RESUMO
The production of indigo, primarily used by the denim industry, increases year by year, and is mainly of synthetic origin. The textile industry, on which its production depends, is responsible for 10% of greenhouse gases and 20% of water pollution. However, the source of this pigment/colorant, mainly based on petrochemistry, remains a key issue today. Extracting indigo from plants is becoming a popular answer and requires an understanding and evaluation of the entire process, from raw material to pigment recovery. In this study, the indigotin precursor, indoxyl, derived from the hydrolysis of O-glycosides biomass extracted in water, was oxidized to obtain the desired pigment. This step is the most sensitive, as variations have been observed during this phase. Consequently, the standardization of the oxidation process was established to determine the extract capacity to consistently produce the blue dye pigment. Partial hydrolysis of the O-glycosides, the indoxyl precursors, was identified as a factor causing this yield variability in the obtained extracts. Once the precursors were fully chemically hydrolyzed, plants harvested during summer and during a freezing period showed a similar capacity to produce indigotin, with values of 412 ± 25 ppm and 379 ± 0 ppm, respectively. This result showed that in freezing conditions, the enzymatic material was not available, resulting in the lack of indigotin formation. To address the use of oxidation in an alkaline medium, a spontaneous oxidation method was proposed. This method produced a purer indigotin pigment, with a 21.6% purity compared to 5.9% purity using air-mediated oxidation in an alkaline medium.
Assuntos
Corantes , Índigo Carmim , Indóis , Isatis , Oxirredução , Índigo Carmim/química , Cromatografia Líquida de Alta Pressão/métodos , Indóis/química , Corantes/química , Isatis/química , Extratos Vegetais/química , HidróliseRESUMO
Isatidis folium or Isatis tinctoria L. is a flowering plant of the Brassicaceae family, commonly known as woad, with an ancient and well-documented history as an indigo dye and medicinal plant. This study aimed to evaluate the anti-atopic dermatitis (AD) effects of Isatidis folium water extract (WIF) using a 2,4-dinitrochlorobenzene (DNCB)-induced AD-like mouse model and to investigate the underlying mechanism using tumor necrosis factor-α (TNF-α) and interferon-γ (IFN-γ)-activated HaCaT cells. Oral administration of WIF reduced spleen weight, decreased serum IgE and TNF-α levels, reduced epidermal and dermal thickness, and inhibited eosinophil and mast cell recruitment to the dermis compared to DNCB-induced control groups. Furthermore, oral WIF administration suppressed extracellular signal-regulated kinase and p38 mitogen-activated protein kinase protein expression levels, p65 translocation from the cytoplasm to the nucleus, and mRNA expression of TNF-α, IFN-γ, interleukin (IL)-6, and IL-13 in skin lesion tissues. In HaCaT cells, WIF suppressed the production of regulated upon activation, normal T cell expressed and secreted (RANTES), thymus and activation-regulated chemokine (TARC), macrophage-derived chemokine (MDC), MCP-1, and MIP-3a, which are inflammatory cytokines and chemokines related to AD, and inhibited the mRNA expression of RANTES, TARC, and MDC in TNF-α/IFN-γ-stimulated HaCaT cells. Overall, the results revealed that WIF ameliorated AD-like skin inflammation by suppressing proinflammatory cytokine and chemokine production via nuclear factor-κB pathway inhibition, suggesting WIF as a potential candidate for AD treatment.
Assuntos
Dermatite Atópica , Fator de Necrose Tumoral alfa , Animais , Camundongos , Humanos , Fator de Necrose Tumoral alfa/metabolismo , Dinitroclorobenzeno/efeitos adversos , Dinitroclorobenzeno/metabolismo , Queratinócitos , Interferon gama/metabolismo , Água/metabolismo , Células HaCaT , Dermatite Atópica/induzido quimicamente , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/metabolismo , Citocinas/metabolismo , NF-kappa B/metabolismo , Quimiocinas/metabolismo , RNA Mensageiro/genéticaRESUMO
Isatis tinctoria and its indigo dyes have already provided highly active anti-leukaemic lead compounds, with the focus mainly being on indirubin, whereas indigo itself is inactive. There are many more indigoids to find in this plant extract, for example, quingdainone, an indigoid derived from tryptanthrin. We present here a new synthesis of hitherto neglected substituted quingdainones, which is very necessary due to their poor solubility behaviour, and a structure-dependent anti-leukaemic activity study of a number of compounds. Substituted α-phenylaminoacrylic acid was synthesised by hydrogen sulfide extrusion from an analogue mercaptoacetic acid, available from the condensation of rhodanin and a substituted tryptanthrin. It is shown that just improving water solubility does not increase anti-leukaemic activity, since a quingdainone carboxylic acid is inactive compared to dihydroxyquingdainone. The most effective compound, dihydroxyquingdainone with an AC50 of 7.5 µmole, is further characterised, revealing its ability to overcome multidrug resistance in leukaemia cells (Nalm-6/BeKa) with p-glycoprotein expression.
Assuntos
Citostáticos , Leucemia , Linfoma , Apoptose , Caspase 3 , Índigo Carmim , Leucemia/tratamento farmacológico , Folhas de PlantaRESUMO
Based on the transcriptome data of Isatis indigotica, a total of 110 putative glycosytransferases were identified. Through prokaryotic expression and enzymic activity assay in vitro, a novel lignan glycosyltransferase gene was screened out and named IiUGT349, which catalyzed lariciresinol into lariciresinol-4-O-ß-D-glucoside and lariciresinol-4'-O-ß-D-glucoside. Bioinformatics analysis suggested that IiUGT349 contained an open reading frame(ORF) of 1 401 bp encoding a protein of 467 amino acids. A protein analysis indicated that IiUGT349 have a predecited molecular weight of 52.77 kDa and pI of 5.96. Phylogenetic analysis showed that IiUGT349 belonging to UGT90 family shared low amino acid sequence identity with the reported lignan glycosyltransferases, which may represent a novel type of lignan glycosyltransferases. Quantitative real-time PCR(qRT-PCR) analysis showed that IiUGT349 was expressed in roots, stems, young leaves and leaves, with the highest expression level in stems. Further biochemical analysis showed that the optimal reaction time of IiUGT349 recombinant protein was 12 h and the optimal temperature was 45 â. Subcellular localization demonstrated that IiUGT349 was located in the cytoplasm and nucleus of plants. In this study, a new glucosyltransferase gene IiUGT349 from I. indigotica belonging to the UGT90 family was cloned, which laid a foundation to further investigate its' function and elucidate the lignan glycosides biosynthesis pathway and plays an important role for great significance for the synthetic biology of active lignan glycosides.
Assuntos
Isatis , Lignanas , Clonagem Molecular , Glucosídeos/metabolismo , Isatis/genética , Isatis/química , Lignanas/metabolismo , Filogenia , Glicosiltransferases/metabolismoRESUMO
Traditional Chinese medicine (TCM) belongs to the most elaborate and extensive systems of plant-based healing. The herb Northern Ban Lan (Isatis tinctoria) is famous for its antiviral and anti-inflammatory activity. Although numerous components isolated from I. tinctoria have been characterized so far, their modes of action have remained unclear. Here, we show that extracts from I. tinctoria exert anti-microtubular activity. Using time-lapse microscopy in living tobacco BY-2 (Nicotiana tabacum L. cv Bright Yellow 2) cells expressing green fluorescent protein-tubulin, we use activity-guided fractionation to screen out the biologically active compounds of I. tinctoria. Among 54 fractions obtained from either leaves or roots of I. tinctoria by methanol (MeOH/H2 O 8:2), or ethyl acetate extraction, one specific methanolic root fraction was selected, because it efficiently and rapidly eliminated microtubules. By combination of further purification with ultra-high-performance liquid chromatography and high-resolution tandem mass spectrometry most of the bioactivity could be assigned to the glucosinolate compound glucobrassicin. Glucobrassicin can also affect microtubules and induce apoptosis in HeLa cells. In the light of these findings, the antiviral activity of Northern Ban Lan is discussed in the context of microtubules being hijacked by many viral pathogens for cell-to-cell spread.
Assuntos
Isatis , Glucosinolatos , Células HeLa , Humanos , Indóis , Isatis/química , Medicina Tradicional Chinesa , MicrotúbulosRESUMO
Isatis tinctoria L. (woad) has been used in medicine for centuries and has demonstrated anti-inflammatory effects. However, to date, no well-defined extracts with precise analysis of active substances have been developed. The aim of this study was to develop novel extracts of Isatis tinctoria L., and to characterize their active ingredients and anti-inflammatory properties. Various extracts of Isatis tinctoria L. were analysed for their active ingredients, and screened for anti-inflammatory effects using cyclooxygenase-2 activity assays. A petroleum ether extract was found to have the best effects, and was tested in a mouse model of acute allergic contact dermatitis. In the mouse model the petroleum ether extract resulted in significantly reduced ear swelling, oedema and inflammatory cell density. In mouse skin and human keratinocyte cultures, petroleum ether extract inhibited pro-inflammatory cytokine expression. Furthermore, human mast cell degranulation was significantly inhibited in LAD2 cell cultures. In conclusion, novel woad extracts were developed and shown to have anti-inflammatory properties in a contact hypersensitivity animal model and human keratinocytes. The production of such extracts and further characterization of their specific properties will enable determination of their potential dermatological effects in the treatment of inflamed and irritated skin.
Assuntos
Anti-Inflamatórios/uso terapêutico , Dermatite Alérgica de Contato/tratamento farmacológico , Isatis , Fitoterapia , Extratos Vegetais/uso terapêutico , Administração Tópica , Animais , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/imunologia , Células Cultivadas , Dermatite Alérgica de Contato/imunologia , Fármacos Dermatológicos/administração & dosagem , Fármacos Dermatológicos/imunologia , Fármacos Dermatológicos/uso terapêutico , Modelos Animais de Doenças , Orelha , Humanos , Interleucina-1beta/antagonistas & inibidores , Interleucina-1beta/imunologia , Interleucina-33/antagonistas & inibidores , Interleucina-33/imunologia , Interleucina-6/antagonistas & inibidores , Interleucina-6/imunologia , Queratinócitos/efeitos dos fármacos , Queratinócitos/imunologia , Estabilizadores de Mastócitos/administração & dosagem , Estabilizadores de Mastócitos/imunologia , Estabilizadores de Mastócitos/uso terapêutico , Mastócitos/efeitos dos fármacos , Mastócitos/imunologia , Camundongos , Extratos Vegetais/administração & dosagem , Extratos Vegetais/farmacologia , Pele/efeitos dos fármacos , Pele/imunologia , Pele/patologiaRESUMO
As our ongoing research project on Ban Lan Gen (Isatis tinctoria roots), a total of 23 alkaloids were obtained. Compounds 1 and 2 contain an unusual C-C bond between the 2(1H)-quinolinone moiety and the phenol moiety and between the 2(1H)-quinolinone moiety and the 1H-indole moiety, respectively. Compound 3 possesses an unusual carbon skeleton and its putative biosynthetic pathway was discussed, and Compound 23 was deduced as a new indole alkaloid glycoside. Compounds 4-7 were identified as four new natural products by extensive spectroscopic experiments. Additionally, the anti-inflammatory activity was assessed based on nitric oxide (NO) production using Lipopolysaccharide-stimulated RAW264.7 macrophages. Compounds 9, 15, and 17 showed inhibitory effects with IC50 values of 1.2, 5.0, and 74.4 µM.
Assuntos
Alcaloides/química , Alcaloides/isolamento & purificação , Isatis/química , Óxido Nítrico/antagonistas & inibidores , Óxido Nítrico/química , Raízes de Plantas/químicaRESUMO
The dried roots of Isatis tinctoria L. are highly traded in the pharmaceutical industry due to their notable anti-influenza efficacy. For the first time, I. tinctoria hairy root cultures (ITHRCs) were co-cultured with two immobilized live GRAS (Generally Recognized as Safe) fungi, i.e. Aspergillus niger and Aspergillus niger, for the elevated production of pharmacologically active flavonoids. Immobilized A. niger (IAN) was exhibited as the superior elicitor in the plant-fungus co-cultivation system. The highest flavonoid production (3018.31 ± 48.66 µg/g DW) were achieved in IAN-treated ITHRCs under the optimal conditions of IAN spore concentration ca.104 spores/mL, temperature 30 °C, initial pH value of media 7.0 and time 72 h, which remarkably increased 6.83-fold relative to non-treated control (441.91 ± 7.35 µg/g DW). Also, this study revealed that IAN elicitation could trigger the sequentially transient accumulation of signal molecules and intensify the oxidative stress in ITHRCs, which both contributed to the up-regulated expression of associated genes involved in flavonoid biosynthetic pathway. Moreover, IAN could be reused at least five cycles with satisfactory performance. Overall, the coupled culture of IAN and ITHRCs is a promising and effective approach for the enhanced production of flavonoids, which allows for the improved applicability of these valuable compounds in pharmaceutical fields.
RESUMO
Search of cost-effective strategies that can enhance the accumulation of phytochemicals of pharmaceutical interest in plant in vitro cultures is an essential task. For the first time, Isatis tinctoria L. hairy root cultures were exposed to ultraviolet radiation (ultraviolet-A, ultraviolet-B, and ultraviolet-C) in an attempt to promote the production of pharmacologically active flavonoids. Results showed that the maximum flavonoid accumulation (7259.12⯱â¯198.19⯵g/g DW) in I. tinctoria hairy root cultures treated by 108â¯kJ/m2 dose of UV-B radiation increased 16.51-fold as compared with that in control (439.68⯱â¯8.27⯵g/g DW). Additionally, antioxidant activity enhancement and cell wall reinforcement were found in the treated I. tinctoria hairy root cultures, indicating the positive-feedback responses to oxidative stress mediated by ultraviolet-B radiation. Moreover, the expression of chalcone synthase gene was tremendously up-regulated (up to 405.84-fold) in I. tinctoria hairy root cultures following ultraviolet-B radiation, which suggested chalcone synthase gene might play a crucial role in flavonoid augmentation. Overall, the present work provides a feasible approach for the enhanced production of biologically active flavonoids in I. tinctoria hairy root cultures via the simple supplementation of ultraviolet-B radiation, which is useful for the biotechnological production of these high-added value compounds to fulfil the ever-increasing demand in pharmaceutical fields.
RESUMO
To detect possible pathogenic virus(es) in woad (Isatis tinctoria) cultivated at Institute of Medicinal Plant Development in Beijing, reverse transcription(RT)-PCR was performed using total RNA of symptomatic woad leaves with primers for poty-, polero-, tobamovirus, broad bean wilt virus 2(BBWV2) and cucumber mosaic virus (CMV). A 657 bp fragment was amplified from symptomatic woad using CMV primers. Sequencing and BLAST analysis indicated that this fragment shared 99% nucleotide identity and 100% amino acid identity with CMV-Vi isolate. The isolate was named CMV-Isatis tinctorial (CMV-It). Phylogenetic analysis based on nucleotide sequences of CP genes showed that CMV-It clustered with CMV-K and belonged to subgroup I. To our knowledge, this is first identification of CMV in woad by RT-PCR and the CP gene was analyzed. This work provided data for research and control of woad mosaic disease.
Assuntos
Cucumovirus/classificação , Isatis/virologia , Doenças das Plantas/virologia , Sequência de Bases , Pequim , Cucumovirus/isolamento & purificação , FilogeniaRESUMO
The bacterial diversity in fermenting dye vats with woad (Isatis tinctoria L.) prepared and maintained in a functional state for approximately 12 months was examined using a combination of culture-dependent and -independent PCR-DGGE analyses and next-generation sequencing of 16S rRNA amplicons. An extremely complex ecosystem including taxa potentially contributing to both indigo reduction and formation, as well as indigo degradation was found. PCR-DGGE analyses revealed the presence of Paenibacillus lactis, Sporosarcina koreensis, Bacillus licheniformis, and Bacillus thermoamylovorans, while Bacillus thermolactis, Bacillus pumilus and Bacillus megaterium were also identified but with sequence identities lower than 97%. Dominant operational taxonomic units (OTUs) identified by pyrosequencing included Clostridium ultunense, Tissierella spp., Alcaligenes faecalis, Erysipelothrix spp., Enterococcus spp., Virgibacillus spp. and Virgibacillus panthothenicus, while sub-dominant OTUs included clostridia, alkaliphiles, halophiles, bacilli, moderately thermophilic bacteria, lactic acid bacteria, Enterobacteriaceae, aerobes, and even photosynthetic bacteria. Based on the current knowledge of indigo-reducing bacteria, it is considered that indigo-reducing bacteria constituted only a small fraction in the unique microcosm detected in the natural indigo dye vats.
Assuntos
Bacillus/isolamento & purificação , Fermentação , Isatis/microbiologia , Paenibacillus/isolamento & purificação , Sporosarcina/isolamento & purificação , Bacillus/classificação , Bacillus/metabolismo , Clostridium/isolamento & purificação , Clostridium/metabolismo , DNA Bacteriano/genética , DNA Bacteriano/isolamento & purificação , Enterobacteriaceae/classificação , Enterobacteriaceae/isolamento & purificação , Enterobacteriaceae/metabolismo , Sequenciamento de Nucleotídeos em Larga Escala , Índigo Carmim/metabolismo , Isatis/química , Lactobacillales/classificação , Lactobacillales/isolamento & purificação , Lactobacillales/metabolismo , Paenibacillus/metabolismo , RNA Ribossômico 16S/genética , RNA Ribossômico 16S/isolamento & purificação , Análise de Sequência de DNA , Sporosarcina/metabolismoRESUMO
The present work focused on the evaluation of the antioxidant and cytotoxic activities of the phenolic-rich fraction (ItJ-EAF) obtained from cauline leaves collected in January from Isatis tinctoria L. (Brassicaceae) growing wild around Acireale (Sicily, Italy). The total phenolic, flavonoid, and condensed tannin contents of the fraction were determined spectrophotometrically, whereas the phenolic profile was assessed by HPLC-PDA/ESI-MS analysis. A total of 20 compounds were positively identified and twelve out of them were never previously reported in I. tinctoria leaves. The fraction exhibited good radical scavenging activity in DPPH test (IC50 = 0.6657 ± 0.0024 mg/ml) and reducing power (3.87 ± 0.71 ASE/ml), whereas, it neither showed chelating activity nor was able to counteract H2 O2 induced oxidative stress damage in Escherichia coli. The antiproliferative effect was evaluated in vitro on two human anaplastic thyroid carcinoma cell lines (CAL-62 and 8505C) by MTT assay. At the highest tested concentration ItJ-EAF significantly reduced (80%) the growth of CAL-62 cells. No cytotoxicity against Artemia salina was observed. It can be concluded that I. tinctoria cauline leaves represent a source of phenolic compounds which could be potentially used as chemopreventive or adjuvant agents against cancer.
Assuntos
Isatis/química , Fenóis/química , Fenóis/farmacologia , Extratos Vegetais/química , Extratos Vegetais/farmacologia , Antioxidantes/química , Antioxidantes/isolamento & purificação , Antioxidantes/farmacologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Cromatografia Líquida de Alta Pressão , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Humanos , Peróxido de Hidrogênio/toxicidade , Isatis/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenóis/isolamento & purificação , Folhas de Planta/química , Folhas de Planta/metabolismo , Sicília , Espectrometria de Massas por Ionização por ElectrosprayRESUMO
Indigo and indirubin are derived from indoxyl molecules, which generally occur as indoxyl glycosides in woad (Isatis tinctoria L.) and other indigo-producing plants. Indoxyl glycosides are biosynthesized from indole via 3-hydroxylation to form indoxyl, followed by one or more glycosylations. Enzymes that attach and remove sugars to and from indoxyl have already been isolated and characterized, while enzymes that convert indole into indoxyl in plants have remained elusive, until the identification of P450s and flavin-containing monooxygenases that hydroxylate indole. A P450 gene from woad (named CYP71B102) was heterologously expressed in E. coli, resulting in the formation of indigo and indirubin, as well as isatin and 2-oxindole, which along with indoxyl are putative precursors of indirubin. The addition of either isatin or 2-oxindole to the recombinant E. coli reduced the levels of indigo and increased the amount of indirubin, whereas coexpression of CYP71B102 with isatin hydroxylase (which degrades isatin) increased the levels of indigo and decreased the amount of indirubin, albeit slightly. The results suggest that CYP71B102 hydroxylates indole at both the 2- and 3- positions to produce 2-oxindole and indoxyl, respectively, and that the coupling of indoxyl with either 2-oxindole or isatin forms indirubin, while dimerization of indoxyl forms indigo. This P450 gene is thus likely involved in the biosynthesis of indirubin in woad, as well as the formation of indigo and its glycosidic precursors, even if other types of enzymes, such as flavin-containing monooxygenases, may be involved in indole hydroxylation in other indigo-producing plants.
RESUMO
PURPOSE: Natural plant raw materials, previously underestimated in therapeutics, are becoming the subject of research for new applications in medicine. In our research, the hydroalcoholic extract of Isatis tinctoria leaf, rich in flavonoid compounds such as vicenin-2 and quercetin, was examined as a potential antidiabetic and neuroprotective agent. METHODS: The effect of the extract and its main flavonoid compounds on protein glycation, alpha-glucosidase activity, and acetylcholinesterase activity was tested. In vitro, in the mouse hippocampal neuronal cell line and in vivo, using a mouse model, the safety of the extract was screened for. RESULTS: Our experiments demonstrated significant inhibition of protein glycation, alpha-glucosidase activity, acetylcholinesterase activity, and ß-amyloid aggregation by the extract, in a concentration-dependent manner. The extract had a strong reducing effect and did not exhibit cytotoxicity up to a concentration of 25 mg/mL. Intraperitoneal administration of the extract to mice did not have negative effects on body mass, locomotor activity, coordination, and liver cell integrity. CONCLUSIONS: Our research sheds new light on this raw material and deepens knowledge of its activity. This may result in the recognition of its therapeutic effects and even in its introduction in the modern treatment of diseases characterized by pathological changes associated with hyperglycemia, oxidation, and inflammation.
Assuntos
Hipoglicemiantes , Fármacos Neuroprotetores , Extratos Vegetais , Folhas de Planta , Animais , Extratos Vegetais/farmacologia , Camundongos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/isolamento & purificação , Hipoglicemiantes/farmacologia , Folhas de Planta/química , Masculino , Linhagem Celular , Peptídeos beta-Amiloides , Flavonoides/farmacologia , Flavonoides/isolamento & purificação , Acetilcolinesterase/metabolismo , Compostos Fitoquímicos/farmacologia , Compostos Fitoquímicos/isolamento & purificação , Inibidores de Glicosídeo Hidrolases/farmacologia , Hipocampo/efeitos dos fármacos , Neurônios/efeitos dos fármacos , alfa-Glucosidases/metabolismoRESUMO
Isatis spp. are well-known for their industrial significance due to natural sources of indigotin and indirubin, important indole alkaloids, used in the dye and pharmaceutical industries. In this study, silver nanoparticles (AgNP) and salicylic acid-chitosan nanoparticles (SA-CNP) were synthesized and applied to enhance the production of indigotin and indirubin in shoot and root cultures of Isatis tinctoria and Isatis ermenekensis. Different doses of AgNP and SA-CNP were administered to three-week-old shoot and root cultures, and the effects were assessed at 12, 24, and 48 h. The harvested samples were analyzed to quantify indigotin and indirubin levels. Furthermore, the expression levels of It-TSA and CYP79B2 genes, known to be involved in indole alkaloid biosynthesis, were determined. In I. tinctoria roots, the highest levels of indigotin and indirubin were observed after applying 150 mg L-1 of SA-CNP for 48 h while in I. ermenekensis shoots, indigotin and indirubin reached the maximum levels with the application of 8 mg L-1 AgNP for 48 h. NP application had no remarkable effects on the accumulation of indigotin and indirubin in I. tinctoria shoots and I. ermenekensis roots compared to controls. Additionally, shoot cultures demonstrated superior indirubin production, which significantly increased with AgNP applications. The gene expression analysis also exhibited significant correlations with the changes in indigotin and indirubin levels. The findings of this study lay the groundwork for enhancing in vitro production of indigotin and indirubin in Isatis species through NP applications, and for developing high-capacity production strategies by determining optimal dosages in scale-up studies.
Assuntos
Quitosana , Isatis , Nanopartículas Metálicas , Índigo Carmim , Isatis/genética , Prata , Alcaloides Indólicos , Ácido Salicílico/farmacologia , Expressão GênicaRESUMO
This study aimed to establish the in vitro shoot culture of Isatis tinctoria L. and its ability to produce antioxidant bioactive compounds. The Murashige and Skoog (MS) medium variants, containing different concentrations (0.1-2.0 mg/L) of benzylaminopurine (BAP) and 1-naphthaleneacetic acid (NAA) were tested. Their influence on the growth of biomass, accumulation of phenolic compounds, and antioxidant potential was evaluated. To improve the phenolic content, agitated cultures (MS 1.0/1.0 mg/L BAP/NAA) were treated with different elicitors, including the following: Methyl Jasmonate, CaCl2, AgNO3, and yeast, as well as with L-Phenylalanine and L-Tyrosine-precursors of phenolic metabolites. The total phenolic content (TPC) of hydroalcoholic extracts (MeOH 70%) obtained from the biomass grown in vitro was determined spectrophotometrically; phenolic acids and flavonoids were quantified by RP-HPLC. Moreover, the antioxidant potential of extracts was examined through the DPPH test, the reducing power, and the Fe2+ chelating assays. The biomass extracts obtained after 72 h of supplementation with Tyr (2 g/L), as well as after 120 and 168 h with Tyr (1 g/L), were found to be the richest in TPC (49.37 ± 0.93, 58.65 ± 0.91, and 60.36 ± 4.97 mg GAE/g extract, respectively). Whereas among the elicitors, the highest TPC achieved was with CaCl2 (20 and 50 mM 24 h), followed by MeJa (50 and 100 µM, 120 h). The HPLC of the extracts led to the identification of six flavonoids and nine phenolic acids, with vicenin-2, isovitexin, syringic, and caffeic acids being the most abundant compounds. Notably, the amount of all flavonoids and phenolic acids detected in the elicited/precursor feeding biomass was higher than that of the leaves of the parental plant. The best chelating activity was found with the extract of biomass fed with Tyrosine 2 g/L, 72 h (IC50 0.27 ± 0.01 mg/mL), the strongest radical scavenging (DPPH test) for the extract obtained from biomass elicited with CaCl2 50 mM, after 24 h of incubation (25.14 ± 0.35 mg Trolox equivalents (TE)/g extract). In conclusion, the in vitro shoot culture of I. tinctoria supplemented with Tyrosine, as well as MeJa and/or CaCl2, could represent a biotechnological source of compounds with antioxidant properties.
RESUMO
BACKGROUND: Isatis tinctoria L (PLG) is a medicinal herb from the roots of Isatis indigotica Fort (Family Cruciferae). Previous studies have shown that PLG has anti-inflammatory and therapeutic effects against conditions such as acute and chronic hepatitis, various respiratory inflammations, and cancer. The purpose of this study was to define the pharmacological effects of PLG on inflammatory reactions and skin hyperkeratosis, which are the main symptoms of atopic dermatitis (AD), in vivo and in vitro. METHODS: For the AD in vivo experiment, 2,4-dinitrochlorobenzene (DNCB) induction and oral administration of PLG were performed on male BALB/c mice for four weeks. For in vitro experiments, keratinocytes were activated using TNF-α/IFN-γ in cultured human keratinocyte (HaCaT) cells. PLG inhibited inflammatory chemokine production and blocked the nuclear translocation of NF-κB p65 in activated keratinocytes. RESULTS: As a result of oral administration of PLG, dermis and epidermis thickening, as well as eosinophil and mast cell infiltration, were attenuated in AD skin lesions. In addition, the levels of immunoglobulin E (IgE), pro-inflammatory cytokines, and the MAPK/NF-κB signaling pathway were decreased in serum and dorsal skin tissues. Furthermore, PLG inhibited inflammatory chemokine production and blocked the nuclear translocation of NF-κB p65 in activated keratinocytes. In addition, epigoitrin and adenosine, the standard compounds of PLG, were identified as candidate AD compounds. CONCLUSIONS: These results indicate that PLG is a potent therapeutic agent for attenuating symptoms of AD.
RESUMO
Senescent fibroblasts progressively deteriorate the functional properties of skin tissue. Senescent cells secrete senescence-associated secretory phenotype (SASP) factor, which causes the aging of surrounding non-senescent cells and accelerates aging in the individuals. Recent findings suggested the senomorphic targeting of the SASP regulation as a new generation of effective therapeutics. We investigated whether Isatis tinctoria L. leaf extract (ITE) inhibited senescence biomarkers p53, p21CDKN1A, and p16INK4A gene expression, and SASP secretions by inhibiting cellular senescence in the replicative senescent human dermal fibroblast (RS-HDF). ITE has been demonstrated to inhibit the secretion of SASP factors in several senomorphic types by regulating the MAPK/NF-κB pathway via its inhibitory effect on mTOR. ITE suppressed the inflammatory response by inhibiting mTOR, MAPK, and IκBα phosphorylation, and blocking the nuclear translocation of NF-κB. In addition, we observed that autophagy pathway was related to inhibitory effect of ITE on cellular senescence. From these results, we concluded that ITE can prevent and restore senescence by blocking the activation and secretion of senescence-related factors generated from RS-HDFs through mTOR-NF-κB regulation.
Assuntos
Isatis , NF-kappa B , Senescência Celular , Fibroblastos , Isatis/metabolismo , NF-kappa B/metabolismo , Extratos Vegetais/metabolismo , Extratos Vegetais/farmacologia , Senoterapia , Serina-Treonina Quinases TOR/metabolismoRESUMO
Chemical fractionation of the ethanolic extract of the roots of Isatis tinctoria L. (I. tinctoria) yielded fourteen indole alkaloids including four new ones, isatisindigoticanine L-N and isatindigoside M. Their structures were established on the basis of extensive spectroscopic techniques including NMR, HRESIMS and IR as well as chemical methods. The absolute configuration of 1 was confirmed by ECD experiments. All the compounds were tested for their inhibitory effects on NO production in mouse mononuclear macrophages (RAW264.7) induced by lipopolysaccharide (LPS). The results showed that only compound 5 exhibited inhibitory effects with IC50 value of 18.5 µM.
Assuntos
Isatis , Animais , Alcaloides Indólicos/farmacologia , Lipopolissacarídeos/farmacologia , Camundongos , Estrutura Molecular , Raízes de PlantasRESUMO
Sheep gastrointestinal nematode (GIN) infestation represents a limiting factor for sheep farming and milk production in Italy. The development of anthelmintic resistance to conventionally used drugs suggests the path towards the use of natural remedies as a possible alternative. The purpose of this study is to evaluate the in vitro anthelmintic efficacy of the hydroalcoholic extracts of basal leaves (It-BL), cauline leaves (It-CL) and flowers (It-F) of Isatis tinctoria (Brassicaceae), a spontaneous Sicilian species renowned as an important source of bioactive compounds. The dry extracts of the different parts of the plant were tested using the egg hatch test (EHT) in vitro to verify the efficacy against ovine GIN at different concentrations (1.00, 0.5, 0.25, 0.125 mg/mL). Thiabendazole and deionized water were used as positive and negative controls, respectively. The results obtained from EHT indicated that all the I. tinctoria extracts were highly effective (p < 0.0001) in inhibiting egg hatching within 48 h of exposure. The in vitro inhibitory effect was never less than 84% in all doses tested, and it was only slightly lower than the standard drug thiabendazole (95.6%). The current study documents the anthelmintic activity of I. tinctoria against sheep's GIN, suggesting its application as alternative natural method to limit the use of antiparasitic drugs.