.64 d), a blood sample was taken, and then pigs were given an intraperitoneal injection of saline (SAL; n = 28 pigs) or a CRF receptor antagonist (CRFA; n = 28 pigs; 30 µg/kg body weight; Astressin B), and then were transported in a livestock trailer for 12 h and 49 min. A second and third intraperitoneal injection was given at 4 h 42 min and 11 h 36 min into the transport process, respectively. Following transport, 4 SAL and 4 CRFA pigs were blood sampled and euthanized. The remaining 48 pigs were individually housed and given dietary antibiotics [AB; n = 12 SAL and 12 CRFA pigs; chlortetracycline (441 ppm) + tiamulin (38.6 ppm)] or no dietary antibiotics (NAB; n = 12 SAL and 12 CRFA pigs) for 14 d post-transport. Blood was collected at 12 h and on d 3, 7, and 14, and then pigs were euthanized on d 7 (n = 24) and d 14 (n = 24) post-weaning and transport. Circulating cortisol was reduced (p = 0.05) in CRFA pigs when compared to SAL pigs post-weaning and transport. On d 7, jejunal villus height and crypt depth was greater overall (p < 0.05) in AB-fed pigs versus NAB-fed pigs. On d 14, ileal crypt depth was reduced (p = 0.02) in CRFA pigs when compared to SAL pigs. Jejunal CRF mRNA abundance tended to be reduced (p = 0.09) on d 7 in CRFA pigs versus SAL pigs. On d 14, jejunal tumor necrosis factor-alpha was reduced (p = 0.01) in AB-fed pigs versus NAB-fed pigs. On d 7, change in glucose short-circuit current tended to be increased (p = 0.07) in CRFA pigs fed the AB diet when compared to CRFA pigs fed the NAB diet. In conclusion, CRFA pigs and pigs fed AB had some similar biological intestinal function measures post-weaning and transport.

12.
Front Endocrinol (Lausanne) ; 14: 1135157, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37091842

RESUMO

A vast literature strongly suggests that the endocannabinoid (eCB) system and related bioactive lipids (the paracannabinoid system) contribute to numerous physiological processes and are involved in pathological conditions such as obesity, type 2 diabetes, and intestinal inflammation. The gut paracannabinoid system exerts a prominent role in gut physiology as it affects motility, permeability, and inflammatory responses. Another important player in the regulation of host metabolism is the intestinal microbiota, as microorganisms are indispensable to protect the intestine against exogenous pathogens and potentially harmful resident microorganisms. In turn, the composition of the microbiota is regulated by intestinal immune responses. The intestinal microbial community plays a fundamental role in the development of the innate immune system and is essential in shaping adaptive immunity. The active interplay between microbiota and paracannabinoids is beginning to appear as potent regulatory system of the gastrointestinal homeostasis. In this context, oleoylethanolamide (OEA), a key component of the physiological systems involved in the regulation of dietary fat consumption, energy homeostasis, intestinal motility, and a key factor in modulating eating behavior, is a less studied lipid mediator. In the small intestine namely duodenum and jejunum, levels of OEA change according to the nutrient status as they decrease during food deprivation and increase upon refeeding. Recently, we and others showed that OEA treatment in rodents protects against inflammatory events and changes the intestinal microbiota composition. In this review, we briefly define the role of OEA and of the gut microbiota in intestinal homeostasis and recapitulate recent findings suggesting an interplay between OEA and the intestinal microorganisms.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Humanos , Microbioma Gastrointestinal/fisiologia , Endocanabinoides/metabolismo , Homeostase
13.
Poult Sci ; 101(3): 101673, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35104729

RESUMO

In the intestine, host-derived factors are genetically hardwired and difficult to modulate. However, the intestinal microbiome is more plastic and can be readily modulated by dietary factors. Further, it is becoming more apparent that the microbiome can potentially impact poultry physiology by participating in digestion, the absorption of nutrients, shaping of the mucosal immune response, energy homeostasis, and the synthesis or modulation of several potential bioactive metabolites. These activities are dependent on the quantity and quality of the microbiota alongside its metabolic potential, which are dictated in large part by diet. Thus, diet-induced microbiota alterations may be harnessed to induce changes in host physiology, including disease development and progression. In this regard, the gut microbiome is malleable and renders the gut microbiome a candidate 'organ' for the possibility of precision nutrition to induce precision microbiomics-the use of the gut microbiome as a biomarker to predict responsiveness to specific dietary constituents to generate precision diets and interventions for optimal poultry performance and health. However, it is vital to identify the causal relationships and mechanisms by which dietary components and additives affect the gut microbiome which then ultimately influence avian physiology. Further, an improved understanding of the spatial and functional relationships between the different sections of the avian gut and their regional microbiota will provide a better understanding of the role of the diet in regulating the intestinal microbiome.


Assuntos
Fenômenos Fisiológicos da Nutrição Animal , Galinhas , Dieta , Microbioma Gastrointestinal , Animais , Galinhas/microbiologia , Dieta/veterinária , Estado Nutricional
14.
J Cyst Fibros ; 21(3): 506-513, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34895838

RESUMO

BACKGROUND: Most people with cystic fibrosis (pwCF) suffer from gastrointestinal symptoms and are at risk of gut complications. Gut microbiota dysbiosis is apparent within the CF population across all age groups, with evidence linking dysbiosis to intestinal inflammation and other markers of health. This pilot study aimed to investigate the potential relationships between the gut microbiota and gastrointestinal physiology, transit, and health. STUDY DESIGN: Faecal samples from 10 pwCF and matched controls were subject to 16S rRNA sequencing. Results were combined with clinical metadata and MRI metrics of gut function to investigate relationships. RESULTS: pwCF had significantly reduced microbiota diversity compared to controls. Microbiota compositions were significantly different, suggesting remodelling of core and rarer satellite taxa in CF. Dissimilarity between groups was driven by a variety of taxa, including Escherichia coli, Bacteroides spp., Clostridium spp., and Faecalibacterium prausnitzii. The core taxa were explained primarily by CF disease, whilst the satellite taxa were associated with pulmonary antibiotic usage, CF disease, and gut function metrics. Species-specific ordination biplots revealed relationships between taxa and the clinical or MRI-based variables observed. CONCLUSIONS: Alterations in gut function and transit resultant of CF disease are associated with the gut microbiota composition, notably the satellite taxa. Delayed transit in the small intestine might allow for the expansion of satellite taxa resulting in potential downstream consequences for core community function in the colon.


Assuntos
Fibrose Cística , Microbioma Gastrointestinal , Disbiose/etiologia , Fezes/microbiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Projetos Piloto , RNA Ribossômico 16S/genética
15.
Biomolecules ; 12(2)2022 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-35204657

RESUMO

Adrenomedullin (AM) and proadrenomedullin N-terminal 20 peptide (PAMP) are two bioactive peptides derived from the same precursor with several biological functions including vasodilation, angiogenesis, or anti-inflammation, among others. AM and PAMP are widely expressed throughout the gastrointestinal (GI) tract where they behave as GI hormones, regulating numerous physiological processes such as gastric emptying, gastric acid release, insulin secretion, bowel movements, or intestinal barrier function. Furthermore, it has been recently demonstrated that AM/PAMP have an impact on gut microbiome composition, inhibiting the growth of bacteria related with disease and increasing the number of beneficial bacteria such as Lactobacillus or Bifidobacterium. Due to their wide functions in the GI tract, AM and PAMP are involved in several digestive pathologies such as peptic ulcer, diabetes, colon cancer, or inflammatory bowel disease (IBD). AM is a key protective factor in IBD onset and development, as it regulates cytokine production in the intestinal mucosa, improves vascular and lymphatic regeneration and function and mucosal epithelial repair, and promotes a beneficial gut microbiome composition. AM and PAMP are relevant GI hormones that can be targeted to develop novel therapeutic agents for IBD, other GI disorders, or microbiome-related pathologies.


Assuntos
Adrenomedulina , Proteínas , Trato Gastrointestinal , Mucosa Intestinal , Fragmentos de Peptídeos , Proteínas/fisiologia
16.
Gut Microbes ; 14(1): 2050636, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35316158

RESUMO

Bariatric surgery induces significant microbial and metabolomic changes, however, links between microbial and metabolic pathways have not been fully elucidated. The objective of this study was to conduct a comprehensive investigation of the microbial, metabolomic, and inflammatory changes that occur following Roux-en-Y gastric bypass (RYGB) and sleeve gastrectomy (SG). A prospective clinical trial was conducted with participants undergoing RYGB, SG, and non-operative controls (CTRL). Clinical parameters, blood samples, and fecal samples were collected pre-intervention and at 3 and 9 months. A multi-omics approach was used to perform integrated microbial-metabolomic analysis to identify functional pathways in which weight loss and metabolic changes occur after surgery. RYGB led to profound microbial changes over time that included reductions in alpha-diversity, increased Proteobacteria and Verrucomicrobiota, decreased Firmicutes, and numerous changes at the genera level. These changes were associated with a reduction in inflammation and significant weight loss. A reduction in Romboutsia genera correlated strongly with weight loss and integrated microbial-metabolomic analysis revealed the importance of Romboutsia. Its obliteration correlated with improved weight loss and insulin resistance, possibly through decreases in glycerophospholipids. In contrast, SG was associated with no changes in alpha-diversity, and only a small number of changes in microbial genera. A cluster of Firmicutes genera including Butyriciccocus, Eubacterium ventriosum, and Monoglobus was decreased, which correlated with decreased weight, insulin resistance, and systemic inflammation. This work represents comprehensive analyses of microbial-metabolomic changes that occur following bariatric surgery and identifies several pathways that are associated with beneficial metabolic effects of surgery.


Assuntos
Derivação Gástrica , Microbioma Gastrointestinal , Resistência à Insulina , Microbiota , Obesidade Mórbida , Gastrectomia , Humanos , Inflamação , Redes e Vias Metabólicas , Obesidade Mórbida/cirurgia , Estudos Prospectivos , Redução de Peso
17.
Front Nutr ; 9: 976042, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36211510

RESUMO

Early nutrition plays a dominant role in infant development and health. It is now understood that the infant diet impacts the gut microbiota and its relationship with gut function and brain development. However, its impact on the microbiota-gut-brain axis has not been studied in an integrative way. The objective here was to evaluate the effects of human milk (HM) or cow's milk based infant formula (IF) on the relationships between gut microbiota and the collective host intestinal-brain axis. Eighteen 10-day-old Yucatan mini-piglets were fed with HM or IF. Intestinal and fecal microbiota composition, intestinal phenotypic parameters, and the expression of genes involved in several gut and brain functions were determined. Unidimensional analyses were performed, followed by multifactorial analyses to evaluate the relationships among all the variables across the microbiota-gut-brain axis. Compared to IF, HM decreased the α-diversity of colonic and fecal microbiota and modified their composition. Piglets fed HM had a significantly higher ileal and colonic paracellular permeability assessed by ex vivo analysis, a lower expression of genes encoding tight junction proteins, and a higher expression of genes encoding pro-inflammatory and anti-inflammatory immune activity. In addition, the expression of genes involved in endocrine function, tryptophan metabolism and nutrient transport was modified mostly in the colon. These diet-induced intestinal modifications were associated with changes in the brain tissue expression of genes encoding the blood-brain barrier, endocrine function and short chain fatty acid receptors, mostly in hypothalamic and striatal areas. The integrative approach underlined specific groups of bacteria (Veillonellaceae, Enterobacteriaceae, Lachnospiraceae, Rikenellaceae, and Prevotellaceae) associated with changes in the gut-brain axis. There is a clear influence of the infant diet, even over a short dietary intervention period, on establishment of the microbiota-gut-brain axis.

18.
Poult Sci ; 100(3): 100960, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33652539

RESUMO

To have a better understanding of how the "gut-liver axis" mediates the lipid deposition in the liver, a comparison of overfeeding influence on intestine physiology and microbiota between Gang Goose and Tianfu Meat Goose was performed in this study. After force-feeding, compared with Gang Goose, Tianfu Meat Goose had better fat storage capacity in liver (397.94 vs. 166.54 for foie gras weight (g), P < 0.05; 6.37 vs. 2.92% for the ratio of liver to body, P < 0.05; 60.01 vs. 46.64% for fat content, P < 0.05) and the less subcutaneous adipose tissue weight (1240.96 g vs. 1440.46 g, P < 0.05). After force-feeding, the digestion-absorption capacity of Tianfu Meat Goose was higher than that of Gang Goose (5.56 vs. 3.64 and 4.63 vs. 3.68 for the ratio of villus height to crypt depth in duodenum and ileum, respectively, P < 0.05; 1394.96 vs. 782.59 and 1314.76 vs. 766.17 for the invertase activity (U/mg-prot), in duodenum and ileum, respectively, P < 0.05; 6038.36 vs. 3088.29 and 4645.29 vs. 3927.61 for the activity of maltase (U/mg-prot), in duodenum and ileum, respectively, P < 0.05). Force-feeding decreased the gene expression of Escherichia coli in the ileum of Tianfu Meat Goose; force-feeding increased the number of gut microbiota Enterobacterial Repetitive Intergenic Consensus-Polymerase Chain Reaction band in Tianfu Meat Goose and decreased the number in Gang Goose. In conclusion, compared with Gang Goose, the lipid deposition in the liver and the intestine digestion-absorption capacity and stability were higher in Tianfu Meat Goose. Thereby, Tianfu Meat Goose is the better breed for foie gras production for prolonged force-feeding; Gang Goose possesses better fat storage capacity in subcutaneous adipose tissue. However, Gang Goose has lower gut stability responding to force-feeding, so Gang Goose is suited to force-feeding in a short time to gain the body weight and subcutaneous fat as an overfed duck for roast duck.


Assuntos
Métodos de Alimentação , Microbioma Gastrointestinal , Gansos , Intestinos , Animais , Métodos de Alimentação/veterinária , Microbioma Gastrointestinal/fisiologia , Intestinos/microbiologia , Intestinos/fisiologia , Especificidade da Espécie
19.
Trends Microbiol ; 29(8): 686-699, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-33309188

RESUMO

The gastrointestinal tract harbors an intrinsic neuronal network, the enteric nervous system (ENS). The ENS controls motility, fluid homeostasis, and blood flow, but also interacts with other components of the intestine such as epithelial and immune cells. Recent studies indicate that gut microbiota diversification, which occurs alongside postnatal ENS maturation, could be critical for the development and function of the ENS. Here we discuss the possibility that this functional relationship starts in utero, whereby the maternal microbiota would prime the developing ENS and shape its physiology. We review ENS/microbiota interactions and their modulation in physiological and pathophysiological contexts. While microbial modulation of the ENS physiology is now well established, further studies are required to understand the contribution of the gut microbiota to the development and pathology of the ENS and to reveal the precise mechanisms underlying microbiota-to-ENS communications.


Assuntos
Sistema Nervoso Entérico/fisiologia , Microbioma Gastrointestinal/genética , Regulação Bacteriana da Expressão Gênica , Homeostase , Sistema Nervoso Entérico/imunologia , Sistema Nervoso Entérico/microbiologia , Microbioma Gastrointestinal/fisiologia , Humanos , Intestinos/microbiologia , Neurônios/fisiologia
20.
Front Nutr ; 8: 615248, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33718418

RESUMO

Breast milk is the gold standard in neonatal nutrition, but most infants are fed infant formulas in which lipids are usually of plant origin. The addition of dairy lipids and/or milk fat globule membrane extracts in formulas improves their composition with beneficial consequences on protein and lipid digestion. The probiotic Lactobacillus fermentum (Lf) was reported to reduce transit time in rat pups, which may also improve digestion. This study aimed to investigate the effects of the addition of dairy lipids in formulas, with or without Lf, on protein and lipid digestion and on gut physiology and metabolism. Piglets were suckled from postnatal days 2 to 28, with formulas containing either plant lipids (PL), a half-half mixture of plant and dairy lipids (DL), or this mixture supplemented with Lf (DL+Lf). At day 28, piglets were euthanized 90 min after their last feeding. Microstructure of digesta did not differ among formulas. Gastric proteolysis was increased (P < 0.01) in DL and DL+Lf (21.9 ± 2.1 and 22.6 ± 1.3%, respectively) compared with PL (17.3 ± 0.6%) and the residual proportion of gastric intact caseins decreased (p < 0.01) in DL+Lf (5.4 ± 2.5%) compared with PL and DL (10.6 ± 3.1% and 21.8 ± 6.8%, respectively). Peptide diversity in ileum and colon digesta was lower in PL compared to DL and DL+Lf. DL and DL+Lf displayed an increased (p < 0.01) proportion of diacylglycerol/cholesterol in jejunum and ileum digesta compared to PL and tended (p = 0.07) to have lower triglyceride/total lipid ratio in ileum DL+Lf (0.019 ± 0.003) as compared to PL (0.045 ± 0.011). The percentage of endocrine tissue and the number of islets in the pancreas were decreased (p < 0.05) in DL+Lf compared with DL. DL+Lf displayed a beneficial effect on host defenses [increased goblet cell density in jejunum (p < 0.05)] and a trophic effect [increased duodenal (p = 0.09) and jejunal (p < 0.05) weights]. Altogether, our results demonstrate that the addition of dairy lipids and probiotic Lf in infant formula modulated protein and lipid digestion, with consequences on lipid profile and with beneficial, although moderate, physiological effects.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa