Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Insect Sci ; 24(4)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38989843

RESUMO

Cantharidin is a toxic defensive substance secreted by most blister beetles when attacked. It has been used to treat many complex diseases since ancient times and has recently regained popularity as an anticancer agent. However, the detailed mechanism of the cantharidin biosynthesis has not been completely addressed. In this study, we cloned McSTE24 (encoding STE24 endopeptidase) from terpenoid backbone pathway, McCYP305a1 (encoding cytochrome P450, family 305) and McJHEH [encoding subfamily A, polypeptide 1 and juvenile hormone (JH) epoxide hydrolase] associated to JH synthesis/degradation in the blister beetle Mylabris cichorii (Linnaeus, 1758, Coleoptera: Meloidae). Expression pattern analyses across developmental stages in adult males revealed that the expressions of 3 transcripts were closely linked to cantharidin titer exclusively during the peak period of cantharidin synthesis (20-25 days old). In contrast, at other stages, these genes may primarily regulate different biological processes. When RNA interference with double-stranded RNA suppressed the expressions of the 3 genes individually, significant reductions in cantharidin production were observed in males and also in females following McJHEH knockdown, indicating that these 3 genes might primarily contribute to cantharidin biosynthesis in males, but not in females, while females could self-synthesis a small amount of cantharidin. These findings support the previously hypothesized sexual dimorphism in cantharidin biosynthesis during the adult phase. McCYP305a1 collaborates with its upstream gene McSTE24 in cantharidin biosynthesis, while McJHEH independently regulates cantharidin biosynthesis in males.


Assuntos
Cantaridina , Besouros , Proteínas de Insetos , Animais , Cantaridina/metabolismo , Besouros/genética , Besouros/metabolismo , Masculino , Feminino , Proteínas de Insetos/genética , Proteínas de Insetos/metabolismo , Sistema Enzimático do Citocromo P-450/genética , Sistema Enzimático do Citocromo P-450/metabolismo
2.
Vavilovskii Zhurnal Genet Selektsii ; 28(2): 185-189, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38680182

RESUMO

Juvenile hormone plays a "status quo" role in Drosophila melanogaster larvae, preventing the untimely metamorphosis, and performs a gonadotropic function in imagoes, ensuring the ovaries' preparedness for vitellogenesis. The decreased level of juvenile hormone results in reproductive disorders in D. melanogaster females including a delay in the oviposition onset and a fertility decrease. Another factor that can affect the insect reproduction is an infection with the maternally inherited symbiotic α-proteobacterium Wolbachia. The present study is devoted to the analysis of the expression of two juvenile hormone metabolism genes encoding enzymes of its synthesis and degradation, juvenile hormone acid O-methyltransferase ( jhamt) and juvenile hormone epoxide hydrase (Jheh1), respectively, in four wild-type D. melanogaster lines, two of them being infected with Wolbachia. Lines w153 and Bi90 were both derived from an individual wild-caught females infected with Wolbachia, while lines w153T and Bi90T were derived from them by tetracycline treatment and are free of infection. Line Bi90 is known to be infected with the Wolbachia strain wMel, and line w153, with the Wolbachia strain wMelPlus belonging to the wMelCS genotype. It was found that infection with either Wolbachia strain does not affect the expression of the studied genes. At the same time, it was shown that the w153 and w153T lines differ from the Bi90 and Bi90T lines by an increased level of the Jheh1 gene expression and do not differ in the jhamt gene expression level. Analysis of the fertility of these four lines showed that it does not depend on Wolbachia infection either, but differs between lines with different nuclear genotypes: in w153 and w153T, it is significantly lower than in lines Bi90 and Bi90T. The data obtained allow us to reasonably propose that the inter-line D. melanogaster polymorphism in the metabolism of the juvenile hormone is determined by its degradation (not by its synthesis) and correlates with the fertility level.

3.
Front Physiol ; 13: 873580, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35615668

RESUMO

Aspongopus chinensis is a Chinese traditional edible and medicinal insect, which is in great demand in the society. This insect reproduces once a year which is caused by reproductive diapause resulting in insufficient production in wild resources. However, the mechanism of diapause in A. chinensis is still unclear. In this study, we focus on the relationship between juvenile hormones (JHs) and A. chinensis diapause. The results showed that JHIII concentration in diapause adult individuals was significantly lower than that in diapause termination adult individuals. When exogenous JHⅢ was injected into diapause adults, the rate of mating was increased significantly, development of the reproductive systems was accelerated, consumption of fat intensified, the expression of juvenile hormone acid o-methyl-transferase (JHAMT) was upregulated, and juvenile hormone epoxide hydrolase (JHEH) and fatty acid synthase (FAS) gene expressions were downregulated. In addition, RNAi of JHAMT decreased JH concentration, delayed the development of reproductive systems, slowed down fat consumption, and delayed the mean mating occurrence time significantly. Conversely, RNAi of JHEH resulted in an increased concentration of JH, development of reproductive systems was accelerated, consumption of fat was intensified, and mean mating occurrence time advanced significantly. Taken together, these findings uncovered that JH plays an important role in regulating reproductive diapause in A. chinensis and, thus, could provide a theoretical basis for further research on the diapause of A. chinensis.

4.
J Insect Physiol ; 80: 71-80, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25727179

RESUMO

Juvenile hormones (JHs) and ecdysteroids are critical insect developmental hormones. JH esterase (JHE) and JH epoxide hydrolase (JHEH) are JH-selective enzymes that metabolize JH and thus regulate the titer of JH. Baculoviruses are known to alter host endocrine regulation. The nucleopolyhedroviruses, AdhoNPV and AdorNPV, are known to have slow and fast killing activity against Adoxophyes honmai (Lepidoptera: Tortricidae), respectively. Here we found that when penultimate (4th) instar A. honmai are inoculated with AdhoNPV or AdorNPV, the mean survival time is 9.7 and 8.2 days, respectively. The larvae molted once but did not pupate. The AdhoNPV- or AdorNPV-infected larvae did not show a dramatic increase in JHE activity as was found in mock-infected larvae, instead they showed a marked decrease in JHE activity. In contrast, both viral infections had no effect on JHEH activity. In order to further characterize the JHE activity, the JHE-coding sequence of A. honmai (ahjhe) was cloned and confirmed to encode a biologically active JHE. Quantitative real-time PCR analysis of ahjhe expression in 4th and 5th instar A. honmai revealed that AdhoNPV and AdorNPV are able to reduce ahjhe expression levels.


Assuntos
Hidrolases de Éster Carboxílico/metabolismo , Regulação para Baixo , Epóxido Hidrolases/metabolismo , Proteínas de Insetos/metabolismo , Larva/enzimologia , Mariposas/crescimento & desenvolvimento , Mariposas/virologia , Nucleopoliedrovírus/fisiologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Hidrolases de Éster Carboxílico/genética , Epóxido Hidrolases/genética , Feminino , Regulação Enzimológica da Expressão Gênica , Proteínas de Insetos/genética , Larva/genética , Larva/crescimento & desenvolvimento , Larva/virologia , Masculino , Dados de Sequência Molecular , Mariposas/enzimologia , Mariposas/genética , Filogenia
SELEÇÃO DE REFERÊNCIAS
Detalhe da pesquisa