Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 3.076
Filtrar
Mais filtros

Intervalo de ano de publicação
1.
Annu Rev Immunol ; 37: 97-123, 2019 04 26.
Artigo em Inglês | MEDLINE | ID: mdl-31026412

RESUMO

The B cell antigen receptor (BCR) plays a central role in the self/nonself selection of B lymphocytes and in their activation by cognate antigen during the clonal selection process. It was long thought that most cell surface receptors, including the BCR, were freely diffusing and randomly distributed. Since the advent of superresolution techniques, it has become clear that the plasma membrane is compartmentalized and highly organized at the nanometer scale. Hence, a complete understanding of the precise conformation and activation mechanism of the BCR must take into account the organization of the B cell plasma membrane. We review here the recent literature on the nanoscale organization of the lymphocyte membrane and discuss how this new information influences our view of the conformational changes that the BCR undergoes during activation.


Assuntos
Linfócitos B/imunologia , Membrana Celular/metabolismo , Receptores de Antígenos de Linfócitos B/metabolismo , Regulação Alostérica , Animais , Compartimento Celular , Humanos , Ativação Linfocitária , Nanomedicina , Conformação Proteica
2.
Cell ; 186(16): 3414-3426.e16, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37541198

RESUMO

Lateral transduction (LT) is the process by which temperate phages mobilize large sections of bacterial genomes. Despite its importance, LT has only been observed during prophage induction. Here, we report that superantigen-carrying staphylococcal pathogenicity islands (SaPIs) employ a related but more versatile and complex mechanism of gene transfer to drive chromosomal hypermobility while self-transferring with additional virulence genes from the host. We found that after phage infection or prophage induction, activated SaPIs form concatamers in the bacterial chromosome by switching between parallel genomic tracks in replication bubbles. This dynamic life cycle enables SaPIbov1 to piggyback its LT of staphylococcal pathogenicity island vSaα, which encodes an array of genes involved in host-pathogen interactions, allowing both islands to be mobilized intact and transferred in a single infective particle. Our findings highlight previously unknown roles of pathogenicity islands in bacterial virulence and show that their evolutionary impact extends beyond the genes they carry.


Assuntos
Ilhas Genômicas , Fagos de Staphylococcus , Staphylococcus , Genoma Bacteriano , Staphylococcus/genética , Staphylococcus/patogenicidade , Virulência , Transdução Genética
3.
Cell ; 186(1): 47-62.e16, 2023 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-36608657

RESUMO

Horizontal gene transfer accelerates microbial evolution. The marine picocyanobacterium Prochlorococcus exhibits high genomic plasticity, yet the underlying mechanisms are elusive. Here, we report a novel family of DNA transposons-"tycheposons"-some of which are viral satellites while others carry cargo, such as nutrient-acquisition genes, which shape the genetic variability in this globally abundant genus. Tycheposons share distinctive mobile-lifecycle-linked hallmark genes, including a deep-branching site-specific tyrosine recombinase. Their excision and integration at tRNA genes appear to drive the remodeling of genomic islands-key reservoirs for flexible genes in bacteria. In a selection experiment, tycheposons harboring a nitrate assimilation cassette were dynamically gained and lost, thereby promoting chromosomal rearrangements and host adaptation. Vesicles and phage particles harvested from seawater are enriched in tycheposons, providing a means for their dispersal in the wild. Similar elements are found in microbes co-occurring with Prochlorococcus, suggesting a common mechanism for microbial diversification in the vast oligotrophic oceans.


Assuntos
Ecossistema , Genoma Bacteriano , Genoma Bacteriano/genética , Filogenia , Oceanos e Mares , Genômica
4.
Cell ; 185(17): 3248-3262.e20, 2022 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-35985290

RESUMO

Bacteria encode sophisticated anti-phage systems that are diverse and versatile and display high genetic mobility. How this variability and mobility occurs remains largely unknown. Here, we demonstrate that a widespread family of pathogenicity islands, the phage-inducible chromosomal islands (PICIs), carry an impressive arsenal of defense mechanisms, which can be disseminated intra- and inter-generically by helper phages. These defense systems provide broad immunity, blocking not only phage reproduction, but also plasmid and non-cognate PICI transfer. Our results demonstrate that phages can mobilize PICI-encoded immunity systems to use them against other mobile genetic elements, which compete with the phages for the same bacterial hosts. Therefore, despite the cost, mobilization of PICIs may be beneficial for phages, PICIs, and bacteria in nature. Our results suggest that PICIs are important players controlling horizontal gene transfer and that PICIs and phages establish mutualistic interactions that drive bacterial ecology and evolution.


Assuntos
Bacteriófagos , Ilhas Genômicas , Bactérias/genética , Bacteriófagos/genética , Transferência Genética Horizontal , Sistema Imunitário , Plasmídeos
5.
Cell ; 183(6): 1682-1698.e24, 2020 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-33232692

RESUMO

In order to analyze how a signal transduction network converts cellular inputs into cellular outputs, ideally one would measure the dynamics of many signals within the network simultaneously. We found that, by fusing a fluorescent reporter to a pair of self-assembling peptides, it could be stably clustered within cells at random points, distant enough to be resolved by a microscope but close enough to spatially sample the relevant biology. Because such clusters, which we call signaling reporter islands (SiRIs), can be modularly designed, they permit a set of fluorescent reporters to be efficiently adapted for simultaneous measurement of multiple nodes of a signal transduction network within single cells. We created SiRIs for indicators of second messengers and kinases and used them, in hippocampal neurons in culture and intact brain slices, to discover relationships between the speed of calcium signaling, and the amplitude of PKA signaling, upon receiving a cAMP-driving stimulus.


Assuntos
Corantes Fluorescentes/metabolismo , Genes Reporter , Imagem Óptica , Transdução de Sinais , Animais , Cálcio/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Feminino , Proteínas de Fluorescência Verde/metabolismo , Células HeLa , Hipocampo/metabolismo , Humanos , Camundongos , Neurônios/metabolismo , Peptídeos/metabolismo , Proteínas/metabolismo , Células Piramidais/metabolismo
6.
Mol Cell ; 82(6): 1169-1185.e7, 2022 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-35202573

RESUMO

Polycomb group (PcG) proteins are essential for post-implantation development by depositing repressive histone modifications at promoters, mainly CpG islands (CGIs), of developmental regulator genes. However, promoter PcG marks are erased after fertilization and de novo established in peri-implantation embryos, coinciding with the transition from naive to primed pluripotency. Nevertheless, the molecular basis for this establishment remains unknown. In this study, we show that the expression of the long KDM2B isoform (KDM2BLF), which contains the demethylase domain, is specifically induced at peri-implantation and that its H3K36me2 demethylase activity is required for PcG enrichment at CGIs. Moreover, KDM2BLF interacts with BRG1/BRM-associated factor (BAF) and stabilizes BAF occupancy at CGIs for subsequent gain of accessibility, which precedes PcG enrichment. Consistently, KDM2BLF inactivation results in significantly delayed post-implantation development. In summary, our data unveil dynamic chromatin configuration of CGIs during exit from naive pluripotency and provide a conceptual framework for the spatiotemporal establishment of PcG functions.


Assuntos
Cromatina , Proteínas de Drosophila , Ilhas de CpG , Proteínas de Drosophila/metabolismo , Código das Histonas , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Regiões Promotoras Genéticas
7.
Mol Cell ; 75(5): 1020-1030.e4, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31350119

RESUMO

Phage-inducible chromosomal islands (PICIs) represent a novel and universal class of mobile genetic elements, which have broad impact on bacterial virulence. In spite of their relevance, how the Gram-negative PICIs hijack the phage machinery for their own specific packaging and how they block phage reproduction remains to be determined. Using genetic and structural analyses, we solve the mystery here by showing that the Gram-negative PICIs encode a protein that simultaneously performs these processes. This protein, which we have named Rpp (for redirecting phage packaging), interacts with the phage terminase small subunit, forming a heterocomplex. This complex is unable to recognize the phage DNA, blocking phage packaging, but specifically binds to the PICI genome, promoting PICI packaging. Our studies reveal the mechanism of action that allows PICI dissemination in nature, introducing a new paradigm in the understanding of the biology of pathogenicity islands and therefore of bacterial pathogen evolution.


Assuntos
Bacteriófagos/fisiologia , DNA Viral/metabolismo , Escherichia coli/virologia , Ilhas Genômicas , Montagem de Vírus/fisiologia , DNA Viral/genética , Endodesoxirribonucleases/genética , Endodesoxirribonucleases/metabolismo , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Proteínas Virais/genética , Proteínas Virais/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(28): e2302924121, 2024 Jul 09.
Artigo em Inglês | MEDLINE | ID: mdl-38950368

RESUMO

The human colonization of the Canary Islands represents the sole known expansion of Berber communities into the Atlantic Ocean and is an example of marine dispersal carried out by an African population. While this island colonization shows similarities to the populating of other islands across the world, several questions still need to be answered before this case can be included in wider debates regarding patterns of initial colonization and human settlement, human-environment interactions, and the emergence of island identities. Specifically, the chronology of the first human settlement of the Canary Islands remains disputed due to differing estimates of the timing of its first colonization. This absence of a consensus has resulted in divergent hypotheses regarding the motivations that led early settlers to migrate to the islands, e.g., ecological or demographic. Distinct motivations would imply differences in the strategies and dynamics of colonization; thus, identifying them is crucial to understanding how these populations developed in such environments. In response, the current study assembles a comprehensive dataset of the most reliable radiocarbon dates, which were used for building Bayesian models of colonization. The findings suggest that i) the Romans most likely discovered the islands around the 1st century BCE; ii) Berber groups from western North Africa first set foot on one of the islands closest to the African mainland sometime between the 1st and 3rd centuries CE; iii) Roman and Berber societies did not live simultaneously in the Canary Islands; and iv) the Berber people rapidly spread throughout the archipelago.


Assuntos
Migração Humana , Humanos , Espanha , Migração Humana/história , Teorema de Bayes , História Antiga , Datação Radiométrica
9.
Proc Natl Acad Sci U S A ; 120(30): e2300981120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37459510

RESUMO

Assessing the distribution of geographically restricted and evolutionarily unique species and their underlying drivers is key to understanding biogeographical processes and critical for global conservation prioritization. Here, we quantified the geographic distribution and drivers of phylogenetic endemism for ~320,000 seed plants worldwide and identified centers and drivers of evolutionarily young (neoendemism) and evolutionarily old endemism (paleoendemism). Tropical and subtropical islands as well as tropical mountain regions displayed the world's highest phylogenetic endemism. Most tropical rainforest regions emerged as centers of paleoendemism, while most Mediterranean-climate regions showed high neoendemism. Centers where high neo- and paleoendemism coincide emerged on some oceanic and continental fragment islands, in Mediterranean-climate regions and parts of the Irano-Turanian floristic region. Global variation in phylogenetic endemism was well explained by a combination of past and present environmental factors (79.8 to 87.7% of variance explained) and most strongly related to environmental heterogeneity. Also, warm and wet climates, geographic isolation, and long-term climatic stability emerged as key drivers of phylogenetic endemism. Neo- and paleoendemism were jointly explained by climatic and geological history. Long-term climatic stability promoted the persistence of paleoendemics, while the isolation of oceanic islands and their unique geological histories promoted neoendemism. Mountainous regions promoted both neo- and paleoendemism, reflecting both diversification and persistence over time. Our study provides insights into the evolutionary underpinnings of biogeographical patterns in seed plants and identifies the areas on Earth with the highest evolutionary and biogeographical uniqueness-key information for setting global conservation priorities.


Assuntos
Biodiversidade , Evolução Biológica , Filogenia , Sementes , Geologia
10.
Proc Natl Acad Sci U S A ; 120(8): e2213075120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791098

RESUMO

The transcriptional repressions driven by the circadian core clock repressors RevErbα, E4BP4, and CRY1/PER1 involve feedback loops which are mandatory for generating the circadian rhythms. These repressors are known to bind to cognate DNA binding sites, but how their circadian bindings trigger the cascade of events leading to these repressions remain to be elucidated. Through molecular and genetic analyses, we now demonstrate that the chromatin protein HP1α plays a key role in these transcriptional repressions of both the circadian clock (CC) genes and their cognate output genes (CCGs). We show that these CC repressors recruit the HP1α protein downstream from a repressive cascade, and that this recruitment is mandatory for the maintenance of both the CC integrity and the expression of the circadian genes. We further show that the presence of HP1α is critical for both the repressor-induced chromatin compaction and the generation of "transcriptionally repressed biomolecular hydrophobic condensates" and demonstrates that HP1α is mandatory within the CC output genes for both the recruitment of DNA methylating enzymes on the intronic deoxyCpG islands and their subsequent methylation.


Assuntos
Relógios Circadianos , Relógios Circadianos/genética , Fatores de Transcrição/metabolismo , Expressão Gênica , Ritmo Circadiano/genética , Cromatina/genética , Homólogo 5 da Proteína Cromobox , DNA , Proteínas CLOCK/genética , Proteínas CLOCK/metabolismo
11.
Proc Natl Acad Sci U S A ; 120(8): e2214062120, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36791105

RESUMO

We demonstrate that there is a tight functional relationship between two highly evolutionary conserved cell processes, i.e., the circadian clock (CC) and the circadian DNA demethylation-methylation of cognate deoxyCpG-rich islands. We have discovered that every circadian clock-controlled output gene (CCG), but not the core clock nor its immediate-output genes, contains a single cognate intronic deoxyCpG-rich island, the demethylation-methylation of which is controlled by the CC. During the transcriptional activation period, these intronic islands are demethylated and, upon dimerization of two YY1 protein binding sites located upstream to the transcriptional enhancer and downstream from the deoxyCpG-rich island, store activating components initially assembled on a cognate active enhancer (a RORE, a D-box or an E-box), in keeping with the generation of a transcriptionally active condensate that boosts the initiation of transcription of their cognate pre-mRNAs. We report how these single intronic deoxyCpG-rich islands are instrumental in such a circadian activation/repression transcriptional process.


Assuntos
Relógios Circadianos , Relógios Circadianos/genética , Regiões Promotoras Genéticas , Ritmo Circadiano/genética , Sequências Reguladoras de Ácido Nucleico , Proteínas CLOCK/genética , Desmetilação
12.
Mol Biol Evol ; 41(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38225175

RESUMO

Speciation in the face of gene flow is usually associated with a heterogeneous genomic landscape of divergence in nascent species pairs. However, multiple factors, such as divergent selection and local recombination rate variation, can influence the formation of these genomic islands. Examination of the genomic landscapes of species pairs that are still in the early stages of speciation provides an insight into this conundrum. In this study, population genomic analyses were undertaken using a wide range of sampling and whole-genome resequencing data from 96 unrelated individuals of Kentish plover (Charadrius alexandrinus) and white-faced plover (Charadrius dealbatus). We suggest that the two species exhibit varying levels of population admixture along the Chinese coast and on the Taiwan Island. Genome-wide analyses for introgression indicate that ancient introgression had occurred in Taiwan population, and gene flow is still ongoing in mainland coastal populations. Furthermore, we identified a few genomic regions with significant levels of interspecific differentiation and local recombination suppression, which contain several genes potentially associated with disease resistance, coloration, and regulation of plumage molting and thus may be relevant to the phenotypic and ecological divergence of the two nascent species. Overall, our findings suggest that divergent selection in low recombination regions may be a main force in shaping the genomic islands in two incipient shorebird species.


Assuntos
Estudo de Associação Genômica Ampla , Ilhas Genômicas , Humanos , Especiação Genética , Genoma , Fluxo Gênico , Recombinação Genética , Seleção Genética
13.
Syst Biol ; 2024 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-39140829

RESUMO

African antelope diversity is a globally unique vestige of a much richer world-wide Pleistocene megafauna. Despite this, the evolutionary processes leading to the prolific radiation of African antelopes are not well understood. Here, we sequenced 145 whole genomes from both subspecies of the waterbuck (Kobus ellipsiprymnus), an African antelope believed to be in the process of speciation. We investigated genetic structure and population divergence and found evidence of a mid-Pleistocene separation on either side of the eastern Great Rift Valley, consistent with vicariance caused by a rain shadow along the so-called 'Kingdon's Line'. However, we also found pervasive evidence of both recent and widespread historical gene flow across the Rift Valley barrier. By inferring the genome-wide landscape of variation among subspecies, we found 14 genomic regions of elevated differentiation, including a locus that may be related to each subspecies' distinctive coat pigmentation pattern. We investigated these regions as candidate speciation islands. However, we observed no significant reduction in gene flow in these regions, nor any indications of selection against hybrids. Altogether, these results suggest a pattern whereby climatically driven vicariance is the most important process driving the African antelope radiation, and suggest that reproductive isolation may not set in until very late in the divergence process. This has a significant impact on taxonomic inference, as many taxa will be in a gray area of ambiguous systematic status, possibly explaining why it has been hard to achieve consensus regarding the species status of many African antelopes. Our analyses demonstrate how population genetics based on low-depth whole genome sequencing can provide new insights that can help resolve how far lineages have gone along the path to speciation.

14.
Rev Med Virol ; 34(2): e2521, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38340071

RESUMO

Dengue, Zika and chikungunya outbreaks pose a significant public health risk to Pacific Island communities. Differential diagnosis is challenging due to overlapping clinical features and limited availability of laboratory diagnostic facilities. There is also insufficient information regarding the complications of these arboviruses, particularly for Zika and chikungunya. We conducted a systematic review and meta-analysis to calculate pooled prevalence estimates with 95% confidence intervals (CI) for the clinical manifestations of dengue, Zika and chikungunya in the Pacific Islands. Based on pooled prevalence estimates, clinical features that may help to differentiate between the arboviruses include headache, haemorrhage and hepatomegaly in dengue; rash, conjunctivitis and peripheral oedema in Zika; and the combination of fever and arthralgia in chikungunya infections. We estimated that the hospitalisation and mortality rates in dengue were 9.90% (95% CI 7.67-12.37) and 0.23% (95% CI 0.16-0.31), respectively. Severe forms of dengue occurred in 1.92% (95% CI 0.72-3.63) of reported cases and 23.23% (95% CI 13.58-34.53) of hospitalised patients. Complications associated with Zika virus included Guillain-Barré syndrome (GBS), estimated to occur in 14.08 (95% CI 11.71-16.66) per 10,000 reported cases, and congenital brain malformations such as microcephaly, particularly with first trimester maternal infection. For chikungunya, the hospitalisation rate was 2.57% (95% CI 1.30-4.25) and the risk of GBS was estimated at 1.70 (95% CI 1.06-2.48) per 10,000 reported cases. Whilst ongoing research is required, this systematic review enhances existing knowledge on the clinical manifestations of dengue, Zika and chikungunya infections and will assist Pacific Island clinicians during future arbovirus outbreaks.


Assuntos
Febre de Chikungunya , Dengue , Infecção por Zika virus , Humanos , Febre de Chikungunya/epidemiologia , Febre de Chikungunya/complicações , Febre de Chikungunya/virologia , Ilhas do Pacífico/epidemiologia , Infecção por Zika virus/epidemiologia , Infecção por Zika virus/complicações , Infecção por Zika virus/virologia , Dengue/epidemiologia , Dengue/virologia , Dengue/complicações , Prevalência , Zika virus , Surtos de Doenças , Hospitalização/estatística & dados numéricos , Vírus Chikungunya
15.
Proc Natl Acad Sci U S A ; 119(30): e2203011119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858437

RESUMO

In Escherichia coli and Salmonella, many genes silenced by the nucleoid structuring protein H-NS are activated upon inhibiting Rho-dependent transcription termination. This response is poorly understood and difficult to reconcile with the view that H-NS acts mainly by blocking transcription initiation. Here we have analyzed the basis for the up-regulation of H-NS-silenced Salmonella pathogenicity island 1 (SPI-1) in cells depleted of Rho-cofactor NusG. Evidence from genetic experiments, semiquantitative 5' rapid amplification of complementary DNA ends sequencing (5' RACE-Seq), and chromatin immunoprecipitation sequencing (ChIP-Seq) shows that transcription originating from spurious antisense promoters, when not stopped by Rho, elongates into a H-NS-bound regulatory region of SPI-1, displacing H-NS and rendering the DNA accessible to the master regulator HilD. In turn, HilD's ability to activate its own transcription triggers a positive feedback loop that results in transcriptional activation of the entire SPI-1. Significantly, single-cell analyses revealed that this mechanism is largely responsible for the coexistence of two subpopulations of cells that either express or do not express SPI-1 genes. We propose that cell-to-cell differences produced by stochastic spurious transcription, combined with feedback loops that perpetuate the activated state, can generate bimodal gene expression patterns in bacterial populations.


Assuntos
Proteínas de Bactérias , Proteínas de Ligação a DNA , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas , Salmonella , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Inativação Gênica , Salmonella/genética , Salmonella/patogenicidade , Análise de Célula Única , Transcrição Gênica , Virulência/genética
16.
Proc Natl Acad Sci U S A ; 119(27): e2001290119, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35759655

RESUMO

The organization of the genome into transcriptionally active and inactive chromatin domains requires well-delineated chromatin boundaries and insulator functions in order to maintain the identity of adjacent genomic loci with antagonistic chromatin marks and functionality. In plants that lack known chromatin insulators, the mechanisms that prevent heterochromatin spreading into euchromatin remain to be identified. Here, we show that DNA Topoisomerase VI participates in a chromatin boundary function that safeguards the expression of genes in euchromatin islands within silenced heterochromatin regions. While some transposable elements are reactivated in mutants of the Topoisomerase VI complex, genes insulated in euchromatin islands within heterochromatic regions of the Arabidopsis thaliana genome are specifically down-regulated. H3K9me2 levels consistently increase at euchromatin island loci and decrease at some transposable element loci. We further show that Topoisomerase VI physically interacts with S-adenosylmethionine synthase methionine adenosyl transferase 3 (MAT3), which is required for H3K9me2. A Topoisomerase VI defect affects MAT3 occupancy on heterochromatic elements and its exclusion from euchromatic islands, thereby providing a possible mechanistic explanation to the essential role of Topoisomerase VI in the delimitation of chromatin domains.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , DNA Topoisomerases Tipo II , Eucromatina , Heterocromatina , Histonas , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Cromatina/genética , DNA Topoisomerases Tipo II/genética , DNA Topoisomerases Tipo II/metabolismo , Elementos de DNA Transponíveis , Eucromatina/genética , Heterocromatina/genética , Histonas/genética , Histonas/metabolismo
17.
Proc Natl Acad Sci U S A ; 119(19): e2123331119, 2022 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-35500122

RESUMO

Corals are a major habitat-building life-form on tropical reefs that support a quarter of all species in the ocean and provide ecosystem services to millions of people. Marine heat waves continue to threaten and shape reef ecosystems by killing individual coral colonies and reducing their diversity. However, marine heat waves are spatially and temporally heterogeneous, and so too are the environmental and biological factors mediating coral resilience during and following thermal events. This combination results in highly variable outcomes at both the coral bleaching and mortality stages of every event. This, in turn, impedes the assessment of changing reef-scale patterns of thermal tolerance or places of resistance known as reef refugia. We developed a large-scale, high-resolution coral mortality monitoring capability based on airborne imaging spectroscopy and applied it to a major marine heat wave in the Hawaiian Islands. While water depth and thermal stress strongly mediated coral mortality, relative coral loss was also inversely correlated with preheat-wave coral cover, suggesting the existence of coral refugia. Subsequent mapping analyses indicated that potential reef refugia underwent up to 40% lower coral mortality compared with neighboring reefs, despite similar thermal stress. A combination of human and environmental factors, particularly coastal development and sedimentation levels, differentiated resilient reefs from other more vulnerable reefs. Our findings highlight the role that coral mortality mapping, rather than bleaching monitoring, can play for targeted conservation that protects more surviving corals in our changing climate.


Assuntos
Antozoários , Animais , Antozoários/fisiologia , Conservação dos Recursos Naturais , Recifes de Corais , Ecossistema , Temperatura Alta , Refúgio de Vida Selvagem
18.
Nano Lett ; 24(8): 2444-2450, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38363218

RESUMO

Quantum Griffiths phase (QGP) is a novel quantum phenomenon of quantum phase transition in two-dimensional (2D) superconductors, and the emergence of inhomogeneous superconducting rare regions immersed in a metallic matrix is theoretically related to the quantum Griffiths singularity (QGS). However, the theoretical proposal of superconducting rare regions still lacks intuitive experimental verification. Here, we construct an artificial ordered superconducting-islands-array on monolayer graphene with the aid of an anodic aluminum oxide (AAO) membrane. The QGS under both in-plane and out-of-plane magnetic fields is evidenced by the divergent dynamical critical exponent and is in compliance with the direct activated scaling behavior. The phase diagram clearly shows that the QGP is indeed bred in the rare superconducting regions within isolated superconducting islands with a vanished quantum coherence. Our results reveal the universal features of QGP in artificial heterostructured systems and provide a visualized platform for the theoretical proposal of QGS.

19.
J Proteome Res ; 23(6): 2041-2053, 2024 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-38782401

RESUMO

Extracellular chemical cues constitute much of the language of life among marine organisms, from microbes to mammals. Changes in this chemical pool serve as invisible signals of overall ecosystem health and disruption to this finely tuned equilibrium. In coral reefs, the scope and magnitude of the chemicals involved in maintaining reef equilibria are largely unknown. Processes involving small, polar molecules, which form the majority components of labile dissolved organic carbon, are often poorly captured using traditional techniques. We employed chemical derivatization with mass spectrometry-based targeted exometabolomics to quantify polar dissolved phase metabolites on five coral reefs in the U.S. Virgin Islands. We quantified 45 polar exometabolites, demonstrated their spatial variability, and contextualized these findings in terms of geographic and benthic cover differences. By comparing our results to previously published coral reef exometabolomes, we show the novel quantification of 23 metabolites, including central carbon metabolism compounds (e.g., glutamate) and novel metabolites such as homoserine betaine. We highlight the immense potential of chemical derivatization-based exometabolomics for quantifying labile chemical cues on coral reefs and measuring molecular level responses to environmental stressors. Overall, improving our understanding of the composition and dynamics of reef exometabolites is vital for effective ecosystem monitoring and management strategies.


Assuntos
Recifes de Corais , Metabolômica , Animais , Metabolômica/métodos , Metaboloma , Ilhas Virgens Americanas , Antozoários/metabolismo , Antozoários/química , Espectrometria de Massas/métodos , Ecossistema , Carbono/metabolismo , Carbono/química
20.
BMC Genomics ; 25(1): 263, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38459466

RESUMO

BACKGROUND: Escherichia coli, a ubiquitous inhabitant of the gut microbiota, has been recognized as an indicator of fecal contamination and a potential reservoir for antibiotic resistance genes. Its prevalence in drinking water sources raises concerns about the potential dissemination of antibiotic resistance within aquatic ecosystems and the subsequent impact on public health. The ability of E. coli to acquire and transfer resistance genes, coupled with the constant exposure to low levels of antibiotics in the environment, underscores the need for comprehensive surveillance and rigorous antimicrobial stewardship strategies to safeguard the quality and safety of drinking water supplies, ultimately mitigating the escalation of antibiotic resistance and its implications for human well-being. METHODS: WG5D strain, isolated from a drinking water distribution source in North-West Province, South Africa, underwent genomic analysis following isolation on nutrient agar, anaerobic cultivation, and DNA extraction. Paired-end Illumina sequencing with a Nextera XT Library Preparation kit was performed. The assembly, annotation, and subsequent genomic analyses, including phylogenetic analysis using TYGS, pairwise comparisons, and determination of genes related to antimicrobial resistance and virulence, were carried out following standard protocols and tools, ensuring comprehensive insights into the strain's genomic features. RESULTS: This study explores the notable characteristics of E. coli strain WG5D. This strain stands out because it possesses multiple antibiotic resistance genes, encompassing tetracycline, cephalosporin, vancomycin, and aminoglycoside resistances. Additionally, virulence-associated genes indicate potential heightened pathogenicity, complemented by the identification of mobile genetic elements that underscore its adaptability. The intriguing possibility of bacteriophage involvement and factors contributing to pathogenicity further enriches our understanding. We identified E. coli WG5D as a potential human pathogen associated with a drinking water source in South Africa. The analysis provided several antibiotic resistance-associated genes/mutations and mobile genetic elements. It further identified WG5D as a potential human pathogen. The occurrence of E. coli WG5D raised the awareness of the potential pathogens and the carrying of antibiotic resistance in drinking water. CONCLUSIONS: The findings of this study have highlighted the advantages of the genomic approach in identifying the bacterial species and antibiotic resistance genes of E. coli and its potential as a human pathogen.


Assuntos
Água Potável , Escherichia coli , Humanos , Antibacterianos/farmacologia , Virulência/genética , Fatores de Virulência/genética , Filogenia , Ecossistema , Resistência Microbiana a Medicamentos/genética
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa