Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Angew Chem Int Ed Engl ; 61(47): e202211771, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36283972

RESUMO

This work investigates the critical factors impacting electrochemical CO2 reduction reaction (CO2 RR) using atomically precise Au nanoclusters (NCs) as electrocatalysts. First, the influence of size on CO2 RR is studied by precisely controlling NC size in the 1-2.5 nm regime. We find that the electrocatalytic CO partial current density increases for smaller NCs, but the CO Faradaic efficiency (FE) is not directly associated with the NC size. This indicates that the surface-to-volume ratio, i.e. the population of active sites, is the dominant factor for determining the catalytic activity, but the selectivity is not directly impacted by size. Second, we compare the CO2 RR performance of Au38 isomers (Au38 Q and Au38 T) to reveal that structural rearrangement of identical size NCs can lead to significant changes in both CO2 RR activity and selectivity. Au38 Q shows higher activity and selectivity towards CO than Au38 T, and density functional theory (DFT) calculations reveal that the average formation energy of the key *COOH intermediate on the proposed active sites is significantly lower on Au38 Q than Au38 T. These results demonstrate how the structural isomerism can impact stabilization of reaction intermediates as well as the overall CO2 RR performance of identical size Au NCs. Overall, this work provides important structure-property relationships for tailoring the NCs for CO2 RR.

SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa